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Abstract: Antiepileptic drugs (AEDs) are widely used as long-term adjunctive therapy or as monotherapy in epilepsy and 
other indications and consist of a group of drugs that are highly susceptible to drug interactions. The purpose of the pre-
sent review is to focus upon clinically relevant interactions where AEDs are involved and especially on pharmacokinetic 
interactions. The older AEDs are susceptible to cause induction (carbamazepine, phenobarbital, phenytoin, primidone) or 
inhibition (valproic acid), resulting in a decrease or increase, respectively, in the serum concentration of other AEDs,  
as well as other drug classes (anticoagulants, oral contraceptives, antidepressants, antipsychotics, antimicrobal drugs,  
antineoplastic drugs, and immunosupressants). Conversely, the serum concentrations of AEDs may be increased by  
enzyme inhibitors among antidepressants and antipsychotics, antimicrobal drugs (as macrolides or isoniazid) and  
decreased by other mechanisms as induction, reduced absorption or excretion (as oral contraceptives, cimetidine,  
probenicid and antacides). Pharmacokinetic interactions involving newer AEDs include the enzyme inhibitors felbamate, 
rufinamide, and stiripentol and the inducers oxcarbazepine and topiramate. Lamotrigine is affected by these drugs,  
older AEDs and other drug classes as oral contraceptives. Individual AED interactions may be divided into three levels 
depending on the clinical consequences of alterations in serum concentrations. This approach may point to interactions of 
specific importance, although it should be implemented with caution, as it is not meant to oversimplify fact matters. Level 
1 involves serious clinical consequences, and the combination should be avoided. Level 2 usually implies cautiousness 
and possible dosage adjustments, as the combination may not be possible to avoid. Level 3 refers to interactions where 
dosage adjustments are usually not necessary. Updated knowledge regarding drug interactions is important to predict the 
potential for harmful or lacking effects involving AEDs. 
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INTRODUCTION 

 Antiepileptic drugs (AEDs) are widely used as long-term 
adjunctive therapy or as monotherapy in epilepsy and other 
indications and consist of a group of drugs that are highly 
susceptible to interactions. During the last years several new 
AEDs have been marketed. Initially, all new AEDs are li-
censed for add-on therapy for epilepsy patients. Several 
AEDs as lamotrigine, valproic acid, oxcarbazepine, carba-
mazepine, pregabalin, gabapentin, and topiramate are also 
increasingly used in other indications as psychiatry, neuro-
pathic pain and migraine [1, 2]. Population-based studies of 
drug utilization demonstrate that 19-24 % of patients with 
epilepsy use polytherapy with AEDs [2-4]. In recent studies 
of children and adults with refractory epilepsy, 64 % used 
polytherapy with two or more AEDs, and 35 % of the adults 
suffered from CNS-related comorbid conditions, resulting in 
a considerable risk of interactions [5, 6]. Polytherapy and the 
potential for interactions with other drugs increase with in-
creasing age, and the elderly is the largest group with new- 
onset epilepsy having a considerable risk of interactions with 
commonly prescribed drugs [7]. 
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 The interactions with older AEDs are thoroughly de-
scribed in earlier reviews [8-12]. The newer second- and 
third generation AEDs is less interacting than the older 
drugs, which results in less complicated therapeutic out-
comes and complications for the patients [13]. But, however, 
since the newer AEDs also often are metabolized in the liver, 
many of them may cause drug interactions or their serum 
concentrations be increased or to a lesser extent decreased by 
the addition of comedication [13-16]. Clearly, the risk of 
clinically important drug-drug interactions is great in patients 
with epilepsy, with or without comorbid conditions. 

 The purpose of the present review is to focus upon 
clinically relevant interactions between AEDs and AEDs in 
combination with other important therapeutic drug classes, 
with emphasis on pharmacokinetic interactions. The first 
part of the review deals with the principles for pharmacoki-
netic interactions, including cytochrome P450 (CYP) and 
uridine glucuronyl transferases (UGT)-mediated enzyme 
induction and inhibition. In the following sections the im-
plementation of the individual AED interactions in the 
clinical setting and the consequences of alterations in  
serum concentrations will be focused upon. This review 
comprises recent advances regarding drug interactions in-
cluding new AEDs that have not been described in previous 
reviews. 
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MATERIAL AND METHODS 

 The present review is based on published articles and 
searches in PubMed and Google Scholar from July 2008 to 
May 2010, in addition to references from the included arti-
cles. Peer-reviewed articles in English, from international 
journals, from the earliest relevant data, 1977 to 2010 were 
included. Primary sources and review articles of importance 
for the field were used. Published abstracts were included 
when a complete published article was not available. Unpub-
lished material, single case reports and preclinical studies 
were not included, but a few exceptions were made where 
clinical evidence was not available. Negative findings were 
not included. The searches included combinations of the 
terms from group 1, 2 and 3: 

 Group 1: CYP, enzyme induction, enzyme inhibition, 
interaction, metabolism, pharmacology, pharmacokinetics, 
pharmacodynamics and UGT.  

 Group 2: Antiepileptic drugs, carbamazepine, clobazam, 
clonazepam, eslicarbazepine acetate, felbamate, gabapentin, 
lacosamide, lamotrigine, levetiracetam, oxcarbazepine, phe-
nobarbital, phenytoin, pregabalin, primidone, rufinamide, 
stiripentol, tiagabine, topiramate, valproic acid, vigabatrin, 
and zonisamide. 

 Group 3: Antibiotics, antidepressants, antineoplastic 
drugs, antipsychotics, immunosuppressants, oral coagu-
lants/warfarin, oral contraceptives, psychotropic drugs, other 
drug classes. 

PHARMACOKINETIC INTERACTIONS 

 In general, pharmacokinetic interactions may alter ab-
sorption, protein binding, metabolism, and excretion of any 
drug, and these have been investigated in detail for many 
drugs. They are usually related to alterations in metabolism 
by enzyme inducers or inhibitors and are often well de-
scribed in preclinical models. Most drug interactions in the 
past were discovered due to unexpected change in the clini-
cal status of a patient after addition or withdrawal of a drug 
from existing medication. 

 Enzyme induction involves the synthesis of new enzyme, 
requires protein synthesis and may take many days before it 
is completed, resulting in increased metabolism, decreased 
serum concentrations and pharmacological effect (if no ac-
tive metabolites are present) of the affected drug, and possi-
bly loss of seizure control. The process is reversed when the 
inducer is withdrawn, resulting in increased serum concen-
trations and potential for toxic side effects of the affected 
drug. 

