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Transcription factor enrichment analysis (TFEA)
quantifies the activity of multiple transcription
factors from a single experiment
Jonathan D. Rubin 1, Jacob T. Stanley2, Rutendo F. Sigauke3, Cecilia B. Levandowski1, Zachary L. Maas2,

Jessica Westfall4, Dylan J. Taatjes1 & Robin D. Dowell 2,4,5✉

Detecting changes in the activity of a transcription factor (TF) in response to a perturbation

provides insights into the underlying cellular process. Transcription Factor Enrichment

Analysis (TFEA) is a robust and reliable computational method that detects positional motif

enrichment associated with changes in transcription observed in response to a perturbation.

TFEA detects positional motif enrichment within a list of ranked regions of interest (ROIs),

typically sites of RNA polymerase initiation inferred from regulatory data such as nascent

transcription. Therefore, we also introduce muMerge, a statistically principled method of

generating a consensus list of ROIs from multiple replicates and conditions. TFEA is broadly

applicable to data that informs on transcriptional regulation including nascent transcription

(eg. PRO-Seq), CAGE, histone ChIP-Seq, and accessibility data (e.g., ATAC-Seq). TFEA not

only identifies the key regulators responding to a perturbation, but also temporally unravels

regulatory networks with time series data. Consequently, TFEA serves as a hypothesis-

generating tool that provides an easy, rigorous, and cost-effective means to broadly assess TF

activity yielding new biological insights.
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The cellular response to everything from environmental
stimuli to development is orchestrated by transcription
factors (TFs). Therefore, when transcription changes, one

important objective is to infer which TFs are causally responsible
for the observed changes. TFs bind to DNA at preferred
sequence-specific recognition motifs and ultimately alter tran-
scription nearby. Extensive DNA-protein binding has been
measured by chromatin immunoprecipitation (ChIP)1–3, leading
to large collections of high-quality sequence recognition
motifs3–5. Unfortunately, acquisition of protein–DNA binding is
not sufficient for understanding regulation, as many binding sites
do not lead to altered transcription nearby6–8.

In an effort to causally link a TF to observed transcription
changes, binding data is often combined with expression, typi-
cally measured by RNA-seq9–11. However, the success of this
approach is limited. Fundamentally, the difficulty lies not in the
binding data, but rather in the use of steady-state RNA-seq to
assay expression. RNA-seq levels reflect both transcription and
degradation12–14, e.g., both newly created and long-lived RNAs
contribute to the measurement15,16. Hence, RNA-seq is, at best,
only an indirect measure on transcription. In addition, RNA-seq
data is dominated by the most abundant RNAs, rather than those
that are most recently made. Thus, after ribosomal RNAs, the
dominant signal is protein-coding genes, which are highly stable
processed transcripts. In addition, to infer TF activity, one must
solve the assignment problem9—namely linking TF binding sites
to stable gene transcripts, which are often both positionally (in
the genome) and temporally (RNA processing) distant17.

Nascent transcription18,19 circumvents the assignment pro-
blem. Nascent transcription assays measure bona fide transcrip-
tion, prior to RNA processing. Thus, changes in transcription
induced by TFs can be detected within minutes20. Conveniently, a
TF’s regulatory activity has been shown to alter RNA polymerase
initiation immediately proximal to sites of TF binding21–23. The
majority of altered RNA polymerase initiation sites are at tran-
scription regulatory regions (e.g., enhancers) -not at genes24.
Thus, by using all polymerase initiation sites (both at enhancers
and genes) rather than just the target gene, the assignment pro-
blem is sidestepped25. Enhancer RNAs (eRNAs) are highly
transient unstable transcripts that are essentially undetectable in
RNA-seq, yet effectively serve as markers of TF activity. Conse-
quently, our previous work demonstrated the ability to directly
infer causal TF activity from changes in RNA polymerase
initiation observed in nascent transcription assays26.

Despite recent improvements to the protocols27–29, nascent
transcription assays are less popular than other genomic assays,
likely due to their perceived difficulty. Luckily, a variety of pop-
ular high throughput assays also have a relationship with RNA
polymerase initiation and therefore could serve as proxies to
nascent transcription. For example, cap-associated approaches,
such as CAGE, target the 50 cap of transcripts30–32 and are
therefore a viable alternative to nascent transcription. However,
CAGE provides only a subset of RNA polymerase initiation sites,
biased to stable transcripts31. In contrast, transcription arises
from only a subset of nucleosome-free regions, therefore chro-
matin accessibility data indirectly informs on the locations of
transcription initiation. Likewise, some histone marks have been
associated with actively transcribed regions, such as H3K27ac and
H3K4me1/2/333. In principle, all of these methods provide some
information on sites of RNA polymerase initiation, but with
distinct detection limits, positional precision, and temporal fide-
lity. To leverage these datasets, a motif enrichment method is
needed that seamlessly handles the uncertainty inherent in using
an approximation to RNA polymerase initiation.

Therefore, we introduce TF enrichment analysis (TFEA), a
motif enrichment method specifically aimed at maximizing the

informative nature of differential RNA polymerase initiation data,
where positional information is critically important26,34. TFEA
not only accounts for the position of the motif relative to tran-
scription initiation, but also accounts for the magnitude of
transcription change (i.e., differential signal)35–37. Critically,
TFEA is robust to noise in both of these sources of information
(position and signal) and therefore can be applied to a number of
different regulatory datasets. Finally, TFEA is fast, computation-
ally inexpensive, and designed with the user in mind, as we
provide an easy-to-use command-line interface, container images
(Docker and Singularity), and an importable Python 3 package.
TFEA provides easy downstream analysis aimed at deciphering
the temporal and mechanistic details of complex regulatory
networks.

Results
Overview. TFEA seeks to identify which TF(s) are causally
responsible for observed changes in transcription between two
data sets. An overview of this procedure is shown in Figure 1 (see
Supplementary Figs. 1 and 2 for example outputs). Briefly, TFEA
takes as input a set of RNA polymerase initiation regions and
ranks them, preferably by changes in transcription levels between
the two conditions. The ranked list is then used to calculate a TF
motif enrichment score, which incorporates not only the differ-
ential transcription signal at initiation sites but also the distance
to the nearest motif instance. The TF enrichment score is then
compared to the distribution of expected scores, empirically
derived, to assess the statistical significance of the TF motif
enrichment.

