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Several studies have indicated that mutations of LARS2 are associated with premature ovarian insufficiency (POI). However, the
pathogenic mechanism of LARS2 in POI has not been reported yet. In the present study, the expression levels of LARS2 and E2F1
in granulosa cells (GCs) of POI patients were examined. CCK-8 and Edu assay were performed to determine the effect of LARS2
on cell proliferation. Apoptosis rate, mitochondrial membrane potential, reactive oxygen species (ROS), and cytoplasm Ca2+ levels
were analyzed by flow cytometry. Western blot was conducted to evaluate the expression level of genes affected by LARS2.
Transmission electron microscopy (TEM) was used to observe mitochondrial structure in GCs. Chromatin immunoprecipitation
(ChIP) was used to evaluate the regulatory effect of E2F1 on Mfn-2 expression. Our results showed that LARS2 expression was
downregulated in GCs of POI patients. Silencing of LARS2 inhibited cell proliferation and promoted the apoptosis of GCs.
Meanwhile, LARS2 knockdown could induce mitochondrial dysfunction and accumulation of ROS levels. Moreover, ROS was
found to be involved in the antiproliferation, proapoptotic, and endoplasmic reticulum (ER) stress effects of LARS2 knockdown.
Furthermore, we also found that the expression level of E2F1 was positively correlated with LARS2. In addition, E2F1 could bind
at the -61/-46 region of Mfn-2 promoter and regulated MFN-2 transcription. These findings demonstrated that LARS2 could
promote the expression of E2F1. E2F1 mediated the effect of LARS2 on Mfn-2 expression via targeting the promoter region of
Mfn-2, in which subsequently regulated cell proliferation and apoptosis, which resulted in the etiology of POI. This study will
provide useful information for further investigations on the LARS2 in the occurrence of POI.

1. Introduction

Primary ovarian insufficiency (POI) is a reproductive endo-
crine disease exhibiting severely impaired ovary function
with amenorrhea before the age of 40 [1].

Multiple factors have been identified as etiologies of
POI, including genetics, environment, and chemotherapeu-
tic treatment. However, the pathogenesis of POI is still diffi-
cult to identify. In clinic, POI patients showed high follicle-

stimulating hormone (FSH) levels (FSH>25 mIU/mL on
two occasions>4 weeks apart) and low estradiol (E2) levels
[2]. In follicle development phase, cell-cell crosstalk between
oocyte and surrounding somatic cell is crucial for maintain-
ing proper hormone levels. Granulosa cell is the main cell
type in follicle communicating with oocyte directly through
jap junctions or in a paracrine manner. Particularly, granu-
losa cell could be responding for FSH by expressing FSH
receptor and producing E2 to guarantee normal menstrual
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cycle. It has been reported that impaired granulosa cell func-
tion contributes to the occurrence of POI [3]. Thus, the
exploration of mechanism involved in granulosa cell func-
tion disruption will be a benefit for the diagnosis of POI.

The mitochondrion is the core organelle of a cell that is
well known for its function in generating ATP through the
oxidative phosphorylation process. Besides working as the
powerhouse of a cell, mitochondria participate in various
critical cellular functions, including lipid synthesis, calcium
handling, production of ROS, and control of cell death
[4]. Accordingly, the disrupted mitochondrial function will
induce the pathology of a follicular somatic cell (particu-
larly granulosa cell), which may lead to the occurrence
of POI. In fact, mitochondrial dysfunction-linked POI
has been reported. Thus far, several genes have been dem-
onstrated that are associated with POI by regulating mito-
chondria function [5]. Leucyl-tRNA synthetase 2 (LARS2) is
an aminoacyl-tRNA synthetase controlling the translation of
mitochondrial-encoded genes through encoding the precur-
sor of mitochondrial leucyl-tRNA synthetase. 1 LARS2 is
an essential mediator, that regulating of process of charging
of tRNA Leu (UUR) with leucine. [6]. Meanwhile, LARS2 is
also indirectly required for mitochondrial genome mainte-
nance, in which LARS2 regulates group I intron RNA
splicing and protein synthesis of mitochondrion [7]. The
aberrant expression of LARS2 in cancer cells has been
demonstrated [8]. LARS2 is involved in the regulation of cell
apoptosis [9]. Furthermore, it has been reported that the
mutations in LARS2 gene are associated with the occurrence
of Perrault syndrome, which describes a rare recessively
inherited condition composed of hearing loss and ovarian
dysfunction in females including ovarian dysgenesis and pri-
mary amenorrhea [10, 11]. However, the underlying mecha-
nism of LARS2-induced POI pathology remains unknown.
As the important component of the follicle, normal granu-
losa cell physiology is responsible for the maintenance of
the folliculogenesis process. The apoptosis of granulosa cell
will cause the occurrence of POI. To date, few studies have
reported the role of LARS2 in granulosa cell biology. The

role of LARS2 in cancer indicates that aberrant expression
of LARS2 might cause the occurrence of POI via inducing
granulosa cell apoptosis. In the present study, the differen-
tial expression of LARS2 in granulosa cells between POI
and control groups were explored. Meanwhile, the effect
of LARS2 on granulosa cell proliferation, apoptosis, mito-
chondrial function, and underlying mechanism was also
investigated.