 Enzyme inhibition results from competition between 
drugs for the same active site on the enzyme and results in 
decreased metabolism of the affected drug. Circulating con-
centrations of the inhibited drug increase to a new steady-
state about five half-lives after the interaction. Consequently, 
pharmacological potentiation will occur quickly if the drug 
has a short half-life and more slowly if it has a long half-life 
[12]. Conversely, if the inhibitor is withdrawn, drug concen-
trations will decrease with risk of seizures. If the drug is a 
substrate, in vivo and in vitro inhibition is enzyme-specific 
and substrate-independent. All drugs that are metabolized to 

a significant degree by the same enzyme are inhibited by 
inhibitors of that enzyme and therefore exhibit the same 
spectrum of interactions. For a given drug the knowledge  
of the isoform(s) that catalyze(s) its metabolism is important. 
If the drug is an inhibitor, the potential for any drug to inhibit 
the various CYPs can be assessed in vitro using a specific 
substrate for those isoforms. If a new drug inhibits one  
isoform at therapeutic concentrations, it can be predicted  
that it will interact with any substrate of that isoform [9, 17-
19]. 

CYP Enzymes and Drug Interactions 

 There are a number of individual CYP isoenzymes, each 
of which is a specific gene product with characteristic sub-
strate specificity. The P450 enzyme system consists of a su-
per family of hemoproteins. The nomenclature is based on 
similarities in amino acid sequences deduced from genes. 
Each isoform is identified by three terms representing fami-
lies and subfamilies. An Arabic numeral designates the fam-
ily (f.ex. CYP2). Isoforms in the same family must have 
more than 40 % homology in their amino acid sequence. 
Letters A, B, C, D, and E designate the subfamilies (f.ex. 
CYP2C). Members of the same subfamily must have more 
than 55 % homology. The third term, another Arabic nu-
meral, designates a unique gene product with very similar 
amino acid sequences (f.ex. CYP2C9) [9]. 

 Clinically important CYPs involve certain isoforms that 
appear to have therapeutic relevance. Only a few of these are 
important in terms of understanding the interactions of 
AEDs, CYP1A2, CYP2C9/10, CYP2C19, and CYP3A3/4. 
Knowledge of the isoenzymes involved in the metabolism of 
established AEDs allows a prediction of interactions with 
new drugs in development. Enzyme activity is genetically 
determined, and pharmacogenetic differences in the meta-
bolic capacity exist for CYP2C9/19 as poor, intermediate 
and extensive metabolizers, e.g. for CYP2C19 5 % of the 
Caucasian population is deficient, while 20 % of the Japa-
nese population is deficient [18-20]. CYP2D6 is well de-
scribed for its pharmacogenetic variability and is involved in 
the metabolism of commonly used antidepressants and antip-
sychotics, where 5-10 % of the Caucasian population is defi-
cient, while less than 1 % of the Asian population is defi-
cient. Ultrarapid metabolizers also exist for this enzyme, as 
more than 20 gene copies may exist in a few percentage of 
patients [21, 22]. Phenotypically, in clinical practice, phar-
macokinetic interactions involving enzyme induction and 
enzyme inhibition will mimic the genotypes of extensive and 
poor metabolizers, respectively. 

UGTs and Drug Interactions 

 The uridine glucuronyl transferases (UGTs) catalyse glu-
curonidation via two enzyme families, UGT1 and UGT2, 
each with eight isoenzymes identified [10].Glucuronidation 
is the clearance mechanism of one of ten of the 200 most 
prescribed drugs in the US [23]. The UGTs are in general 
less substrate specific, and even though many genetic poly-
morphisms have been identified, no clear polymodal distri-
bution in genotypes has been identified as for the CYP fami-
lies. During the last years details in genetics of the UGTs 
have become available [24, 25].  
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 Lamotrigine is metabolized through UGT1A4 [26]. Val-
proic acid seems to be a substrate for UGT2B7, and poly-
morphisms exist [18, 27]. As for the CYPs, UGTs are sus-
ceptible to induction or inhibition. Probably, their role in the 
metabolism of AEDs will be closely investigated in the com-
ing years. Pharmacogenetic variability or genetic polymor-
phisms and variability in the capacity of drug metabolism is 
an issue that is under investigation [17, 18, 28]. 

Pharmacokinetic Interactions and Therapeutic Drug 

Monitoring (TDM) 

 The treatment of epilepsy aims to prevent seizures, and 
since there is no direct measure to control the pharmacologi-
cal effect, TDM is an important tool in pharmacovigilance 
[20]. When a patient is treated with more than one drug, 
there is often a risk of clinically important drug interactions 
that may result in altered therapeutic outcome, and interac-
tions are a major contributor to pharmacological variation. 
TDM may reveal interactions by the measurement of the 
serum concentrations of AEDs and appropriate dosage ad-
justments may be necessary [14, 16]. It is important to be 
observant for loss of efficacy or clinical signs of intoxication 
and to monitor the drug concentrations closely 2- 4 weeks 
following addition or withdrawal of a drug. Knowledge of 
the mechanism of an interaction may allow anticipation of 
the observed effect. 

PHARMACOKINETIC INTERACTIONS WITH AEDS 

 Pharmacokinetic interations in the clinical setting may be 
divided in three levels depending on the magnitude of altera-
tions in serum concentrations and clinical implications. Thus, 
the most important interactions may be easier to remember 
(Level 1 and 2 interactions). This approach may point to 
interactions of specific importance, although it should be 
implemented with caution, as it is not meant to oversimplify 
fact matters.  

• Level 1 interactions may result in potentially serious 
clinical consequences, and the combination should be 
avoided 

• Level 2 interactions usually imply cautiousness and  
possible dosage adjustments, as the combination may not 
be possible to avoid 

• Level 3 interactions refer to interactions where dosage 
adjustment are usually not necessary, and clinically  
relevant changes in serum concentrations are not  
expected 

 Since several of the older AEDs are well-known enzyme 
inducers (carbamazepine, phenytoin, phenobarbital, and 
primidone) or inhibitors (valproic acid), interactions with 
AEDs are commonly occurring and often have potentially 
serious clinical implications (Level 1 and 2 interactions). In 
various instances the knowledge of the possibility of a given 
interaction may help in better rationalizing the therapeutic 
approach in avoiding unnecessary risk to the patients. The 
clinical significance of some of the reported interactions with 
AEDs may, however, be questioned, if the alterations in se-
rum concentrations are minor (Level 3 interactions). It 
should also be noted that enzyme-inducing AEDs affect en-

dogenous biochemical pathways, as metabolism of sex hor-
mones, vitamin D homeostasis and bone metabolism and 
cholesterol synthesis [29, 30]. 