Importantly, for each cell type and condition, RNA polymerase
initiates transcription from a distinct set of locations. Biologically,
each RNA polymerase initiation event corresponds to an
individual transcription start site (TSS). However, most sites of
initiation occur in regions of bidirectional transcription with two
closely, oppositely oriented TSSs24,38,39. Many assays are unable
to distinguish between the two TSSs within an RNA polymerase
loading zone25 (also see Methods section “Regions of interest”).
Therefore, without loss of generality, we assume each assay
provides a set of regions of interest (ROI) where each region
corresponds to either a single TSS or the midpoint between
bidirectional TSSs. Each ROI provides a point estimate (the
midpoint of the region) and uncertainty on that reference point
(width of the region). Because initiation sites are inferred directly
from data, they must first be combined across replicates and
conditions in a manner that maintains high fidelity on the
position of RNA polymerase initiation. Thus we first introduce
and evaluate muMerge, a method of combining ROI.

muMerge: Combining genomic features from multiple samples
into consensus regions of interest. A key challenge in defining a
set of consensus ROIs is retaining positional precision when
combining region estimates that originate from different samples
(replicates and/or conditions). To this end, we developed a sta-
tistically principled method of performing this combination
called muMerge. In short, muMerge treats the ROIs from each
sample as probability distributions and combines these across
samples, according to whether they are replicates or different
conditions, to produce a joint probability distribution that
describes the highest likelihood position for polymerase initiation
(see Fig. 2a, Supplementary Fig. 3 and “Methods” section
“Defining ROIs with muMerge” for full details).

In order to demonstrate the efficacy of muMerge, we compare
its performance to two common methods for combining regions
across multiple samples—merging all samples (e.g., with bedtools
merge) and intersecting all samples (e.g., with bedtools interesect).
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Fig. 1 TFEA calculates motif enrichment using differential and positional information. The TFEA pipeline requires, minimally, a ranked list of ROIs (control
in blue, treatment in orange). Optionally, a user may provide raw read coverage and regions (ROI, colored boxes labeled a–d), in which case TFEA will perform
ranking using DESeq2,43 analysis. With a set of ranked ROIs (orange up, blue down), TFEA analyzes motif enrichment for each motif provided (red circles). For
each motif, positions are determined by FIMO scans, and an enrichment curve is calculated by weighting each motif instance (with weight wi, using an
exponential decay as a function of the motif distance di from the region center) and adding this value to a running sum. An E-score is calculated as 2 * AUC, e.g.,
the area under the enrichment curve between the running sum and a uniform background (dashed line), and scaled by the number of motif instances N. For
statistical significance, the ROI rank is randomly shuffled 1000 times, and E-scores are recalculated for each shuffle. The true E-Score is then compared to the
distribution of E-Scores obtained from the shuffling events. For example, the output of TFEA, see Supplementary Fig. 1 and Supplementary Fig. 2.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02153-7 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:661 | https://doi.org/10.1038/s42003-021-02153-7 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


We performed two tests using simulated data (Fig. 2b, c;
Supplementary Fig. 4). For each replicate, we performed
10,000 simulations of sample regions for a single locus and
calculated the average performance.

Using the simulated regions, we first evaluate each methods’
precision as the number of replicates increases. In Fig. 2b, we
observe that as the number of replicates increases muMerge
converges on the correct theoretical locus position (μ) more
quickly than the other two methods (i.e., the vertical axis
“uncertainty on μ̂” is the standard deviation of the distance
between μ and its estimate (μ̂), which is computed from all
10,000 simulations), while still maintaining the correct width for
the region.

The second test sought to evaluate the accuracy of these
methods when inferring two closely spaced loci, with increasing
distance between those loci (Fig. 2c). While closely spaced loci are
challenging to distinguish, we observe that muMerge smoothly
transitions from calling a single inferred locus (when μ1 and μ2
are too close to be resolved) to two distinct loci. In contrast, the
merge and intersect methods show abrupt transitions that follow
increasingly poor ROI width estimates (Fig. 2c). These tests
quantitatively demonstrate the benefit of muMerge over the other
two methods using simulated data. A comparison using
experimental ChIP-seq data2,40, where the position of the TF
motif instance is used as ground truth, further supports this
conclusion (Supplementary Figs. 5 and 6). Examples of the output
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from all three methods on ChIP-seq data are shown in
Supplementary Fig. 7.

TF enrichment analysis. Armed with the defined set of ROIs, the
goal of TFEA is to determine if a given TF motif shows positional
enrichment preferentially at regions with the higher differential
signals. Therefore an enrichment metric is necessary that
accounts for not only the positional enrichment of the motif but
also the underlying changes in transcription (Fig. 1). The
enrichment metric builds on previous work26 but provides sub-
stantial improvements by eliminating arbitrary cutoffs and refines
the sensitivity to motif position, which is not present in other
methods41.

In prior work, we assessed the enrichment of motifs relative to
positions of RNA polymerase initiation using a co-occurrence
metric hereafter referred to as a motif displacement score (MD-
Score)26. The MD-Score is simply the ratio of TF sequence motif
instances within 150 bp radius of ROI midpoints, relative to a
larger local 1500 bp radius (see Supplementary Fig. 8 for full
details). Unfortunately, the MD-Score approach not only ignored
alterations in transcript levels (see Supplementary Fig. 9) but also
utilized arbitrary distance thresholds to classify motif proximity
in a binary fashion. To account for changes in transcription levels,
we subsequently ranked ROIs by differential signal (e.g.,
transcription) before performing motif displacement calculations
within these regions37. This method, referred to as differential
motif displacement analysis (MDD) compared MD-Scores
between the set of differentially transcribed regions to the MD-
Score obtained from regions whose transcription is unchanged
(see Supplementary Fig. 10 for full details)36,37. Unfortunately,
the MDD-Score approach introduces an additional arbitrary
threshold (e.g., to classify regions as differentially transcribed or
not) and still uses the arbitrary motif distance thresholds set by
the original MD-Score approach. For TFEA we sought a method
that eliminates the reliance on arbitrary cutoffs.

With TFEA, we begin by leveraging the statistically robust, gold
standard DESeq package42,43 to rank regions based not only on
the differential p value but also the direction of fold change. Each
region of interest then contributes positively to the enrichment
curve in a weighted fashion. These weights are determined by the
distance of the motif to the reference point using an exponential
function to favor closer motifs. The subsequent enrichment score
(E-score in Fig. 1) is proportional to the integrated difference
between the observed and background enrichment curves,
calculated as the area under the curve (AUC) in Fig. 1 (see Eq.
(8)). The background (null) enrichment curve assumes uniform
enrichment across all ROIs, regardless of the differential signal.