2. Materials and Methods

2.1. Ethics Statement and Human Subjects. The study was
approved by the Ethical Committee of the Women’s Hospi-
tal, Zhejiang University School of Medicine, China (file no.
20180139). All participants signed a document of informed
consent before participating in the study. All subjects were
obtained from women undergoing IVF-embryo transfer
(IVF-ET) at the Center for Reproductive Medicine, Women’s
Hospital, Zhejiang University School of Medicine. The clin-
ical characteristics of all the participants are shown in
Table 1. Inclusion criteria for the patients in the POI group
were included: (a) AMH<1.1 ng/mL, (b) over 40 years old,
and (c) the number of obtained oocyte<3, according to
any two of the above standards. The women recruited into
the control group were included: (a) regular menstrual cycle,
(b) basal FSH (on days 2-4 of the menstrual cycle) <10 IU/L,
and (c) the patient sought IVF treatment due to male factors
or tubal obstruction.

2.2. Animals Study. All animal studies were approved by the
Zhejiang University Animal Care and Use Committee (File
no. ZJU20210055). The 3-week C57BL/6 female mice were
provided by the laboratory animal center of Zhejiang Uni-
versity and randomly divided into three groups, named con-
trol, POI, and treatment groups. Each group contains five
mice. POI and treatment groups were given an intraperito-
neal injection of doxorubicin (10mg/kg) once, whereas the
control group received an intraperitoneal injection of 0.9%
physiological saline. After 7 days of injection, the treatment

Table 1: Clinical characteristics of patients with biochemical POI and controls.

Characteristics Control (n = 39) POI (n = 37) P value

Baseline characteristics

AGE 29:79 ± 2:65 36:81 ± 5:53 <0.001∗∗
Basal FSH (mIU/mL) 6:39 ± 1:13 8:84 ± 3:39 <0.001∗∗
Basal LH (mIU/mL) 4:72 ± 2:12 4:31 ± 1:79 0.375

Basal estradiol (pg/mL) 127:26 ± 62:01 145:26 ± 93:71 0.335

AFC 10:83 ± 4:91 5:19 ± 3:58 <0.001∗∗
AMH(ng/mL) 3:07 ± 0:79 0:58 ± 0:25 <0.001∗∗

IVF treatment cycle parameters

Number of follicles on day of HCG (≥14mm) 10:38 ± 3:43 3:7 ± 1:37 <0.001∗∗
Obtained oocyte number 13:28 ± 4:62 3:22 ± 1:86 <0.001∗∗
Fertilized oocyte number 6:44 ± 3:94 1:75 ± 1:44 <0.001∗∗

Data are presented as mean ± SD values. AFC: basal antral follicle count; FSH: follicle-stimulating hormone; LH: luteinizing hormone. AMH: anti-Müllerian
hormone. ∗P < 0:05 versus control; ∗∗P < 0:01 versus control.
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group was injected with GH (1.6mg/kg) for additional 21
days. Meanwhile, the POI group was treated with 0.9% phys-
iological saline. Then all the mice were sacrificed, and ovary
tissues were collected. One side of the ovary was fixed in 4%
paraformaldehyde until H&E staining. On the other side of
the ovary was extracted protein.

2.3. Cell Lines and Cell Culture. KGN were purchased from
the cell bank of the Chinese Academy of Sciences (Shanghai,
China). The cells were cultured in DMEM (HyClone, USA)
supplemented with 10% fetal bovine serum (BI, USA) and
100 IU/mL penicillin and streptomycin (Gibco, USA) at
37°C with 5% CO2. All cells were tested negative for myco-
plasma contamination.

The 3-week C57BL/6 female mice were injected with
10 units of PMSG and sacrificed 44 h later. Ovaries were
obtained from superovulated mice and transferred into Petri
dishes filled with PBS and then pricked with a syringe under
a surgical dissecting microscope to release granulosa cells.
The cell suspensions were put into cell culture plate contain-
ing DMEM/F-12 with 10% fetal bovine serum and incubated
at 37°C with 5% CO2.

2.4. Cell Transfection. LARS2 siRNAs (si-LARS2-1; si-
LARS2-2) and one scrambled control siRNA were purchased
from GenePharma (Shanghai, China). Cells were seeded into
6-well plates or 12-well plates and transfected with si-
LARS2, scrambled siRNAs using Lipofectamine iMAX (Invi-
trogen, USA). The siRNA sequences were shown as follow-
ing: si-LARS2-1, sense: 5′-GGACUUCACAUUAAAGGUU
TT-3′; antisense: 5′-AACCUUUAAUGUGAAGUCCTT-3′;
si-LARS2-2, sense: 5′-CCACGAAUUUG UUCUUCAATT-
3′; antisense: 5′-UUGAAGAACAAAUUCGUGGTT-3′.
After 48-h transfection, the cells were collected for mRNA or
protein analysis.

2.5. RNA Extraction, Reverse Transcription, and Quantitative
Real-Time PCR. Total RNA was extracted from cells, and tis-
sue was exacted with TRIzol reagents (Takara, Japan). RNA
was reverse transcribed into the complementary DNA
(cDNA) using PrimeScript RT reagent Kit (Takara, Japan)
according to the instruction. Each 10μL sample volume con-
taining 5.4μL SYBR Green PCR Master Mix (Takara, Japan),
0.2μl each specific primer, and 25ng of cDNAwas determined
by quantitative real-time PCR (qRT-PCR). The specific
primers used were shown in Table 2. GAPDH was used as a
reference gene. The relative expression levels of target gene
mRNA were displayed using the comparative Ct method with
the 2−ΔΔCt values formula. The specific primer sequences are
listed in Table 2. All primers were designed by Sangon Biotech
Online Primer Design Tool (Shanghai, China).