 The newer AEDs are less susceptible to cause pharma-
cokinetic interactions than the older drugs, but may often be 
affected by other AEDs or drug classes. Recently, four new 
AEDs have been marketed (eslicarbazepine acetate, la-
cosamide, rufinamide, and stiripentol). Lacosamide does not 
seem to be involved in pharmacokinetic interactions and will 
not be discussed further [31, 32]. Rufinamide seems to be 
involved in some interactions, and stiripentol has a greater 
interaction potential [33-35]. It should, be noted, however, 
that the use of rufinamide and stiripentol is limited to special 
pediatric populations. 

 The main metabolic pathways, enzymes and susceptibil-
ity to drug interactions are shown in Table 1. AEDs with an 
interaction potential and how they affect other drugs, are 
shown in Table 2. Table 3 highlights interactions between 
other drugs and AEDs. There are more examples listed in 
Table 2 and 3 than those discussed in the text. Specific com-
binations and clinical implications of major clinical impor-
tance that should be remembered are summarized in Table 4 
(Level 1 and 2 interactions). 

INTERACTIONS BETWEEN AEDS 

 Well-known interactions and newly established interac-
tions of clinical importance will be highlighted. Based on the 
metabolic pathways described in Table 1, it is clear that evi-
dence for many possible interactions involving new AEDs is 
lacking in the literature. 

Enzyme Induction and Possible Loss of Seizure Control 

Carbamazepine and other Older Enzyme Inducers 

 Carbamazepine, phenytoin, phenobarbital, and primidone 
are the major enzyme-inducing AEDs that stimulate the rate 
of metabolism of most co-administered AEDs, including 
valproic acid, tiagabine, ethosuximide, lamotrigine, topi-
ramate, oxcarbazepine and its monohydroxy-derivative, 
zonisamide, felbamate, many benzodiazepines and, to some 
extent, levetiracetam. This involves various CYP enzymes 
(CYP1A2, CYP2C9, CYP2C19, CYP3A4), UGTs and epox-
ide hydrolase. Carbamazepine undergoes autoinduction and 
also heteroinduction by phenytoin and barbiturates [10, 12]. 
The active 10,11-epoxide metabolite of carbamazepine is 
metabolized by epoxide hydrolase. The clinical significance 
of these interactions is usually modest because the conse-
quences of the reduction in serum concentration of the af-
fected AED are compensated for by the pharmacological 
effect of the added comedication. However, in some cases, 
seizure control may be adversely influenced (Level 2 and 3 
interactions). Particular caution is required when an enzyme-
inducing drug is withdrawn from the therapeutic regimen of 
patients taking comedications, the metabolism of which has 
been increased by the inducing drug. In fact, the concentra-
tion of these drugs may increase to toxic concentrations after 
removal of the inducing drug unless their dosage is adjusted 
appropriately (Level 2 interactions). Dosage adjustments  
of the AED affected by the interaction are most commonly 
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Table 1. AEDs and their Main Mechanisms of Elimination and Susceptibility to Pharmacokinetic Interactions 

AED Main Route of  

Elimination 

CYP  

Degradation 

CYP  

Induction 

CYP  

Inhibition 

UGT  

Degradation 

UGT  

Induction 

UGT  

Inhibition 

Carbamazepine Oxidation Yes, 3A4, and  

epoxide hydrolase 

(metabolite) 

Yes, CYP3A4, 

2C9, 1A2 

No 

 

No Yes No 

Clobazam Oxidation Yes, CYP3A4 No No No No No 

Clonazepam Oxidation Yes, CYP3A4 No No No No No 

Eslicarbazepine 

acetate 

Glucuronidation No Yes,  

CYP3A4 

No Yes, but  

isoenzymes  

not identified 

No No 

Ethosuximide Oxidation Yes, CYP3A4 No No No No No 

Felbamate Oxidations (>50 %), renal 

excretion (>30 %) 

Yes, CYP 3A4, 2E1 CYP3A4* CYP2C19 No No No 

Gabapentin Renal excretion No No No No No No 

Lacosamide Demethylation No No No No No No 

Lamotrigine Conjugation No No No Yes, UGT1A4 No No 

Levetiracetam Hydrolysis (25 %), renal 

excretion (75 %) 

No, type-B esterase No 

 

No No ? No 

Oxcarbazepine Conjugation (>50 %), renal 

excretion (<30 %) 

No, arylketone  

reductase 

Yes, CYP3A4,  Yes, 

CYP2C19* 

Yes Yes, 

UGT1A4 

No 

Phenobarbital Oxidation/conjugation (75 

%), renal excretion (25 %) 

Yes, CYP2C9, 2C19, 

2E1 

Yes, CYP3A4, 

2C9, 1A2 

No Yes No No 

Phenytoin Oxidation Yes, CYP2C9, 2C19 Yes, CYP3A4, 

2C9, 1A2 

Yes, CYP2C9 No Yes No 

Pregabalin Renal excretion No No No No No No 

Rufinamide Hydrolysis,  

glucuronidation 

No, carboxyl  

esterases 

Yes, CYP3A4 No Yes No No 

Stiripentol Oxidation, hydroxylation, 

O-methylation, glucuroni-

dation 

No, carboxyl  

esterases 

No Yes, CYP 

1A2, 3A4, 

2C19, 2D6 

No No No? 

Tiagabine Oxidation Yes, CYP3A4 No No No No No 

Topiramate Oxidation (20-60 %), renal 

excretion (40-80 %) 

Yes, but isoenzymes 

not identified 

Yes, CYP3A4* 

(>200 mg/day) 

Yes, 

CYP2C19* 

No No No 

Valproic acid Oxidation (>50 %), conju-

gation (30-40 %) 

Yes, 2A6, 2C9, 

2C19, 2B6 and  

mitochondrial  

oxidases 

No 

 

Yes, 

CYP2C9, 

CYP3A4?, 

and epoxide 

hydrolase 

Yes, 

UGT1A3, 2B7 

No Yes 

Vigabatrin Renal excretion No No No No No No 

Zonisamide Oxidation, reduction,  

acetylation (>50 %),  

renal excretion (30 %) 

Yes, CYP3A4, and 

N-acetyl transferase 

No 

 

No No No No 

*Weak induction or inhibition. AED=Antiepileptic drug. CYP=Cytochrome P450 enzyme, UGT=Uridine diphosphate glucuronosyltransferase enzymes.  
The most commonly used AEDs are listed. Main routes of metabolism and affection of other enzymes are listed. Isoenzymes are given where they have been identified. Several 
sources are used, see text. 
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Table 2. Clinically Important Interactions Between AEDs and with other Drug Classes 