By default, TFEA accounts for the known GC bias of enhancers
and promoters by incorporating a correction to the enrichment
score (Supplementary Fig. 11). Once E-scores for all TFs have
been calculated, we fit a linear regression to the distribution of
these scores as a function of motif GC-content. Corrected E-
scores are then calculated from the observed E-score with the y-
offset observed from the linear regression fit (see Eq. (10)). This
GC bias correction can be optionally turned off.

Subsequently, we assess the significance of the enrichment
score by comparison to randomized ROI order, similar to
GSEA44. To this end, we generate a null distribution of
enrichment scores from random permutations, shuffling the rank
order of regions and recalculating the E-score for each shuffled
permutation. The final significance of the enrichment score is
then calculated from the Z-score, using the Bonferroni correction
to account for multiple hypothesis testing. In this manner, TFEA
provides a statistically robust and principled way of calculating

motif enrichment that accounts for both differential transcription
and motif position without arbitrary distance or differential
transcription cutoffs.

Differential transcription signal improves motif inference over
positional information alone. To assess the effectiveness of the
TFEA method, we first compared its performance to both the
MD-Score26 and MDD-Score36,37 approaches. We examined a
dataset in which a 1-h Nutlin-3a treatment of HCT116 cells is
used to activate TP5322. For all methods, sites of RNA polymerase
loading and initiation were determined from GRO-seq data22

using the Tfit algorithm, which leverages a mathematical model
of RNA polymerase II behavior to identify RNA polymerase
loading zones directly from patterns in the data45. These sites
were then combined using muMerge to identify ROIs. For all
methods, the significance threshold utilized was determined by
comparing within treatment replicates (e.g., DMSO to DMSO)
and identifying the score at which no changes are detected (see
Supplementary Fig. 12). Using these per method thresholds, we
recover TP53 from all three approaches (Fig. 3a). Notably, by
including differential transcription information, the signal-to-
noise ratio of TP53 detection is drastically improved—modestly
in the case of MDD and dramatically for TFEA.

We next sought to determine whether TFEA could infer the
responsible TF when the underlying changes in transcription
were predominantly alterations in existing transcript levels. For
this test, we relied on the fact that TP53 response in epithelial cells
depends on the TP53 family member TP6346. Because TP53 and
TP63 have nearly identical motifs, we reasoned that the presence
of a constitutively active TP63 would result in elevated basal
transcription proximal to TP53/TP63 motifs. To test this
hypothesis, we performed PRO-seq on MCF10A cells after 1-h
treatment of either DMSO (control) or Nutlin-3a and applied all
three methods to the resulting data.

Consistent with the constitutive activity of TP63, we observed
no change in the TP53 motif by MD-Score analysis (Fig. 3b, left).
This is due to a larger fraction of ROIs having pre-existing
transcription, prior to Nutlin-3a exposure, in MCF10A relative to
HCT116 cells (Fig. 3c–e, Supplementary Fig. 13). While the
MDD-Score method recovers TP53 (Fig. 3b, middle), TFEA
drastically improves the signal of the TP53 motif relative to the
distribution of all other motifs (Fig. 3b, right). For a more detailed
analysis of TP53 after Nutlin-3a in HCT116 and MCF10A, see
Supplementary Figs. 14 and 15.

TFEA improves motif enrichment detection by incorporating
positional information. We next sought to quantify the perfor-
mance of TFEA with varying degrees of signal, background, and
positional information. As a reference point, we leveraged the
widely used MEME-Suite component AME, which quantifies
motif enrichment by fitting a linear regression to ranked ROIs as
a function of motif instances (Supplementary Fig. 16)47. Impor-
tantly, AME does not utilize positional information.

To compare the two methods, we required biologically
representative data sets with known motif enrichment, so that
error rates could be readily calculated. To this end, we utilized
the sites of RNA polymerase initiation detected in untreated
GRO-seq datasets of HCT116 cells22 as the base set of ROIs. As
there is no second dataset for this comparison, the ROI was
then arbitrarily ranked to mimic a pattern of differential
transcription. Subsequently, specific instances of the
HOCOMOCO48 obtained TP53 motif was embedded via
sequence replacement into the ordered ROI list. Importantly,
the position and frequency of embedded motifs (e.g., true
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signal) are varied to simulate distinct TF motif enrichment
patterns (see Supplementary Fig. 17 and Methods section
“TFEA: Simulated motif enrichment”), allowing us to access the
accuracy of both TFEA and AME.

We first measured the mean false-positive rate (FPR) and mean
true positive rate (TPR) across tests of varying signal and
background (Fig. 4a). We found that AME detected many false
positives (defined as any motif besides TP53) at loose threshold
cutoffs and therefore chose a strict cutoff of 1e−30 for AME.
TFEA on the other hand, had a very low FPR even at loose
thresholds with the TPR decreasing as the cutoff became stricter.
We, therefore, chose a cutoff of 0.1 for TFEA.

We next generated two sets of simulated datasets to evaluate
the performance of each method with varying signal/background
(Fig. 4a) or variance/background (Fig. 4b). For each scenario, we
generated ten simulations and measured F1 scores for AME and
TFEA. Varying signal/background (Figure 4b), we found that at
high background levels (above 80%), AME was no longer able to
detect the enrichment of TP53. TFEA on the other hand was able
to detect TP53 even at high background levels by incorporating
positional information. Computing the differential F1 scores
between the two methods (Fig. 4c) shows that TFEA performs
well in cases where AME detects no enrichment of TP53 (26% of
cases), whereas AME outperforms TFEA in 21% of cases.
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HCT116 MCF10Ac ed

TFEA

Fig. 3 TFEA improves the detection of p53 following Nutlin-3a treatment. a Application of the MD-Score, MDD-Score, and TFEA to GROSeq data in
HCT116 cells with 1 h Nutlin-3a or DMSO treatment1. MA plots contrast a number of regions with motif (x-axis) to the change in each score (y-axis). Each
dot is a distinct position-specific scoring matrix (e.g., TF) with significant changes highlighted in red. Cutoffs determined by comparing untreated replicates
(see Supplemental Fig. 12). b Application of the MD-Score, MDD-Score, and TFEA to PRO-Seq data in MCF10A cells with 1 h Nutlin-3a or DMSO
treatment. c Motif displacement distribution plot of TP53 motif instances within 1.5 kb of all ROI in either DMSO (blue) or Nutlin-3a (red) (as a heatmap,
darker indicates more motif instances). d Percentage overlap of TP53 motif instances within 150 bp of DMSO and Nutlin-3a ROIs. e Similar to (c) but in
MCF10A cells. See Supplementary Data 1 for a complete list of accession numbers for data utilized.
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Importantly, because AME does not take positional information
into account, it was never able to capture cases where the level of
signal and background are similar.