2.6. Western Blot. Lysis of cells and tissues were collected by
RIPA buffer (Solarbio, China). The isolation and extraction
of cytoplasmic protein was using a Cell Mitochondria Isola-
tion Kit (Beyotime, China) according to the manufacturer’s
instructions. The protein concentration was measured
with a BCA protein assay kit (Thermo Fisher, USA). Equal
amounts of protein were separated in sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred onto polyvinylidene fluoride (PVDF) mem-
branes. The membrane was blocked with 5% skim milk for
2 h and incubated with the primary antibody. The antibodies
were obtained from different companies including anti-
LARS2 (17097-1-AP), anti-Bax (50599-2-Ig), anti-Bcl-2
(12789-1-AP), anti-cytochrome C (10993-1-AP), anti-
GRP78 (11587-1-AP), and anti-CHOP (15204-1-AP) from
Proteintech and anti-Cleaved Caspase-3 (14220T), anti-
phospho-ERK1/2 (4370T), anti-ERK1/2 (4695T), anti-
phospho-AKT (4060T), and anti-AKT (4691T) from Cell
Signaling Technology. The next day, membranes were incu-
bated in the appropriate HRP-conjugated secondary

Table 2: Primers of real-time PCR (RT-PCR), chromatin immunoprecipitation (ChIP) assay.

Gene Primer sequence (forward) Primer sequence (reverse)

LARS2 GTGCTTTCCATGTTCCCTTATC GTGCTTTCCATGTTCCCTTATC

LARS2(mus) GCAGACAAGGAAGGATGTGGAGAAG GCTTGCCAGAAGGGTATGGGAAC

GAPDH CATGTTCGTCATGGGTGTGAACCA AGTGATGGCATGGACTGTGGTCAT

GAPDH(mus) AGGTCGGTGTGAACGGATTTG GGGGTCGTTGATGGCAACA

mtDNA CACCCAAGAACAGGGTTTGT TGGCCATGGGTATGTTGTTA

mtDNA(mus) TACCTCACCATCTCTTGCTA CCACATAGACGAGTTGAT-TC

β2M TGCTGTCTCCATGTTTGATGTATCT TCTCTGCTCCCCACCTCTAAGT

β2M(mus) GAACTGCTACGTAACACAGTTC GTATGTATCAGTCTCAGTGGGG

E2F1 ATAGTGTCACCACCACCATCAT GAAAGGCTGATGAACTCCTCAG

E2F1(mus) CACTAAATCTGACCACCAAACG CATTGGTGATGTCATAGATGCG

Primers used in ChIP

E2F1-p1 (+96/+106) TTAGCCAGGCATGGTGGT ATCTTGGCTCACCGCAAC

E2F1-p2 (+536/+543) CAGGACAGCTCCCTTTGG TTCTGTGGGATGGTGCTG

E2F1-p3 (+976/+986) TGGGTAACAAAGTGAAATGC GCTCAAGTAATCCTCCCAC

E2F1-p4 (-123/+41) GTGGGAGTCCGAGCCTCT GAGCTGGTGGACCCTGAG

E2F1-p5 (-371/-200) CCGATGAGTCACTTCACCCTA CTGTCAAGGGGCGAAAAAC
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antibody for 1 h. After the removal of excess antibodies by
washing, specific binding was detected using an ECL kit
(Affinity, USA). An anti-β-actin antibody (ZSGQ-Bio,
China) was used as a loading control.

2.7. ROS Detection. ROS was detected by means of the ROS
detection assay kit (Beyotime, China) according to the man-
ufacturer’s instructions. Cells were stained in 1 : 1000 DCFH
in PBS for 20min at room temperature. The mitochondrial
ROS level was detected by using MitoSOX (Invitrogen,
USA). Five μM MitoSOX reagent working solution was
added to the cells. The cells were incubated for 20min at
37°C. Then, the cells were analyzed using the CytExpert soft-
ware in the flow cytometer CytoFLEX (Beckman, USA).

2.8. Cell Apoptosis Analysis. Cells were collected by trypsini-
zation (without EDTA). Then, the cells were stained with
fluorescein isothiocyanate (FITC)-Annexin V and propi-
dium iodide (PI) by using the FITC Annexin V and PI apo-
ptosis detection kit (Solarbio, China). The stained cells were
analyzed by flow cytometer CytoFLEX (Beckman, USA).
Next, the relative number of Annexin V- or PI-positive cells
was calculated and compared.

2.9. ATP Quantification. ATP was determined with the ATP
Testing Assay Kit (Beyotime, China) according to the man-
ufacturer’s instructions. Cells in 12-well plates were lysed in
ATP lysis buffer and centrifuged at 12,000 ×g for 10min.

Supernatants were mixed with a testing buffer, and ATP
concentrations were measured on a luminescence detector.

2.10. Hematoxylin and Eosin Stain. Ovaries were fixed in 4%
paraformaldehyde in Dulbecco’s phosphate-buffered saline
(DPBS; Sigma) at room temperature overnight and stored
at 4°C in fresh 70% ethanol until processed. Ovaries were
then dehydrated and embedded in paraffin, and 5-μm serial
sections were stained with H&E using standard protocol. All
sections were observed under an optical microscope (Nikon,
Japan).