Affected Drug Classes 

AEDs  

Susceptible to  

Interactions  

AEDs Antidepressants and 

Antipsychotics 

Oral  

Contraceptives 

Antimicrobal Drugs Various (e.g. Warfarin, 

Antineoplastic Drugs, 

Immuno-Suppressants) 

Enzyme inducers that will decrease serum concentrations of affected drugs 

Carbamazepine, 

phenobarbital, pheny-

toin, primidone 

Benzodiazepines,  

ethosuximide,  

lamotrigine,  

oxcarbazepine,  

pregabalin, rufinamide,  

stiripentol, tiagabine,  

topiramate, zonisamide,  

valproic acid,  

Typical:  

Chlorpromazine,  

haloperidol 

Atypical:  

Aripiprazol, clozapine, 

olanzapine, quetiapine, 

risperidone, ziprasidone 

Antidepressants: 

Clomipramine 

Imipramine 

Estrogen compo-

nent of combina-

tion pills 

Doxycycline,  

indinavir,  

itraconazole,  

metronidazol,  

praziquantel 

Warfarin 

Antineoplastic agents 

(e.g. cyclophosphamide, 

irinotecan, methotrexate, 

tamoxifen) 

Immuno-suppressants: 

Ciclosporin, tacrolimus  

Varia:  

Cortisol derivatives, 

dextropropoxyphene, 

dihydropyridine calcium 

antagonists, fentanyl, 

statines, methadone, 

theophylline, thyroxine 

Eslicarbazepine and 

oxcarbazepine 

Lamotrigine,  

phenobarbital,  

phenytoin,  

(mainly induction) 

 Estrogen  

component of  

combination pills 

  

Felbamate Carbamazepine 

Clobazam 

    

Topiramate Phenytoin  

(in some cases)  

 Estrogen  

component of  

combination pills  

(topiramate doses 

>200 mg/day) 

 Carboanhydrase  

inhibitors, digoxin,  

hydrochlortiazide,  

metformin, pioglitazone,  

Enzyme inhibitors that will increase serum concentrations of affected drugs 

Valproic acid Carbamazepine,  

ethosuximide,  

lamotrigine,  

phenobarbital,  

rufinamide 

Amitriptyline, nortrip-

tyline 

 Carbapenem  

antibiotics:  

Imipenem,  

meropenem,  

panipenem 

Cisplatin,  

etoposide 

Felbamate Clonazepam  

phenobarbital,  

phenytoin,  

valproic acid 

 Estrogen  

component  

of combination 

pills 

 Warfarin 

Rufinamide Carbamazepine,  

lamotrigine,  

phenobarbital, phenytoin  

(mainly inhibition) 

 Estrogen  

component of  

combination  

pills 

 Triazolam 

Stiripentol Carbamazepine,  

clobazam, phenytoin, 

phenobarbital,  

valproic acid  

   Various potential  

interactions* 

AEDs=Antiepileptic drugs. The list is not all-including but relevant examples are given. Several references are used, see text for details and selected reviews, [7-13] and the spc of the 
various drugs. Oral contraceptives and warfarin are described in more detail in Table 4. *In vitro studies suggest a potential for interactions with most drug classes metabolized by 
CYP3A4, 1A2, 2C19.  
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Table 3. Other Drugs Affecting Commonly used AEDs. Examples from Therapeutic Drug Classes of Clinical Importance 

Therapeutic Drug Classes Affected AEDs Mechanism of Interaction and Clinical Consequence 

Antidepressants and antipsychotics 

Haloperidol, risperidone  

Chlorpromazine 

Clomipramine 

Sertraline 

 

Carbamazepine 

Valproic acid 

Carbamazepine, phenytoin, phenobarbital, valproic acid 

Carbamazepine, lamotrigine, phenytoin, valproic acid,  

Enzyme inhibition leading to increased serum concen-

trations of AEDs 

Oral contraceptives Lamotrigine, valproic acid (oxcarbazepine?) Induction of metabolism (glucuronidation) and reduced 

serum concentrations of AEDs 

Antimicrobal drugs 

Macrolides (clarithromycin,  

erythromycin, troleandomycin) 

Rifampicin 

Isoniazid 

 

Carbamazepine 

 

Lamotrigine 

Carbamazepine, ethosuximide, phenytoin, valproic acid  

Enzyme inhibition by antimicrobal drugs leading to 

increased serum concentrations of AEDs  

Others 

Probenicid Carbamazepine Induction of metabolism and reduced serum  

concentrations of carbamazepine 

Antacides 

Cimetidine 

Gabapentin Decreased absorption of gabapentin 

Reduction in excretion of gabapentin leading to a  

prolonged half-life 

Salicylates and naproxene Tiagabine Displacement of tiagabine from plasma proteins leading 

to a decrease in the total serum concentration of  

tiagabine but unchanged free concentration 

AEDs=Antiepileptic drugs. The list is not all-including, but relevant examples are given. Several references are used, see text for details and selected reviews [7-13] and the spc of the 
various drugs. 

required for valproic acid, lamotrigine and tiagabine, because 
the decrease in the serum concentrations of these drugs after 
adding carbamazepine can be quite prominent (50-75 %) [12,  
36]. Furthermore, the central nervous system adverse effects 
of carbamazepine may be potentiated by lamotrigine and by 
oxcarbazepine [12, 37]. The effects of carbamazepine on the 
pharmacokinetics of phenobarbital and primidone are some-
what variable. In patients on primidone, carbamazepine may 
decrease the serum concentrations of primidone and increase 
those of metabolically derived phenobarbital. Phenytoin and 
barbiturates decrease serum carbamazepine concentrations.  

 The classical enzyme-inducing AEDs may also increase 
the metabolism of several new AEDs (Level 2 interactions). 
The half-life of felbamate is decreased from up to 22 hours 
to about 14 hours [38, 39]. The metabolism of lamotrigine is 
increased in combination with enzyme inducers, shortening 
the half-life from 30 to 15 hours on average [40, 41]. The 
clearance of levetiracetam has been shown to be approxi-
mately 25-37 % higher in patients also treated with enzyme 
inducing AEDs [42-44]. Interactions between oxcarbazepine 
and carbamazepine, phenytoin and valproic acid were inves-
tigated in a controlled study with 43 patients and showed that 
oxcarbazepine did not affect any of the drugs, while induc-
tion by carbamazepine and phenytoin decreased the AUC of 
the main metabolite, 10-OH-carbazepine, (MHD) by 40 % 
and 29 %, respectively [45]. The metabolism of oxcar-
bazepine (600 mg single dose) was induced by about 30 % 
by phenobarbital, as seen in the lower plasma concentration 