To further determine how TFEA handles the loss of positional
information, we chose the highest signal level tested and altered
the variance (standard deviation) of the signal position and the
background level (Fig. 4d). As expected, AME shows consistent
behavior regardless of the positional information of the motif. In
contrast, TFEA is able to distinguish signals with differing levels
of positional localization. In the extreme case of no positional
localization (motifs embedded with a uniform distribution),
TFEA performs only slightly worse than AME (Fig. 4e).

Finally, we sought to benchmark the runtime performance and
memory usage of TFEA against AME. Here we leverage a first-
order Markov model (see Methods section “TFEA: Testing
compute performance” to simulate increasing numbers of ROIs
as input. Analyzing the core collection of HOCOMOCO TF

motifs (n= 401), we found that AME runtime increased non-
linearly while TFEA runtime increased linearly with a single
processor (Supplementary Fig. 18a). Importantly, TFEA can
utilize parallel processing, leading to notably faster runtimes. In
terms of memory usage, although TFEA consumes more memory
than AME, even in the worst case of 100,000 input regions,
TFEA’s memory footprint is less than 1 Gb and therefore can still
be run on a local desktop computer (Supplementary Fig. 18b).

TFEA outperforms AME on experimental time-series data. We
next sought to examine the performance of TFEA and AME on
real biological data. Here, we utilized cap analysis of gene
expression (CAGE), which precisely defines the TSS of individual
transcripts49–51. We analyzed a CAGE-seq time-series dataset
from the FANTOM consortium50,52. In this dataset, human-
derived monocytes were differentiated into macrophages and

b c

d e

a

Fig. 4 TFEA balances TF positional and differential signal. a Optimal cutoffs are determined using the mean true positive rate (TPR; green) and mean
false positive rate (FPR; orange) across the different signal and background levels as a function of varying the threshold cutoff. b F1 score of AME and TFEA
for varied signal and background, using optimal AME cutoff 1e−30 and TFEA cutoff 0.1. c Difference in F1 score between TFEA and AME across all
simulations (n= 121; value= F1TFEA− F1AME). TFEA (red) outperforms AME (blue) in 26% of cases (value > 0) whereas AME outperforms TFEA in 21% of
cases (value < 0). d F1 scores and e difference in scores for highest signal tested (10% signal), now varying the standard deviation of the signal and
background. See Supplementary Fig. 17 for more details on simulations.
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treated with lipopolysaccharide (LPS), a proxy for bacterial
infection. Differential expression analysis was performed on each
LPS time point comparing treatment to control to obtain a list of
ranked ROIs.

TFEA recovered the immediate innate immune response,
exemplified by the most rapid reported (within 15 min) activation
of NF-κβ (RELA, RELB, and NFKB1; Fig. 5a). In addition, TFEA
temporally resolved the known secondary response that arises at
later time points, which includes the activation of the IFN-
stimulated gene factor 3 (ISGF3)53 complex, comprising IRF9 and
STAT1/STAT254. In contrast, AME did not recover the innate
immune response at the earliest time point and provided less
temporal resolution when distinguishing primary and secondary
responses.

Concurrent with the immediate innate immune response,
TFEA identified a set of TFs that exhibit a rapid decrease in E-
Scores including ELF1/ELF255, YY156,57, USF1/USF258, and
GABPA59. The decreased E-score set includes YY1, a transcrip-
tional inhibitor known to be activated directly by NFκB60.
Reduction in the E-score of YY1 illustrates an important
limitation of TFEA—namely, that it cannot distinguish between
the activation of a repressor or the loss of an activator.
Ultimately, we show with this proof of principle that if the
cellular response to LPS was not known a priori, we could
temporally resolve key aspects of the regulatory network using
TFEA and dense time series CAGE data (Fig. 5b and
Supplementary Fig. 19).

TFEA works on numerous regulatory data types that inform
on RNA polymerase initiation. We developed muMerge and
TFEA for the purpose of inferring TF activity from high-
resolution data on transcription initiation, such as precision run-
on sequencing (PRO-seq) or CAGE. However, numerous geno-
mic datasets aimed at transcriptional regulation have a clear
relationship with RNA polymerase initiation (see Methods sec-
tion “Regions of interest”). For example, RNA polymerase
initiation originates in open chromatin regions. Although these
data sets are less precise and are not direct readouts of polymerase
initiation, the popularity of these data makes them readily
available. To determine whether TFEA could adequately infer TF
activity from these datasets, we analyzed a time-series dataset
from ENCODE2,61 in which cells were treated with dex-
amethasone (Dex)—a known activator of the glucocorticoid
receptor (GR).

TFEA correctly identifies GR as the key responding TF from
the datasets that most closely capture RNA polymerase initiation
(including p300, H3K27ac, and DNA accessibility), and does not
identify GR for the transcriptionally repressive mark H3K9me3
(Fig. 6a)61,62. Surprisingly, the effects of p300 and H3K27ac are
seen rapidly, as soon as 5 min after dexamethasone treatment.
Furthermore, H3K27ac deposition is temporally lagged behind its
canonical acetyl-transferase p30063–65. In addition, the enhancer
marks H3K4me1 and H3K4me2 show strong enrichment of GR
by 30 min but the promoter mark H3K4me3 shows only modest
enrichment, further supporting the finding that GR binds

Fig. 5 TFEA dissects the temporal dynamics of infection. a Analysis of lipopolysaccharide (LPS) time-series cap analysis gene expression (CAGE)
data10, 25 using AME and TFEA. Trajectories of activity profiles show LPS triggers immediate activation of the NF-κβ complex (TF65/RelB/NFKB1; yellow),
observable at 15 min (blue arrow). TFEA detects a concomitant downregulation of a set of transcription factors, exemplified here by TYY1 (purple). TFEA
also resolves subsequent dynamics (green bracket) of ISGF3 activation (containing IRF9/STAT1/STAT2; red lines). b Schematic depicting the molecular
insights gained from TFEA analysis. See Supplementary Fig. 19 for more analysis. See Supplementary Data 1 for a complete list of accession numbers for
data utilized.
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primarily at enhancers61 (Supplementary Fig. 20). Using the
diversity of data types and dense time series, we can construct a
temporally resolved mechanism of how GR affects changes in
transcription (Fig. 6b, c).