2.11. Chromatin Immunoprecipitation (ChIP) Assays. ChIP
assays were performed with Simple ChIP Plus Enzymatic
ChIP Kit from Cell Signaling Technology (9005S, USA)
according to the manufacturer’s instructions. Quantitative
PCR (qPCR) analysis was performed to detect the DNA
fragments that coimmunoprecipitated with E2F1. The spe-
cific primer used for the E2F1 binding site within the Mfn-
2 promoter was shown in Table 2. The primers were
designed by Sangon Biotech Online Primer Design Tool
(Shanghai, China).

2.12. Statistical Analysis. All experiments were performed
with at least three independent replicates. Data are presented
as the mean ± SD of three independent experiments. Group
comparisons were conducted by two-tailed unpaired Stu-
dent’s t-tests. P value of <0.05 was considered significant.
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Figure 1: LARS2 levels are lower in POI patients than those in the control group. (a) The different levels of LARS2 between POI patients
and control groups. (b–d) The correlation analysis of LARS2 levels with IVF outcomes, including antral follicle, obtained oocyte, and
fertilized oocyte number. Person analysis for multiple comparisons of means. Meanwhile, for experiments involving only two groups, the
data were analyzed by the two-sample t-test assuming unequal variances. ∗P < 0:05.
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Figure 2: Continued.
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3. Results

3.1. LARS2 Expression Levels Are Lower in POI Patients. To
explore the expression difference of LARS2 in granulosa
cells, a total of 39 control and 37 POI patients were
recruited. The characteristics of enrolled patients were
shown in Table 1. All of the women were undergoing an
IVF cycle in the hospital, and granulosa cells were collected
after the oocyte was retrieved. The ovarian function of par-
ticipants in the control group was normal, and women were
undergoing an IVF cycle due to male factors or tubal
obstruction. The POI patients exhibited typical endocrine
profiles with elevated bFSH levels, and less AFC and oocytes
were retrieved (Table 1). The expression changes of LARS2
in granulosa cell were determined using RT-qPCR. Our
results showed that the expression levels of LARS2 were
lower in the POI group compared to that in the control
group (P < 0:05; Figure 1(a)). Meanwhile, in the correlation
between LARS2 expression levels and the number of antral
follicle, the number of obtained oocyte and fertilized oocyte
was also analyzed in all 76 samples. The results showed that
the expression levels of LARS2 were positively correlated
with the antral follicle, obtained oocyte, and fertilized oocyte
number, respectively (P < 0:01; Figures 1(b)–1(d)), indicat-
ing the essential role of LARS2 in follicle development.

3.2. LARS2 Promotes Cell Proliferation and Inhibits
Apoptosis in Granulosa Cells. It has been reported that
LARS2 is involved in the regulation of cell proliferation
and apoptosis in cancer cell [8]. To determine whether
LARS2 affected granulosa cells physiology, the short inter-
ference RNA (siRNA) approach was utilized to knock down
endogenous LARS2 expression. The knockdown efficiency
was shown in Figure 2(a). The expression levels of LARS2
were significantly decreased in KGN cells and mouse granu-
losa cell (mGC) after the transfection of LARS2 siRNA com-
pared to the negative control (P < 0:01; Figure 2(a)). CCK8
results showed that the cell viability of KGN was inhibited
in LARS2 knockdown KGN cells (P < 0:05; Figure 2(b)).
Meanwhile, Edu assay demonstrated that the DNA synthesis

was decreased (P < 0:05; Figures 2(c) and 2(d)). Flow cytom-
etry analysis suggested that silencing of LARS2 increased the
percentage of apoptotic cells in both mGC and KGN cells
(P < 0:05; Figures 2(e) and 2(f)). Moreover, western blot
results showed that the protein levels of Bax, Cleaved Cas-
pase-3, and cytochrome C were increased by knockdown
of LARS2, whereas Bcl-2 protein levels were decreased
(P < 0:05; Figures 2(g) and 2(h)). Concomitantly, adminis-
tration of LARS2 siRNA could increase the level of cytosolic
cytochrome C (P < 0:05; Figure S1c). Our results indicated
that LARS2 inhibition affected granulosa cell proliferation
and apoptosis.

3.3. LARS2 Knockdown Impairs Granulosa Cell
Mitochondrial Function. In order to explore the effect of
LARS2 on oxidative stress injury, both mGC and KGN cells
were transfected with LARS2 siRNAs, and DCFH-DA stain-
ing was used to evaluate the production of ROS. As shown
in Figures 3(a) and 3(b), LARS2 knockdown could signifi-
cantly increase the production of ROS in mGC and KGN
cells (P < 0:05). We investigated the mitochondrial ROS
level by using Mito-SOX. Consistent with previous experi-
mental results, LARS2 knockdown could increase the levels
of mitochondrial ROS in KGN and mGC (P < 0:05;
Figure S1a and S1b).