of MHD, while no change was seen with valproic acid [46]. 
A recent study suggests that enzyme-inducing agents may 
cause a 20- 30 % reduction in the plasma concentration of 
pregabalin at steady state [47]. Even though pregabalin is 
metabolized only to a minor extent, it is supposed that pa-
tients on long-term enzyme-inducing drugs might metabolize 
pregabalin somewhat more extensively than expected from 
healthy volunteers [47]. Enzyme-inducing AEDs increase the 
clearance of tiagabine by 50-65 % and subsequently, reduce 
the half-life on average from 7 hours to 2-5 hours [48]. 
These drugs also reduce the serum concentrations of topi-
ramate by about 50 %, as measured in 94 children and adults 
[49]. The half-life of zonisamide is reduced by 25-35 % by 
inducing AEDs (phenytoin and carbamazepine) [50]. Co-
medication with enzyme inducing AEDs decreased plasma 
concentrations of rufinamide by up to 46 %, which may be 
explained by induction of carboxylesterases [12]. Patients 
treated with enzyme inducing AEDs exhibit higher clearance 
of stiripentol to a variable extent [51].  

Newer AEDs 

 Oxcarbazepine may act as a weak enzyme inducer or 
inhibitor, but enzyme induction is probably the most clini-
cally relevant mechanism (Table 1). It induces the UGT-
mediated metabolism of lamotrigine, as seen by a 29 % de-
crease in the serum concentration [40, 52]. Felbamate may 
act as a weak inducer of CYP3A4 and decreases the serum 
concentrations of carbamazepine by 25 % and increases  
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the concentrations of carbamazepine-10,11-epoxide [53].  
Felbamate also increases the formation of the active metabo-
lite of clobazam, n-desmethyl-clobazam several-fold [54]. 
Findings from pharmacokinetic modeling indicate that  
rufinamide may slightly increase the metabolism of carba-

mazepine and lamotrigine (less than 20 %) [35]. Enzyme 
induction by newer AEDs is clearly less prominent than by 
older AEDs, and they may be regarded as Level 2-3 interac-
tions. 

Table 4. Clinically Important Drug Combinations Involving AEDs (Level 1-2) 

AED Added Drug Clinical Consequence Level of Importance (1-2) Precautions 

Carbamazepine  
(or phenobarbital,  

phenytoin, primidone)  

Oral contraceptives Induction of estrogen  
metabolism, reduction in serum 

concentrations, and loss of  

contraceptive effect 

Level 1: Should be 
avoided 

Avoid the combination (or use 
of oral contraceptives with >50 

μg ethinylestradiol), utilize 

barrier contraception. Addition 
of 4 mg folic acid daily  

for women of child bearing  

potential if used 

Carbamazepine Antibiotics:  
Clarithromycin,  

erythromycin,  
troleandomycin 

Inhibition of carbamazepine 
metabolism, elevated serum  

concentrations, giving rise to  
potential serious toxicity if the 

antibiotics are added 

Level 1: Should be 
avoided 

Avoid macrolide antibiotics that 
inhibit CYP3A4, prefer 

azithromycin or spiramycin 

Carbamazepine Dextropropoxyphene Inhibition of carbamazepine 

metabolism, elevated serum  
concentrations, giving rise to  

potential serious toxicity if  

the analgesic drug is added 

Level 1: Should be 

avoided 

The combination should be 

avoided. 

Lamotrigine  Oral contraceptives Induction of lamotrigine  
metabolism, reduction in  

serum concentrations by  

50 %, and reduced seizure  

control, if OCs are added 

Level 1: Should be 
avoided  

The combination should  
be avoided. Alternatively,  

increase in lamotrigine dose  

and monitor closely 

Valproic acid  Lamotrigine 1) Inhibition of lamotrigine  
metabolism and elevated serum 

concentrations giving rise to skin 

rashes, or neurotoxic  
effects if lamotrigine is added to 

valproic acid 

2) A synergistic  

pharmacological effect and  

improved seizure control 

Level 2: Dosage  
adjustments and  

monitoring are  

needed 

1) Low initial dose and slow 
titration of lamotrigine dose 

when initiating therapy, about 

50 % of the dose used in  
monotherapy is required 

2) A dose reduction of both 
drugs may reduce risk of  

adverse effects without  

affecting the efficacy 

Valproic acid  Phenobarbital Inhibition of phenobarbital  
metabolism resulting in  

elevated serum  

concentrations, and risk of  

intoxication if valproic acid is 
added as a second drug 

Level 2: Dosage  
adjustments and  

monitoring are  

needed 

A reduction in phenobarbital 
dose by up to 80 % 

Carbamazepine  
(or phenobarbital,  

phenytoin, primidone)  

Oral anticoagulant:  
Warfarin 

Induction of warfarin  
metabolism, reduced serum  

concentrations, increasing the  

risk of coagulation that may  
be fatal if enzyme-inducing 

AEDs are added 

Level 2: Dosage  
adjustments and  

monitoring are  

needed 

An increase in the warfarin  
dose required to maintain  

the INR, close monitoring  

of INR.  

Carbamazepine  

(or phenobarbital,  
phenytoin, primidone)  

Immunsuppressants: 

Ciclosporin,  
tacrolimus 

Induction of immunosuppressant 

metabolism, reduction in serum 
concentrations, and potential 

therapeutic failure if enzyme-

inducing AEDs are added 

Level 2: Dosage  

adjustments and  
monitoring are  

needed 

Increase in the dose of  

immunosuppressant to avoid 
therapeutic failure, important 

for drugs with a narrow  

therapeutic range 

AEDs=Antiepileptic drugs. Several references are used, see text for details. 
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Enzyme Inhibition by AEDs with Risk of Intoxication 

Valproic Acid 

 Valproic acid is a broad enzyme inhibitor, including 
CYPs, UGTs and epoxide hydrolase, and inhibits the me-
tabolism of lamotrigine (glucuronidation), phenobarbital 
(oxidation), the metabolite 10,11-epoxide of carbamazepine 
(epoxide hydrolase), and ethosuximide (oxidation) leading to 
increased serum concentrations of the inhibited drugs and 
consequently, an increased risk of toxicity [9, 55]. The serum 
concentration of lamotrigine is increased by 211 % by val-
proic acid, as studied retrospectively in patients, increasing 
the half-life from 30 to 60 hours [41]. This is of great impor-
tance because the risk of skin rashes induced by lamotrigine 
is dependent on the rate of increase of the serum concentra-
tion of lamotrigine. The addition of lamotrigine to existing 
valproic acid treatment, therefore calls for a low starting 
dose and cautious dose escalation (Level 2 interaction). 
Lamotrigine may also affect the metabolism of valproic acid, 
as shown in a study where the addition of lamotrigine to val-
proic acid therapy led to a 25 % increase in valproic acid 
serum concentrations [56]. Serum phenobarbital concentra-
tions may increase considerably after adding valproic acid 
[36]. A dose reduction of phenobarbital by up to 80 % may 
be necessary to avoid side effects [55]. If valproic acid is 
added to carbamazepine, neurotoxic signs may develop due 
to an increase in the serum concentration of its epoxide me-
tabolite caused by inhibition of the epoxide hydrolase [12]. 
Valproic acid increases rufinamide concentrations by about 
70 %, especially in children compared to patients without 
valproic acid as comedication, and this finding may be ex-
plained by inhibition of carboxylesterases [35]. In adults, the 
estimated reduction in rufinamide clearance by valproic acid 
was 17 % [34]. 