Discussion
We present here TFEA, a computational method that seamlessly
balances the information obtained from differential transcription
with the position of a nearby motif, thereby allowing it to be
broadly applicable to a variety of datasets that approximate RNA
polymerase initiation regions. We show that TFEA outperforms
existing enrichment methods when positional data is available
and is comparable to these methods in the absence of positional
signals. Further, we show that TFEA, when leveraged with high-
resolution time-series data, can provide mechanistic insight into
the order of regulatory events responding to a perturbation.

A key aspect of TFEA is the incorporation of both positional
and differential information in calculating TF motif enrichment.
Most motif enrichment algorithms use solely differential infor-
mation, likely due to the poor positional resolution of historically
popular techniques such as ChIP-Seq. Methods such as nascent
transcription and CAGE provide higher resolution on the posi-
tion of RNA polymerase initiation genome-wide. To leverage the
improved resolution of these methods, we introduce muMerge—a
statistically principled way of combining ROIs across replicates
and conditions that better captures position and length-scale
information as compared to standard merging or intersecting
approaches. The presence of improved positional information
greatly increases the ability to detect biologically relevant TFs.

Although TFEA makes substantial improvements in detecting
which TFs are associated with changes to RNA polymerase in
response to perturbations, there are several aspects of this
approach that could be improved. First, TFEA inherits some

Fig. 6 TFEA captures rapid dynamics of the glucocorticoid receptor (GR) following treatment with dexamethasone. a TFEA correctly identifies GR (red
line) from time-series ChIP data on the histone acetyl-transferase p300, H3K27ac, and DNase I61. No signal is observed in the negative control H3K9me3.
TFEA shows a temporal lag in the H3K27ac signal (orange arrows). b Known cellular dynamics of GR induced by dexamethasone (Dex). c Mechanistic and
temporal insights gained by performing TFEA analysis, question marks indicate datasets where earlier time points were not available to resolve temporal
information. See Supplementary Data 1 for a complete list of accession numbers for data utilized.
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limitations from its dependence on both DESeq and a collection
of motifs (see Methods section “Limitations to TFEA and
muMerge” for more details). More integral to the enrichment
metric, TFEA motif scanning currently requires a fixed cutoff.
Future iterations of the method could conceivably eliminate this
cutoff, but likely this will substantially increase run times for what
may only be minor gains in performance. Finally, sites of tran-
scription initiation (both promoters and enhancers) show sub-
stantial GC bias. While we made some effort to account for this
bias using linear regression, a more principled approach is
desired.

Despite these caveats, TFEA recovers known TF dynamics
across a broad range of data types in response to a variety of
perturbations. Inevitably, the data type utilized influences the
detection ability of TFEA. For example, while CAGE data pro-
vides precise resolution on the TSS, it must be deeply sequenced
to detect some enhancer-associated transcription events31. Con-
sequently, TFs that predominantly regulate enhancers will likely
be less detectable in poorly sequenced CAGE data. On the other
hand, some methods are more capable of detecting immediate
changes in RNA polymerase initiation, such as precision run-on
sequencing, allowing for shorter, more refined time points. As
demonstrated here, TFEA is able to leverage the information from
each data set by incorporating both its distinct positional and
differential signal. Applying TFEA to diverse data types, using
dense time series, can uncover a detailed mechanistic under-
standing of the key regulators that enact the cell’s dynamic
response to a perturbation.

Methods
TF enrichment analysis. We have developed TFEA to identify TFs that demon-
strate significant differential activity following a perturbation. It has been observed
that, during a perturbation, the binding sites of active TFs co-localize with reg-
ulatory regions that exhibit strong differential RNA polymerase initiation26. TFEA
leverages this observation to calculate an enrichment score that quantifies the co-
localization of TF motif instances with sites of altered RNA polymerase activity.

Here we describe in detail the key steps of the TFEA pipeline (shown in Fig. 1)
—specifically, for each TF we describe how the main input (ROIs) are defined, how
the ROIs are ranked, and how the enrichment score is subsequently calculated and
GC-corrected.

Regions of Interest. One input required for TFEA is a common set of ROIs on
which all experimental samples are evaluated. Each region (consisting of a genomic
start and stop coordinate) represents a reference point (the midpoint of the region)
and uncertainty on that reference point (the width of the region).

The biological interpretation of an ROI depends on the nature of the data type
being used. However, it is assumed the data being used captures some aspect of
RNA polymerase initiation (e.g., CAGE-, Pol II ChIP-, p300 ChIP-, nascent-, or
ATAC-seq), to varying degrees of precision, depending on the assay. Specifically,
using CAGE data provides a highly precise measurement of each TSS, thus the ROI
would be narrow and centered on the TSS. With nascent transcription data, such as
PRO-seq or GRO-seq, the position of RNA polymerase loading and initiation (e.g.,
the midpoint between two bidirectional TSS)45 is often identified26,66. RNA
polymerase II ChIP also informs on the RNA polymerase loading and initiation
region, but at lower resolution to nascent transcription data31. Likewise, H3K4me
1/2/3 has been shown to correlate with transcription levels31 but flank the site of
initiation45. Finally, as nearly all sites of RNA polymerase loading and initiation
originate within open chromatin regions, ATAC-seq data (and related accessibility
metrics) are also informative45 but at lower positional precision and with more
false positives (open regions without transcription)67.

Regardless of the assay, most methods identify such regions independently in
each dataset (e.g., a peak caller for ChIP data or Tfit for identifying sites of
bidirectional transcription in nascent data). As a result, these regions will not (and
should not) be exactly consistent between samples (e.g., some sites are condition-
specific and, even for shared sites, boundaries may vary). Therefore, a principled
method is needed to combine the regions from all the samples into a consensus set.

Defining ROIs with muMerge. In order to combine regions from multiple samples
into a consensus set of ROIs, we developed a probabilistic, principled method we
call muMerge. Initially, muMerge was specifically developed for determining the set
of consensus RNA polymerase loading and initiation sites observed in nascent
sequencing data (by combining bidirectional calls from multiple samples) but it can

be applied to peak calls generated from other regulatory data types as well (e.g.,
ChIP, ATAC, or histone marks).

The basic assumption made by muMerge is that each sample is an independent
observation of an underlying set of hypothetical loci—where each hypothetical
locus has a precise critical point μ, of which the corresponding sample region
([start, stop]) is an estimate. We assume the true coordinate of the locus is more
likely to be located at the center of the sample region than at the edges, so muMerge
represents the sample region by a standard normal probability distribution,
centered on the region, whose standard deviation is related to the region width.