Meanwhile, the effect of LARS2 knockdown on granu-
losa cell mtDNA copy number and ATP levels were also
determined. Our results showed that silencing of LARS2
had lower mtDNA copy number and ATP production in
mGC and KGN cells compared with control, indicating that
inhibiting LARS2 expression could impair mitochondrial
activity via increasing oxidative stress in granulosa cell
(P < 0:05; Figures 3(c) and 3(d)). It has been reported that
oxidative stress can increase intracellular Ca2+ levels [12].
Accordingly, granulosa cells were stained with Fluo-4 AM,
and Ca2+ levels were measured by flow cytometry. The results
showed that LARS2 knockdown increased Ca2+ concentration
in both mGC and KGN cells (P < 0:05; Figures 3(e) and 3(f)).
As we know, excessive Ca2+ influx into cell mitochondria
impairs mitochondrial function, as represented by a decrease
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Figure 2: Biological effects of LARS2 on cell proliferation and apoptosis of KGN and mGC cells. LARS2 knockdown was performed by
siRNAs interfering. (a) Level of LARS2 in KGN and mGC cells after siRNAs silencing were detected by western blot. (b) CCK8 assay
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Figure 3: Continued.
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in mitochondrial membrane potential (MMP) [13]. Hence,
the changes in cellular MMP were detected, and the decreased
MMP in granulosa cells was demonstrated when the levels of
LARS2 expression were suppressed in the present study
(P < 0:05; Figures 3(g) and 3(h)). Furthermore, the expression
levels of mitochondria fusion protein were detected by western
blot. As shown in Figure 3(i), downregulation of LARS2 could
inhibit the expression of mitochondrial fusion-related gene
mitofusin-2 (Mfn-2). In addition, transmission electron
microscopy (TEM) technology was utilized to determine the
morphology of mitochondria in KGN cells. Our results found
that most of the mitochondrion was swollen, losing their cris-
tae and containing large vacuoles (Figure 3(j)). Meanwhile, the
endoplasmic reticulum (ER) showed an expansion morphol-
ogy, characterized by multilamellar structures (Figure 3(j)).
Collectively, these data suggested that LARS2 regulated the
mitochondrial dynamics and function in granulosa cell.

3.4. LARS2 Mediates Endoplasmic Reticulum Stress in
Granulosa Cell. As shown above, we demonstrated that ER
structure was changed in LARS2 knockdown KGN cells.
Meanwhile, the modulatory role of LARS2 on cell apoptosis
was also found. Accordingly, we hypothesized that LARS2
may be involved in the regulation of apoptosis by activating
ER stress signaling pathway. Our western blot results
showed that LARS2 knockdown inhibited ER stress-
related protein expression, including GRP78 and CHOP
(P < 0:05; Figures 3(k) and 3(l)). These results indicated
that LARS2 was involved in ER stress-induced apoptosis
in granulosa cell.

3.5. NAC Attenuates LARS2 Knockdown-Induced Apoptosis
and ER Stress in Granulosa Cell. More evidences indicated
that excessive accumulation of ROS induces ER stress and
mitochondrial dysfunction [14, 15]. N-acetyl-L-cysteine
(NAC) is known as a commonly used active oxygen scaven-
ger to decrease the cellular ROS level. To determine whether
ROS mediates si-LARS2-induced cell death in granulosa cell,
Edu and Annexin-FITC/PI staining analysis were used. The

staining results found that the downexpression of LARS2
regulated cell proliferation and apoptosis in KGN and
mGC cells; NAC treatment was found to promote these
effects (P < 0:05; Figures 4(a)–4(d)). Moreover, western blot
showed LARS2 knockdown-induced increase of apoptosis-
related protein expression and decrease of antiapoptotic pro-
tein were partially reversed by NAC (P < 0:05; Figures 4(e)
and 4(f)). Meanwhile, pretreatment NAC could reverse the
blocking releasing of cytochrome c to the cytoplasm
(P < 0:05; Figure S1d). We also demonstrated that NAC
partly rescued the effect of LARS2 knockdown on MMP and
Ca2+ influx in granulosa cells (P < 0:05; Figures 4(g)–4(j)).
Additionally, the upregulation of GRP78, CHOP was also
partially attenuated with NAC treatments in LARS2 siRNA-
transfected cells (P < 0:05; Figures 5(a) and 5(b)). On all
accounts, these results implied that the accumulation of ROS
was involved in the ER-mediated antiproliferation and
proapoptosis effects of LARS2 knockdown in granulosa cell.

3.6. LARS2 Knockdown Inhibits AKT and ERK Signing
Pathways in Granulosa Cell. AKT and ERK1/2 are the two
crucial downstream signaling pathways responding to
gonadotropin stimulation. The disruption of AKT and
ERK1/2 will cause female infertility [16, 17]. After the
gonadotropin surge, these two signaling pathways will be
activated in a phosphorylated manner. To explore the effect
of LARS2 on AKT and ERK1/2 phosphorylation, the expres-
sion of LARS2 were inhibited through transfecting specific
siRNA in both mGC and KGN cells. The results showed that
LARS2 knockdown significantly decreased the phosphoryla-
tion levels of AKT and ERK1/2 (P < 0:05; Figures 5(c) and 5
(d)). Importantly, the NAC supplement partially reversed
LARS2 knockdown-induced downregulation of AKT and
ERK1/2 phosphorylation (P < 0:05; Figures 5(c) and 5(d)).