Felbamate 

 Felbamate is a potent and broad ranging inhibitor, includ-
ing CYP2C19 and may increase plasma concentrations of 
phenobarbital, phenytoin and valproic acid significantly 
[39,57-60]. The clinical importance of felbamate is, how-
ever, limited because of the diminished use of the drug dur-
ing the last years due to toxic effects.  

Oxcarbazepine 

 Oxcarbazepine is a weak inhibitor of CYP2C19 and may 
increase the serum concentration of phenytoin and pheno-
barbital [61]. 

Rufinamide 

 The new AED rufinamide has demonstrated to moder-
ately increase serum concentrations of carbamazepine, phe-
nobarbital and phenytoin (6-17 %), possibly due to enzyme 
inhibition [35]. The clinical importance of these interactions 
is uncertain. 

Stiripentol 

 Stiripentol is extensively metabolized through four main 
pathways, and it exhibits non-linear kinetics [62] (Table 1). 
This drug is a potent inhibitor of CYP3A4, 1A2 and 2C19 
and increases the serum concentration of other AEDs as 

phenytoin, carbamazepine, phenobarbital, valproic acid, and 
clobazam [63-65] (Level 2 interactions). Consequently, the 
concentrations of their metabolites are decreased, which may 
result in increased tolerability of the original drugs, as for 
carbamazepine and its epoxide metabolite [64]. 

 Even if the clinical use of felbamate, rufinamide, and 
stiripentol is limited, potential interactions are important to 
be aware of. 

INTERACTIONS BETWEEN AEDS AND OTHER 

DRUGS 

 Interactions between AEDs and other drugs are described 
in detailed reviews [7, 11, 19, 66, 67]. They may result in 
alterations in serum concentrations of the actual AED(s) or 
the other drug(s), often caused by induction or inhibition of 
CYP enzymes. In the following sections, commonly occur-
ring interactions will be elucidated. In general, the newer 
AEDs are less suceptible for drug interactions than the older 
ones. Interactions where AEDs are affecting other drugs are 
shown in Table 2, while interactions where other drugs are 
affecting AEDs (antidepressants, antipsychotics, antimi-
crobal drugs, and others) are shown in Table 3. Clearly, in-
teractions between new AEDs and other drugs are scarce in 
the literature, and in many cases, oral contraceprives (OCs) 
and warfarin are best documented. Some negative findings 
regarding other therapeutic classes have, however, been pub-
lished. No interactions between OCs and gabapentin, 
levetiracetam, pregabalin, tiagabine, vigabatrin and zoni-
samide have been reported [68-73]. 

Enzyme Induction or Inhibition by AEDs 

 For female patients, possible interactions between AEDs 
and OCs are of major importance, as a large portion (>50 %) 
of patients lack knowledge and information [74, 75]. The 
older enzyme-inducing AEDs and the newer, oxcarbazepine, 
lamotrigine, felbamate, topiramate (>200 mg), eslicar-
bazepine acetate, and rufinamide stimulate the metabolism of 
OCs involving CYP3A4. Women who use AEDs that inter-
act with hormonal contraceptives (estrogen or gestagen) 
should be advised to use non-hormonal contraceptive meth-
ods [76] (Level 1 interactions). 

Carbamazepine and other Older Enzyme-Inducing AEDs 

 Carbamazepine induces the metabolism of various CYPs 
and UGTs and thus many other drugs (including oral antico-
agulants, ciclosporin A, and many antineoplastic agents) and 
may have important clinical implications and possible thera-
peutic failure of the affected drug (Level 1 and 2 interac-
tions). Carbamazepine (600 mg/day) increases the clearance 
of ethinyl estradiol and norethindrone by 127 % and 69 %, 
respectively [77]. Regarding psychotropic drugs, carba-
mazepine reduces the serum concentrations of both the older 
typical and newer atypical drugs, including risperidone, clo-
zapine, olanzapine, quetiapine, ziprasidone, aripiprazol, 
haloperidol, chlorpromazine and older antidepressants as 
clomipramine and imipramine [66, 67, 78] (Level 2 interac-
tions). The interaction is greatest with drugs that undergo 
significant first-pass metabolism, such as itraconazole, 
praziquantel, indinavir. Most dihydropyridine calcium an-
tagonists are also affected [7]. Addition of simvastatin to 
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healthy volunteers taking carbamazepine lead to a 75-82 % 
decrease in the AUC of simvastatin treated compared to con-
trols, possibly by induction of CYP 3A4 [79]. In enzyme-
induced patients the serum concentration of these drugs may 
decrease 5-10-fold, and the practical management of these 
patients may be very difficult. In case of warfarin treatment, 
it is important to be aware of the potential danger if the in-
ducing drug is discontinued, where there is a risk of haemor-
rhage (Level 2 interaction). 

 The other older AEDs with enzyme-inducing properties 
also affect antipsychotic drugs (Level 2 interactions). Pheno-
barbital decreases the serum concentration of clozapine, 
haloperidol and chlorpromazine, and phenytoin decreases the 
serum concentration of quetiapine, clozapine, haloperidol 
and chlorpromazine [66]. Phenobarbital and phenytoin also 
decrease serum concentrations of older antidepressants as 
clomipramine and imipramine [7]. 

Eslicarbazepine Acetate 

 Eslicarbazepine acetate (1200 mg daily) reduces the ef-
fectiveness of OCs, by a decrease of the AUC of levonorg-
estrel and ethinyloestradiol by 37% and 42%, respectively, 
due to enzyme induction [80] (Level 1 interaction, according 
to recent guidelines [76]). 

Felbamate 

 In the limited cases where felbamate is used, interactions 
with OCs and warfarin must be expected. In a randomized 
controlled study with female volunteers, felbamate decreased 
the AUC of gestodone by 42 %, but not ethinyl estradiol, and 
therefore, the use of OCs with a low-dose of estrogen is not 
advised [81] (Level 1 interaction). In patients treated with 
warfarin and felbamate, a dose reduction of warfarin was 
necessary to maintain its anticoagulant efficacy [82] (Level 2 
interaction).  