To calculate the best estimate (the ROI) for a given locus, muMerge calculates a
joint probability distribution across all samples from all regions that are in the
vicinity of the locus. This joint distribution is calculated by assuming

1. replicates within a condition are independent and identically distributed (i.i.d.)
2. replicates across conditions are mutually exclusive (i.e., a sample cannot

represent multiple experimental conditions)

Hence muMerge computes the product of the normal distributions across all
replicates within a condition and then sums these results across all conditions. The
best estimates for the transcription loci μ (there may be multiple) are taken to be
the local maxima of this joint distribution—these are the ROI positions. Finally, to
determine an updated width, or confidence interval, for each ROI, muMerge
assumes that the original sample regions whose midpoints are closest to the new
position estimate are the most informative for the updated width. Thus the ROI
width is calculated by a weighted sum of the widths of the original regions,
weighted by the inverse of the distance to each one.

muMerge mathematical description. Principally, muMerge makes two probabilistic
assumptions about sequence samples:

● Assumption A: Replicate samples are independent measurements of
identical experimental conditions and therefore any corresponding sample
regions within them are independent and identically distributed (i.i.d.)
observations of a common random variable (i.e., the underlying
hypothetical locus).

● Assumption B: Cross-condition samples are independent measurements of
mutually exclusive experimental conditions and therefore any sample
regions within them are observations of (potentially) disjoint random
variables.

These two assumptions inform how muMerge accounts for each individual
sample, when computing the most likely ROI for any given genomic location (see
below for further details).

To start, the inputs to muMerge are a set of regions for each sample (genomic
coordinates: {[start, stop], . . . }) that represent the sequenced features present in the
dataset, as well as an experimental conditions table that indicates the sample
groupings (which samples are from which experimental condition). With these
inputs, muMerge performs the following steps to compute a global set of ROIs:

1. Group overlapping sample regions (each group is processed one at a time)
2. Express each sample region as a positional probability distribution (Eq. (1))
3. Generate a joint distribution (Eq. (2))
4. Identify local, maximum likelihood ROI positions from the joint

distribution
5. Compute ROI widths via weighted sum (Eq. (3))
6. Adjust the sizes of overlapping ROIs
7. Record final ROIs for the given group
8. Repeat 2–7 for all remaining groups

Now we describe these steps in detail: First, from the input samples, muMerge
groups all sample regions that overlap in genomic coordinate (a region is grouped
with all other regions it overlaps and, transitively, with any regions overlapping
those). We denote a single group of overlapping regions as Gr. This grouping is
done globally for all samples, resulting in a set of grouped regions G= {Gr}, such
that every sample region is contained in exactly one grouping Gr (i.e.,
Gr \ Gs ¼ ;; 8 r ≠ s) (step 1). Then each group of regions, Gr, is processed
individually, as the remainder of this section describes (steps 2–7). For a given
group, we denote each sample region within it as the 2-tuple ðμk; σkÞij 2 Gr , where

μk is the genomic coordinate (base position) of the center of the region and σk is the
region half-width (number of bases) (shown schematically in Supplementary
Fig. 3a “Sample Regions”). In the 2-tuple, the indices denote the kth sample region
for replicate j in condition i.

muMerge then processes the regions in Gr as follows. Each region within the group
is expressed as a standard normal distribution (ϕ) as a function of base position x

ðμk; σkÞij ! pðkÞij ðxÞ ¼ ϕ
x � μk
ρ σk

� �
ð1Þ

where ρ is the “width ratio”—the ratio of the half-width sample region to the standard
deviation of the normal distribution—with a default of ρ= 1 (user option) (shown
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schematically in Fig. 2a and Supplementary Fig. 3b “Generate probability
distribution”). This distribution represents the probability of the location for the
underlying hypothetical locus (μ), which ðμk; σkÞij is an estimate. For those samples

with no regions within Gr, the probability distribution is expressed as uniform,
pðkÞij ðxÞ ¼ 1=Δ where Δ is the full range encompassed by the overlapping sample
regions. In other words, we assume that if the sample contains no data to inform the
location of the underlying loci at that location, then all positions are equally likely for
that sample.muMerge then calculates a joint distribution (Pjointðx j pijÞ) by combining

all pðkÞij ðxÞ for the group as follows:

Pjointðx j pijÞ ¼ ∑
i

Y
j

∑
k
pðkÞij ðxÞ

� � !
ð2Þ

Here we are calculating the product of the replicate distributions (index j—those
within a given experimental condition), consistent with our probabilistic assumption
A, and the sum of the resulting distributions across experimental conditions (i index),
consistent with our probabilistic assumption B (shown schematically in Fig. 2a and
Supplementary Fig. 3c “Calculate joint probability”). Examples of how P joint would be
calculated for a given experimental set-up are given in Supplementary Figure 21.
Though this function is not a normalized probability distribution, we are only
interested in relative values of P jointðx j pijÞ. Specifically, we are interested in the
maxima of this function. We identify the set of maxima (which we denote fbμkg) and
rank them by the function value for each position, Pjointðx ¼ bμk j pijÞ. We then keep
the top M+ 1 from the ranked set, where M is the median number of regions per
sample in Gr (user option). This is our final set of estimates on the hypothetical loci
positions, μ—i.e., the positions of our ROIs for group Gr.

For each bμk , we then calculate a width for the resulting ROI. We do so for each
by calculating a weighted sum over the set of all original sample regions in the
group, fðμk; σkÞijg, weighted by the inverse of the distance from the final position

estimate to each μk (shown in Supplementary Fig. 3d “width estimation”). Thus the
final ROI half-width, bσk , is calculated as follows:

bσk ¼ ∑
i

σ i
jbμk � μij þ 1

=∑
i

1
jbμk � μij þ 1

ð3Þ

where i indexes all sample regions in the group Gr ¼ fðμk; σkÞijg. Our rationale is

that the width of those sample regions that are closer to the ROI position bμk , are
more informative for the ROI width and therefore are given a larger weight. This
results in a set of ROIs fðbμk � bσk; bμk þ bσkÞg (shown in Supplementary Fig. 3e
“Final region estimate”).

Finally, we determine if there is overlap between any of the regions in this set of
ROIs. If so, any two overlapping regions are reduced in size, symmetrically about
their centers, until they no longer overlap. This is done so that any genomic
position can be uniquely associated with an ROI. The final ROIs for the group are
then written to an output file to be used downstream in the pipeline. This process is
repeated for all groups of overlapping sample regions (i.e., ∀Gr∈G).