3.7. Transcriptome Analysis in LARS2 Knockdown KGN Cell.
To further identify the potential key factor involved in the
molecular function of LARS2, RNA sequencing (RNA-seq)
technology was used to explore the differential expression
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Figure 3: LARS2 effects mitochondrial function and dynamics in KGN and mGC cells. (a, b) Fluorescence intensity of DCFH-DA was used
to measure ROS levels after transfection with si-LARS2. (c) mtDNA copy number was determined by qRT-PCR in KGN and mGC cells. (d)
ATP levels were measured after treatment by si-LARS2. (e, f) Fluorescence intensity of Flou-4 was used to measure intracellular Ca2+ level
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2 levels were analyzed by western blot. KGN and mGC cells with or without si-LARS2. (j) Representative electron microscopic photographs
of LARS2 knockdown cells. (k, l) Western blot detection of GRP78 and CHOP proteins expression in KGN and mGC cells transfected with
si-LARS2 or si-NC, respectively. The data are presented as mean ± SD from three independent experiments. ∗P < 0:05.
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Figure 4: Effects of NAC treatment on LARS2-effected proliferation, apoptosis, and mitochondrial function in KGN and mGC cells. (a, b)
Edu assay was performed to detect cell viability of KGN and mGC cells. Cells transfected with si-LARS2, with or without NAC(10μmol/L).
(c, d) Cell apoptosis analysis carried out on KGN and mGC cells transfected with si-LARS2, with or without NAC. (e, f) Protein levels of
apoptosis-related proteins in KGN and mGC cells transfected with si-LARS2 followed by NAC, as determined by western blot. (g, h)
Flow cytometry with JC-1 staining were carried out on KGN and mGC cells, which had been treated in specific ways. Cells were
transfected with si-LARS2 or si-NC, in the presence or absence of NAC. (i, j) ROS levels in KGN and mGC cells transfected with si-NC
or si-LARS2 followed by NAC, as determined by flow cytometry. The data are presented as mean ± SD from three independent
experiments. ∗P < 0:05.
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genes (DEGs) in LARS2 knockdown KGN cells. Totally,
there are 1495 DEGs, including 835 upregulated genes and
660 downregulated genes (Figures 6(a) and 6(b)). Further-
more, the transcriptional changes were discussed at overall
level by GO (Gene Ontology) and KEGG classification anal-
ysis. GO analysis showed that these altered genes are
enriched in the activation of MAPK activity, extrinsic apo-
ptotic signaling pathway, etc. (Figure 6(c)). KEGG pathway
analysis indicated that the changed genes were enriched for
DNA replication, TGF-beta signaling pathway, and cellular
senescence (Figure 6(d)). Meanwhile, the Disease Ontology
(DO) analyses were also performed to explore the change
of genes involved in human disease (Figure 6(e)).

3.8. E2F1 Regulates Mfn-2 Expression in Granulosa Cell.
Based on the RNA-seq result, several DEGs were selected
to determine the expression level changes in LARS2 knock-
down cells using RT-qPCR, including LCN2, E2F1, CYP1B1,
SAMD11, OAS2, and OASL. As shown in Figure 7(a), the
expression levels of LCN2, E2F1, CYP1B1, and SAMD11
were decreased in LARS2 knockdown cells, whereas OAS2
and OASL expression were increased, which were consisted
with the RNA-seq results (P < 0:05). Meanwhile, the protein
changes of E2F1 were further confirmed by western blot in
both mGC and KGN cells. Similar to RT-qPCR results,
knockdown of LARS2 significantly decreased E2F1 protein
expression levels (P < 0:05; Figure 7(b)). Moreover, we also
found that the mRNA levels of E2F1 were positively corre-

lated with the LARS2 mRNA levels in granulosa cells from
all 76 patients (R = 0:561; P < 0:01; Figure 7(c)). E2F1 is a
member of the E2F transcription factor family, which is
involved in cell cycle regulation through the cyclin-
dependent interaction with pocket proteins [18]. Further-
more, it has been proved that E2F1 could promote the
expression of Mfn-2 in HeLa cell [19]. To examine whether
E2F1 regulated Mfn-2 in granulosa cell, the protein levels of
Mfn-2 were detected after the transfection of E2F1 siRNA in
both mGC and KGN cells. Consistent with the previous
reports, western blot results showed that E2F1 knockdown
decreased the expression levels of Mfn-2 in granulosa
cells (P < 0:05; Figure 7(d)). Additionally, online prediction
results showed that there were putative E2F1-binding sites
in the Mfn-2 gene promoter (Figure 7(e)). The binding
capacity of E2F1 on the Mfn-2 promoter was determined
by ChIP assay. The results indicated that E2F1 could bind
with the Mfn-2 promoter (P < 0:01; Figure 7(f)), indicating
the transcriptional regulation effect of E2F1 on Mfn-2
expression in granulosa cell.

3.9. GH Alleviates Doxorubicin-Induced POI-like Mouse
Phenotype. To explore the involvement of LARS2 in the
occurrence of POI in vivo, the POI mouse model was con-
structed. Three-week-old C57 mice were continuously given
an intraperitoneal injection using doxorubicin. The animal
experiment procedure was shown in Figure 8(a). After 3-
week injection, the estrus cycles were arrested at the
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Figure 5: Effects of NAC treatment on LARS2 inhibited ERs and AKT/ERK cell signaling pathway. (a, b) Protein levels of GRP78, CHOP in
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Figure 6: Continued.
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diestrous (DI) stage in the POI group, whereas the control
group mice had normal estrus cycles (Figure 8(b)). Ovarian
section analysis revealed that POI group mice had a smaller
number of growing follicles (primordial, primary, and sec-
ondary) and mature follicles (P < 0:05; Figure 8(c)). These
results proved that POI mice were successfully established.
Clinically, growth hormone (GH) is used to improve oocyte
quality. GH is a common antioxidant drug that can reduce
ROS levels and improve mitochondrial function in vivo.
Considering the role of GH in decreasing ROS levels, POI
mice were treated with GH to evaluate whether the POI
symptoms could be reversed by GH. Our results showed
that the ovary size in the POI group was smaller than the
control mice (Figure 8(d)). Intriguingly, the ovary size in
the GH treatment group was bigger than those in POI group
mice (Figure 8(d)). HE staining results showed that GH
treatment group mice had increased the number of growing
and mature follicles compared to POI mice even though
abnormal follicles were still higher compared with these in
control group (P < 0:05; Figure 8(e)). Furthermore, we
detected the expression level changes of the target protein
in the ovary. The expression levels of LARS2 in POI mice
were decreased, whereas E2F1 expression were increased
(P < 0:05; Figure 8(f)). TUNEL assay showed that increased
percentage of total apoptotic cells were detected in the POI
group and markedly ameliorated by GH (P < 0:05;
Figure 8(g)). Collectively, animal experiment results further
demonstrated that LARS2 was involved in the occurrence
of POI. Importantly, GH therapy could significantly
improve the POI phenotype.