Oxcarbazepine 

 Oxcarbazepine induces the metabolism of OCs, ethinyl 
estradiol and levonorgestrel, as their AUCs were reduced by 
47 %, accompanied by a 45 % decrease in their half-lives, by 
concomitant administration of oxcarbazepine (maintenance 
dose 1200 mg/day) as studied in healthy women [83] (Level 
1 interactions). 

Topiramate 

 Topiramate used in daily doses of 50-200 mg/day does 
not significantly affect serum concentrations of OCs contain-
ing ethinyl estradiol and norethindrone [84]. In higher doses 
(up to 400 mg/day), however, a modest inducing effect was 
seen with a 18-33 % increase in oral clearance [85] (Level 1 
interaction). Topiramate in combination with hydrochlortiaz-
ide, metformin or pioglitazone may require dosage adjust-
ments of either drug and should be monitored closely, and 
carboanhydrase inhibitors should be avoided [86] (Level 2-1 
interaction). 

Rufinamide 

 Rufinamide increases the clearance of OCs caused by 
weak enzyme induction, as shown by a reduction in plasma 
concentrations of ethinyl estradiol and norethindrone of 22 

% and 14 %, respectively [35, 87]. Rufinamide increased the 
clearance of triazolam by 55 % in a study with healthy vol-
unteers, possibly by enzyme induction [35].  

Stiripentol 

 Due to the inhibitory effect of stiripentol on several 
CYPs, the dose of concomitantly used drugs should be re-
duced by 50 % if they are eliminated through the CYP P450 
system, including drugs used for anesthesia, hypertension, 
diabetes, and asthma. Warfarin should be avoided [88]. 
However, further studies are needed. 

Valproic Acid 

 The potent enzyme inhibitor valproic acid has the poten-
tial to increase the serum concentrations and risk of toxicity 
of many other drugs, and some of them are documented 
(Level 2 interactions). Valproic acid inhibits the metabolism 
of amitriptyline and nortriptyline and increases their total 
AUC by 42 %, as studied in healthy subjects [89]. There is 
conflicting evidence whether valproic acid affects antipsy-
chotics, as described for the enzyme inducers [37, 90]. Val-
proic acid treatment results in a three-fold increase in the 
incidence of haematological adverse effects associated with 
antineoplastic drugs as cisplatin and etoposide caused by 
enzyme inhibition [91]. 

Enzyme Induction or Inhibition by Other Drugs 

Carbamazepine 

 Many drugs other than AEDs affect carbamazepine me-
tabolism. Several drugs, including known inhibitors of 
CYP3A4, can precipitate signs of carbamazepine toxicity by 
increasing serum carbamazepine concentrations. For exam-
ple, the antibiotic agents clarithromycin, troleandomycin and 
erythromycin, and the analgesic drugs dextropropoxyphene 
increase serum carbamazepine concentrations markedly and 
should be avoided in patients taking carbamazepine [92-94] 
(Level 1 interactions). Probenecid appears to reduce the se-
rum concentration of carbamazepine by increasing its 
biotransformation to carbamazepine-10,11-epoxide [95]. Of 
the antipsychotic drugs, risperidone, and possibly haloperi-
dol are the only drugs that have been shown to increase the 
carbamazepine serum concentration [37].  

 Grapefruit juice may also inhibit CYP3A4, and has a 
modest elevating effect on serum carbamazepine concentra-
tions. St. John’s Wort has the potential to increase the me-
tabolism of AEDs, since it induces CYP3A4, CYP2C9 and 
CYP2C19, possibly by affecting drug transporter activity in 
the gastrointestinal tract [23, 96, 97]. Interactions between 
AEDs and herbal medicines are not sufficiently investigated 
in clinical studies, but there is a potential for pharmacoki-
netic interactions [98, 99]. 

Phenobarbital and Phenytoin 

 Phenobarbital and phenytoin follow the same metaboliz-
ing pathways as carbamazepine, and most of the drugs that 
affect carbamazepine are also expected to affect these drugs, 
as for instance the antidepressant clomipramine or the anti-
biotic isoniazid [11, 12, 37, 67]. 
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Lamotrigine 

 Recently, interactions between lamotrigine and OCs have 
been closely investigated. In a study with 22 women using 
lamotrigine (on average 350 mg/day) and OCs and 30 
women on lamotrigine (on average 350 mg/day) without 
OCs, lamotrigine serum concentrations were reduced by 
more than 50 %, from 28 to 13 mol/L [100, 101]. Further-
more, Reimers et al. [102] found that it is ethinyl estradiol 
and not progesterone that reduces the lamotrigine concentra-
tions. This interaction is likely to be caused by stimulation of 
UGT1A4 activity by the steroids and may result in reduced 
seizure control in some women. The serum concentrations of 
lamotrigine should therefore be closely monitored, and this 
interaction is of major importance, as lamotrigine is often a 
preferred choice of drug in female patients (Level 1 interac-
tion, according to [76]). Rifampicin has been shown to in-
crease lamotrigine clearance of about 50 % [103]. 

Oxcarbazepine 

 It is possible that oxcarbazepine is affected in a similar 
way due to a common metabolic pathway [76] (Level 1 in-
teractions).  

Valproic Acid 

 Valproic acid is affected by OCs by a similar mechanism 
as lamotrigine, but less pronounced, as demonstrated by an 
increase of 22 % and 45 % increase in the apparent clearance 
of total and unbound valproic acid, respectively [104]. The 
serum concentrations of valproic acid should be closely 
monitored [76] (Level 1-2 interaction). Valproic acid clear-
ance is decreased moderately by chlorpromazine (15 %) 
[105]. Carbapenem antibiotics as imipenem, meropenem and 
panipenem also decrease serum levels of valproic acid, by 
enzyme inhibition and potentially other mechanisms [106]. 

OTHER MECHANISMS 

Absorption 

 Gabapentin has shown great variability in absorption 
from the gastrointestinal tract, and the absorption may be 
reduced by up to 24 % with some antacids, as well as its re-
nal clearance may be reduced by cimetidin [107, 108]. The 
intake of rufinamide with food increases the Cmax by >50 % 
and AUC with 30-40 % [35]. 