Ranking ROIs. With a set of ROIs identified, the next step is to rank them by
differential signal. Because the goal of TFEA is to identify TFs that are responding
to a perturbation, a ranking based on the differential transcription at the ROIs
would capture the regulatory behavior of the TF. Technically, the signal in each
data type actually represents different biological processes—differential transcrip-
tion for nascent (PRO-seq or GRO-seq), differential accessibility (DNAse or
ATAC-Seq), and differential occupancy for ChIP. Logically, we assume each is a
reasonable proxy for differential transcription. There are a number of ranking
metrics one could use that are based on these differential signals—for example, the
difference in coverage, log-fold change, or a differential significance (p value). For
TFEA, we chose to rely on a well-established tool (DESeq) to perform our ranking,
since it was designed to model the statistical variation found in sequencing data43.

For a set of ROIs, TFEA calculates read coverage for each replicate and
condition using bedtools multibamcov (version 2.25.0)68. TFEA then inputs the
generated counts table into DESeq2 (v 1.26)43 (or DESeq (v 1.38)42 if no replicates
are provided) to obtain differential read coverage for all ROIs. By default, these
regions are then ranked by the DESeq computed p-value, separated by positive or
negative log-fold change (alternative user option to rank the ROIs purely by fold-
change). In other words, the ROIs are ranked from the most significant positive
fold-change to the most significant negative fold-change.

Identifying locations of motif instances. Accurately identifying the locations of motif
instances relative to each ROI is a critical step in the TFEA pipeline. By default,
TFEA uses the motif scanning method FIMO, which is a part of the MEME suite
(version 5.0.3)69. FIMO represents each TF by a base-frequency matrix and uses a
zero-order background model to score each position of the input sequences. For
each ROI, we scan the 3kb sequence surrounding the ROI center (bμi ± 1:5 kb). This
3kb window was chosen primarily to reduce computation time and is also con-
sistent with the window used for the MD-Score method26. For each TF, we utilize a
scoring threshold of 10−6 and keep the highest scoring position (denoted mi), in
the event more than one motif instance is identified. If no position score above the
threshold, then no mi is recorded for the ROI. Our background model is

determined by calculating the average base frequency overall ROI. For this paper,
we use the frequency matrices from the HOCOMOCO database48 with a default
pseudo-count of 0.1.

Enrichment score. With the motif instances identified for each of the ranked ROIs,
we now detail how TFEA calculates the enrichment score (“E-score”—in Fig. 1) for
each TF. The procedure for calculating enrichment requires two inputs:

1. N-tuple ordered list ðbμiÞ—the genomic coordinates for reference points,
assumed to be the centers of all ROIs (e.g., consensus ROIs calculated by
muMerge), ranked by DESeq p value (separated by the sign of the fold-
change).

2. Ordered list (mi)—the genomic coordinates of each max-scoring motif
instance (e.g., motif locations generated by scanning with FIMO), for
each ROI.

We first calculate the motif distance di for each ROI—the distance from each bμi
to the highest scoring motif instance mi within 1.5 kb of bμi . If no mi exists within
1.5 kb, then di is assigned a null value (�) (Eq. (4)).

di ¼
jbμi �mij; if mi is present

�; if mi is not present

�
ð4Þ

We use the distribution of these distances to calculate a weighted contribution
to the E-score for each motif instance. In previous work, it has been observed that
the distribution of motif position relative to sites of RNA polymerase initiation
decays rapidly with increased distance26. Thus we have chosen to model the motif
weights with an exponential function, whose decay length is independently
determined for each TF, from the background motif distribution. In order to
compute the weight model, we next calculate the background distribution of motif
distances. We assume the majority of the ROIs experience no significant fold-
change—namely, those ROIs in the middle of the ranked list. Consequently, we
calculate the mean, background motif distance (Eq. (5)) for those ROIs whose rank
is between the first and third quartiles of the ordered list of ROI positions, ðbμiÞ, as
follows

�d ¼ meanfdi j 8 i; if Q1 ≤ i≤Q3 and di ≠�g ð5Þ
where Q1 and Q3 are the first and third quartiles, respectively. Our assumption is
that the interquartile range of the ordered list ðbμiÞ—between indices Q1 and Q3—
represents the background distribution of motif distances for the given TF, and
therefore defines the weighting scale for significant ROIs in our enrichment
calculation. We found this to be essential since the background distribution varies
between TFs. This variation in the background can be attributed to the random
similarity of a given motif to the base content surrounding the center of ROIs. For
example, in the case of RNA polymerase loading regions identified in nascent
transcription data (which demonstrate a greater GC-content proximal to μ as
compared to genomic background26), GC-rich TF motifs were more likely to be
found proximal to each ROI by chance and thus resulted in a smaller �d than would
be the case for a non-GC-rich motif.

Having calculated the mean background motif distance, we proceed to calculate
the enrichment contribution (i.e., weight—Eq. (6)) for each ROI in the ordered list
(see “Weight Calculation” in Fig. 1).

wi ¼
e�di=�d ; if di ≠ �
0; if di ¼ �

(
ð6Þ

In order to calculate the E-score, we first generate the enrichment curve for the
given TF (solid line in “Enrichment Curve” in Fig. 1) and the background
(uniform) enrichment curve (dashed line in “Enrichment Curve” in Fig. 1). We
define the E-score as the integrated difference between these two (scaled by a factor
of 2, for the purpose of normalization). The enrichment curve (Eq. (7)), which is
the normalized running sum of the ROI weights, and the E-score (Eq. (8)) are
calculated as follows:

eðiÞ ¼ ∑i
k¼0 wk

∑N
k¼0 wk

ð7Þ

E ¼ 2
N
∑
i

eðiÞ � i
N

� �
ð8Þ

where i is the index for the ROI rank and i/N represents the uniform, background
enrichment value for the ith of N ROIs. The background enrichment assumes every
ROI contributes an equal weight wi, regardless of its ranking position. Therefore,
the enrichment curve (Eq. (7)) will deviate significantly from the background if
there is a correlation between the weight and ranked position of the ROIs. In this
case, the E-score will significantly deviate from zero, with E > 0 indicating either the
increased activity of an activator TF or decreased activity of a repressor TF.
Likewise, E < 0 indicates either a decrease in an activator TF or an increase in a
repressor TF. By definition, the range of the E-score is −1 to +1.