4. Discussion

Excessive follicular atresia is closely correlated with the
occurrence and development of POI. Several studies indicate
that the abnormal physiology of granulosa cell drives the
atresia of follicle [20, 21]. Accelerated granulosa cells apo-
ptosis may result in premature cessation of ovarian function
[22]. In the present study, we demonstrated the expression
levels of LARS2 were decreased in POI patients compared
to the control group. Furthermore, our study found that
the downregulation of LARS2 inhibited cell proliferation
and promoted cell apoptosis in KGN cells and mGC. Our
results indicated that aberrant expression of LARS2 contrib-
uted to the occurrence of POI via impair granulosa function,
in which induced the excessive granulosa cell apoptosis.

Previous studies have shown that the mitochondrial apo-
ptotic pathway is one of the principal pathways leading to
cell apoptosis [23, 24]. Dysfunction of mitochondria induces
intrinsic apoptotic cell death program, including chromo-
some fragmentation and caspase activation. The initiator
caspase for the mitochondrial-mediated apoptotic pathway
is caspase-9 [25, 26]. Then, mitochondrial-released cyto-
chrome C induces the formation of apoptosome. Apopto-
some contains several other cytochrome C homologs,
procaspase-9, and the adaptor protein Apaf-1 to support
the activation of caspase-9, resulting in the subsequent deg-
radation of cellular death substrates [27, 28]. In the present
study, the Bax/Bcl-2 ratio was increased by LARS2 silencing.
In addition, activation of caspase-3 and cytoplasmic cyto-
chrome C were also detected. These results proved that
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Figure 6: Gene expression is altered in KGN cells after LARS2 knockdown. (a) Volcano plots for RNA-seq comparing si-LARS2 and si-NC
KGN cell line. Red spot represents –log2 (P-value) ≥0; blue spot represents the -log2 (P-value) <0. (b) Heatmap for differentially expressed
genes in KGN after transfected with si-LARS2 or si-NC. The color spectrum ranging from red to blue indicates normalized levels of gene
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LARS2 and control KGN cells. (d) KEGG pathway analysis of differentially expressed genes in si-LARS2 compared to control. (e) The
enrichment analysis of human disease-related genes using the Disease Ontology method. The data are presented as mean ± SD from
three independent experiments. ∗P < 0:05.
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LARS2 effected mitochondria-mediated apoptosis in KGN
cells and mGCs.

Mitochondria are known as an important intracellular
organelle for producing ROS. ROS has dual functions in cel-
lular physiology depending on the cellular concentration.
Excessive level of ROS causes a variety of biological dysfunc-
tion, including oxidative stress, accumulation of mtDNA
mutations, and disruption of Ca2+ homeostasis in the cytosol,
even leading to ER stress [29–32]. ROS is a double-edged
sword in ER stress. ROS could be responding to ER stress
to unfolded protein response (UPR), which helps to alleviate
the protein burden in ER [31]. However, excessive activation
of URP process induces several proapoptotic proteins expres-
sion, like CHOP. Then CHOP induces the secondary rise of
ROS level in the cell. This secondary increase in the level of
ROS and upregulated CHOP expression will induce cell
death via activating apoptosis pathway [30]. In our present
study, the downregulation of LARS2 induced ER stress by

elevating the expression levels of GRP78, CHOP protein in
granulosa cells. ROS is also known as a key factor in cellular
senescence [33]. The cumulative effect of ROS causes aging
and plays a pivotal role in various degenerative diseases
[34]. Therefore, ROS is an effective indicator of cell apoptosis
[35]. In fact, the high level of ROS in POI patient granulosa
cell has been reported [36, 37]. In the current study, we
explored the changes of ROS level in LARS2 knockdown
granulosa cells, and higher ROS levels were demonstrated.
Importantly, active oxygen scavenger NAC could partially
reverse LARS2 knockdown-induced cell apoptosis, indicat-
ing that ROS plays a key role in LARS2-regulating mitochon-
drial apoptosis. Meanwhile, the underlying mechanism of
LARS2-effected mitochondrial dysfunction was also explored
in the present study. Our results showed that LARS2 knock-
down decreased MMP, mtDNA, and ATP production in
granulosa cells. These changes might be probably linking to
mitochondrial dysfunction in LARS2 knockdown granulosa
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cells. Previous studies have proved that mtDNA copy number
is closely related with POI [38, 39]. The normal mitochondria
function guarantees the follicle development and affects fertil-
ization outcomes [5, 40, 41]. In view of the above, low expres-
sion of LARS2 results in a compromised mitochondrial stress
response, increased ROS level, and accelerated granulosa cell
death, which is contributed to the occurrence of POI.