Protein Binding 

 Phenytoin, valproic acid, and tiagabine are highly bound 
to serum proteins, and displacement from protein binding 
sites may occur, especially the displacement of phenytoin by 
valproic acid [12]. In addition, stiripentol is 99 % protein 
bound [62], and displacement interactions are therefore also 
likely to occur, but studies are lacking. Usually, these inter-
actions are not clinically important (Level 3 interactions), but 
may be of importance for the interpretation of TDM data. 
The total concentration of the affected drug is decreased, but 
the concentration of the unbound, pharmacologically active 
drug is not altered. Valproic acid displaces tiagabine from its 
binding sites at serum proteins concentration-dependently 
[109]. Since tiagabine is present in nanomolar concentrations 
in the blood, it is not expected to displace compounds with 

therapeutic concentrations in the micromolar range, as val-
proic acid or phenytoin [10]. Other highly protein-bound 
drugs, as salicylates and naproxen, displace tiagabine from 
serum proteins and slightly decrease the total serum concen-
tration [109]. 

P-glycoprotein and Related Transporters 

 P-glycoprotein is a part of the superfamily consisting of 
various transporters or efflux pumps called ATP-binding 
cassette (ABC) involved in multidrug resistance (MDR) and 
is an expanding area in pharmacogenetics [27, 110]. Drugs 
that induce or inhibit CYP enzymes may also affect the ex-
pression of P-glycoprotein or other transporters involved in 
MDR in the gastrointestinal tract, kidneys and other tissues 
and are important mechanism involved in drug resistance in 
epilepsy [111]. Overexpression of these transporters has 
been observed in the brain of patients with resistant epilepsy, 
and the overexpression of P-glycoprotein in excretory organs 
suggests that it has a central role in drug elimination and may 
be coupled to subtherapeutic serum concentrations of AEDs 
[112]. Recently, carbamazepine, phenytoin, primidone, val-
proic acid, and lamotrigine were explored in an in vitro 
model for three ABC transporters including P-glycoprotein 
(ABC(B1)), but none of the drugs demonstrated to modulate 
the transporter activity directly [110]. Another study, how-
ever, demonstrated that phenytoin and phenobarbital were 
substrates of human P-glycoprotein, and directional transport 
was determined for lamotrigine and levetiracetam, but not 
for carbamazepine [113]. A recent study including cohorts 
from various ethnic groups of patients with epilepsy demon-
strated that there were no correlation between a specific 
polymorphism (3435C>T) in the ABCB1 gene and response 
to AED treatment one year after the first seizure [114]. The 
possible role of P-glycoprotein and related transporters re-
garding pharmacokinetic interactions and pharmacogenetic 
variability is poorly investigated for AEDs in humans and 
needs more attention. 

Pharmacodynamic Interactions 

 Pharmacodynamic interactions are interactions at the site 
of action of the drugs and may involve synergistic or antago-
nistic alteration, and they are not possible to measure and 
evaluate, as no alterations in pharmacokinetics and conse-
quently, serum concentrations are observed. Pharmacody-
namic interactions with most CNS-active drugs may affect 
efficacy and tolerability, but they are difficult to evaluate in 
controlled studies. These interactions are most often not in-
tended, are poorly investigated mechanistically and are often 
based on emipirical observations. They should, however, be 
considered for the individual patient. In preclinical models, 
possible synergistic effects between newly developed AEDs 
are investigated, but clinical evidence is lacking as these 
interactions are rarely described or documented. A synergis-
tic pharmacodynamic interaction between lamotrigine and 
valproic acid has, however, been demonstrated in an open 
cross-over study with 20 adult patients with refractory com-
plex partial seizures The dose of both drugs, however, may 
need to be reduced to minimize the risk of intolerable side 
effects [115]. Preclinical studies have suggested a supra-
additive or synergistic pharmacodynamic effect by e.g. com-
bining levetiracetam with carbamazepine, felbamate, oxcar-
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bazepine or topiramate, and similarly with gabapentin and 
vigabatrin, as demonstrated in the maximal electroshock-
induced seizure model in mice [116-119]. On the other hand, 
lamotrigine in combination with carbamazepine or oxcar-
bazepine resulted in an antagonistic effect [116]. Other com-
binations of AEDs may give rise to excessive adverse reac-
tions, which may be explained as a pharmacodynamic inter-
action, as lamotrigine and carbamazepine or oxcarbazepine 
or levetiracetam and topiramate [12, 37] The use of psycho-
tropic drugs in patients with epilepsy is common, and they 
may affect seizure threshold and contribute to CNS-related 
adverse events [78].  

PERSPECTIVES AND CONCLUDING REMARKS 

• Newer AEDs have a less potential for pharmacokinetic 
interactions than older AEDs, but they are susceptible to 
interactions, since they are often used as adjunctive ther-
apy with older AEDs. The older AEDs may cause inter-
actions involving enzyme induction or inhibition, affect-
ing new AEDs as well as other drugs like anticoagulants, 
OCs, other CNS-active drugs, immunosuppressants, an-
timicrobal drugs as isoniazid or macrolides. Based upon 
comparative studies and evidence-based guidelines, 
newer AEDs are considered to be as efficacious as the 
older drugs and better tolerated. One has to keep in mind 
that the older enzyme-inducing AEDs affect endogenous 
biochemical pathways as well as a variety of drugs and 
therefore, newer and non-inducing AEDs may be prefer-
able when initiating AED therapy [29].  

• Documented interactions involving new AEDs are as yet 
limited. Among the newer AEDs, lamotrigine is one of 
the most commonly used, and its metabolism is reduced 
when added to valproic acid, increased when added to 
older enzyme-inducing AEDs, or increased by adding 
OCs. Other newer AEDs for which data on pharma- 
cokinetic interactions have been documented include  
felbamate, oxcarbazepine, topiramate, rufinamide, and 
stiripentol.  

• Reliable drug surveillance systems for adverse drug reac-
tions often caused by drug interactions are important to 
detect and follow interactions as closely as possible. 
These should involve health care professionals and the 
patients, in national or interational reporting systems, as 
the WHO Drug Monitoring Programme [120, 121].  

• Several new AEDs are undergoing late-stage clinical 
trials, including brivaracetam, carisbamate and retigabine 
[122, 123]. Their interaction potential compared to exist-
ing drugs will be further investigated in patients during 
the next few years. 

• Polytherapy may be a rational strategy in the treatment of 
many patients, and studies designed to evaluate specific 
AED combinations should be conducted [124]. The im-
plementation of drug interactions in the clinical setting 
with focus on each AED is important to predict the con-
sequences of alterations in serum concentrations. By the 
categorization of pharmacokinetic interactions from 
Level 1-3, their clinical importance may be more clearly 
evaluated and easier to remember. Updated knowledge 

regarding drug interactions is important to predict the po-
tential for harmful or lacking effects of AEDs. 
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