It has been reported that mitochondria are dynamic
organelles that continuously move, fuse, and divide [42]. A
dynamic balance between fusion and fission is essential for
the maintenance of mitochondrial function and cellular
homeostasis [43, 44]. In particular, mitochondrial dynamics
is also a crucial process not only for mitochondrial morphol-
ogy but also in the control of mitochondrial function
responding to apoptotic stimuli [45–47]. Malfunctioning of
mitochondrial fusion and fission causes various human

pathological changes, including reduced fertility [48, 49].
Anchoring on the outer membrane of mitochondrial, Mfn-
2 plays an important role in mediating mitochondrial fusion
[50]. Loss of function of Mfn-2 impairs the cellular mito-
chondrial dynamic balance, which leads to the inhibition
of cell proliferation by disrupting MMP and decreasing res-
piration and ATP production [51, 52]. Besides the role in
mitochondrial fusion, Mfn-2 has been described to be
involved in the regulation of cell autophagy, mitochondrial
antiviral signaling, and unfolded protein response [53]. A
previous study has suggested that lacking Mfn-2 increased
apoptosis, resulting in compromised oocyte quality and
accelerated follicular depletion in mouse [48]. Meanwhile,
a clinical investigation has reported that the lower expres-
sion levels of Mfn-2 in human granulosa cells are correlated
with the clinical outcome of ART by affecting mitochondrial
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Figure 8: Effect of GH on POI mouse model. (a) The diagram of animal experiment procedure. (b) The stage analysis of mouse estrus cycle
in different groups. Proestrus stage was abbreviated as “P”; estrus stage was abbreviated as “E”; metestrus stage was abbreviated as “M”;
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staining of representative ovaries. (f) The expression changes of LARS2 and E2F1 in different groups. (g) Granulosa cell apoptosis in
ovarian sections from each group was measured by fluorescent TUNEL staining. Green fluorescences indicate TUNEL-positive apoptotic
cells TUNEL staining of representative ovaries. The data are presented as mean ± SD from three independent experiments. ∗P < 0:05.
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function [54]. In the current study, the effect of downregu-
lated LARS2 expression on mitochondrial dynamics in gran-
ulosa cell was also explored. Our results found that
knockdown of LARS2 could disrupt mitochondrial dynam-
ics by decreasing the expression of Mfn-2 in granulosa cells.
In addition, we also demonstrated that E2F1 mediated the
effect of LARS2 on Mfn-2 expression via targeting the pro-
moter region of Mfn-2 to promote transcription.

In summary, the present study demonstrates that the
levels of LARS2 expression are decreased in POI patient
granulosa cells. LARS2 knockdown inhibits cell proliferation
and induces apoptosis in granulosa cell. The inhibition of
LARS2 impairs granulosa cell mitochondrial function by
increasing ROS levels and decreasing mtDNA copy number
and ATP levels. Meanwhile, our study also finds that LARS2
knockdown could impair mitochondrial dynamics via inhi-
biting the expression of Mfn-2. Furthermore, LARS2 medi-

ates ER stress in granulosa cell by regulating ER stress-
related protein expression. Interestingly, the supplementary
of NAC could partially rescue LARS2 knockdown-induced
apoptosis in granulosa cell (Figure 9). Transcriptomic pro-
files reveal that the E2F1 is downregulated in LARS2 knock-
down KGN cells. E2F1 mediates the effect of LARS2 on
Mfn-2 expression via targeting the promoter region of
Mfn-2 to promote transcription. Moreover, the phosphory-
lated levels of AKT and ERK1/2 (two important signaling
pathways responding to gonadotropin) are decreased when
LARS2 expression is inhibited. Additionally, our study dem-
onstrates that GH treatment alleviates doxorubicin-induced
POI-like mouse phenotype. Our results highlight the poten-
tial role of LARS2 in the occurrence of POI and provide the
new insight of molecular mechanism in LARS2-mediated
mitochondrial dysfunction and cell apoptosis, which may
be a benefit to the clinical therapeutics of POI.
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Figure 9: Schematic map concerning the functional role of LARS2 in POI. In the present study, we demonstrated that the downregulation of
LARS2 induced granulosa cell apoptosis. Mechanically, our results showed that two different pathway were involved in LARS2-meidiated
granulosa cell apoptosis. (I) Aberrant decrease of LARS expression impaired granulosa cell mitochondria function via inhibiting E2F1
mediated the mitochondrial motor protein MFN2 expression. Subsequently, the decreased MFN2 expression induced mitochondria
dysfunction. The persistent mitochondria dysfunction promoted the release of cytochrome C. The accumulation of cytoplasmic
cytochrome C activated mitochondrion-mediated cell apoptosis. (II) The dysregulation of LARS2 expression induced the increase of
reactive oxygen species (ROS) level in granulosa cell. The upregulation of ROS level caused mitochondria dysfunction, which leads to the
accumulation of cytoplasmic cytochrome C. On the other hand, the increased ROS level induced the occurrence of endoplasmic
reticulum (ER) stress, which provoked ER stress unfolded protein response (UPR). The activation of UPR upregulated apoptotic protein
CHOP expression and promoted cell apoptosis.
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