Unlike GSEA, which uses a Kolmogorov–Smirnov-like statistic to calculate its
enrichment score44, the TFEA E-score is an area-based statistic. GSEA was
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designed to identify if a predetermined, biologically related subset of genes is over-
represented at the extremes of a ranked gene list. Therefore, the KS-like statistic is a
logical choice for measuring how closely clustered are the elements of the subset
since it directly measures the point of greatest clustering and otherwise is
insensitive to the ordering of the remaining elements. Conversely, because TFEA’s
ranked list does not contain two categories of elements (the ROIs) and all elements
can contribute to the E-Score, we wanted a statistic that was sensitive to how all
ROI in the list were ranked—for this reason, we chose the area-based statistic. The
null hypothesis for TFEA assumes all ROIs contribute equally to enrichment,
regardless of their motif co-localization and rank. Hence the uniform background
curve, to which the enrichment curve is compared.

In order to determine if the calculated E-score (Eq. (8)) for a given TF is
significant, we generate an E-score null distribution from random permutations of
ðbμiÞ. We generate a set of 1000 null E-scores fE0

ig, each calculated from an
independent random permutation of the ranked ROIs, ðbμiÞ. Our E-score statistic is
zero-centered and symmetric, therefore we assume fE0

ig � N ðE0; σ
2
EÞ. The final E-

score for the TF is compared to this null distribution to determine the significance
of the enrichment.

Prior to calculating the E-score p value, we apply a correction to the E-score
based on the GC-content of the motif relative to that of all other motifs to be tested
(user-configurable). This correction was derived based on the observation that
motifs at the extremes of the GC-content spectra were more likely to call significant
across a variety of perturbations. We calculate the E-Scores for the full set of TFs as
well as the GC-content of each motif, {(gi, Ei)}. We then calculate a simple linear
regression for the relationship between the twobb ¼ �E � bm�g ð9Þ

bm ¼ ∑n
i¼1ðgi � �gÞðEi � �EÞ
∑n

i¼1ðgi � �gÞ ð10Þ

EGCðgÞ ¼ bbþ bmg ð11Þ
where �E and �g are the average E-score and average GC-content. EGC(g) is the
amount of the E-score attributed to the GC-bias for a motif with GC-content g.
Thus the final E-score for the TF is given by ETF= E− EGC(gTF), the difference
between Eqs. (8) and (10). If GC-content correction is not performed, then Eq. (8)
is taken to be the final E-score. The p value for the final TF E-score is then
calculated from the Z-score, ZTF= (ETF− E0)/σE.

Limitations to TFEA and muMerge. Though muMerge and TFEA clearly
demonstrate good performance, there are a number of limitations to both tools. We
want to bring attention to these limitations so that users may better understand
how best to apply these tools to data and interpret the results.

As implemented, muMerge assumes every input data set is of equal quality, by
default. This means every data set is given equal weight when computing the joint
probability. However, if some data sets are of low or questionable quality such that
they have inaccurate bed regions, this may bias the ROI inferred by muMerge. We
recommend removing poor quality data sets from those input to muMerge or
weighting each data set based on its perceived quality. In short, muMerge cannot
substitute for thoughtful quality control of each of one’s samples.

Additionally, sites with regions that are very closely spaced tend to be inferred
as a single ROI by muMerge. This can be accounted for somewhat by decreasing
the value of the width ratio (ρ, default value 1), which reflects the assumed
uncertainty on the location of the input sample regions. However, there is no
definitive ground truth value. It should be noted, both of these limitations also
apply to the bedtools methods of combining regions.

As implemented, TFEA depends on DESeq to order the observed transcription
changes between conditions. Consequently, TFEA performs best when replicates
are available. Likewise, when DESeq assumptions are violated, this can result in
unreliable region ordering. For example, when TF ChIP is utilized across
conditions there are often large gains in binding events. This is particularly true
with environmentally stimulated TFs such as p53 or GR which can be activated by
Nutlin-3a and dexamethazone, respectively. The pre-stimulated condition typically
has few (if any) detectable binding sites whereas post stimulation binding is
detected at hundreds to thousands of sites. In this scenario, the DESeq assumption
that the bulk of sites are unchanged is violated. Even if an alternative method of
ordering sites were utilized, most gained sites contain the TF motif, so no
enrichment is typically observed. For this reason, we do not recommend applying
TFEA to environmentally responsive TF ChIP data sets or any other data type that
clearly violates the statistical assumptions of DESeq.

Additionally, TFEA depends on a collection of known motifs. Unfortunately,
some TFs have no known motif or one of poor quality. However, over time, the
quality and numbers of TFs in the major databases have dramatically improved3.
Furthermore, TFEA can only distinguish between paralogous TFs to the extent that
they have distinct motifs. Sites of transcription initiation (both promoters and
enhancers) show substantial GC bias. Consequently, short high GC content motifs,
which are exceedingly common in ROIs, sometimes appear to show significant
changes with a perturbation. The extent to which these signals represent a
biological process or a statistical anomaly is unclear.

Finally, TFEA identifies when the TF motif associates with sites of changing
RNA polymerase initiation. By ordering the differential transcription signal by the
direction of change, TFEA can determine whether the identified TF is associated
with a transcription gain or loss. Prior work has shown that stimulation of an
activator gives rise to increased eRNA activity nearby21–23, but loss of a repressor
also leads to proximal increased eRNA activity70. Consequently, if a motif
associates with transcriptional gain it may arise from either activation or repression
of the TF.

Benchmarking. In order to benchmark the performance of muMerge and TFEA,
we performed a number of simulations that isolate the different parameters of
muMerge and TFEA, comparing the performance to that of some commonly used
alternatives. We ran these alternatives: AME 5.0.5 and bedtools version 2.28.0
(merge and intersect) using default parameters. Here we describe how the data for
each test was generated.

muMerge: Simulating replicates for calculation of ROIs. To test the performance of
muMerge in a principled manner, we first generate replicate data in a way that
simulates the uncertainty present in individual samples. For each replicate, we
perform 10,000 simulations of sample regions for a single locus and calculate the
average performance. For each simulation, we assume a precise position and width
for the hypothetical locus and model the uncertainty of each sample region with a
binomial and Poisson distribution, respectively. The position of each sample
region, μi, is pulled from a symmetric binomial distribution μi ~ B(n= 100, p=
0.5), centered at zero. The half-width of each sample region, σi, is pulled from a
Poisson distribution σi ~ Pois(λ= 100). The specific distributions utilized to gen-
erate the sample regions are as follows:

locus estimate � position : μi � μþ Bðn ¼ 100; p ¼ 0:5Þ � np

half � width : σ i � Poisðλ ¼ 100Þ

�
ð12Þ

Here B( ⋅ ) is the binomial distribution centered at np with success probability
0.5 and variance np(1− p)= 25. Thus, the position estimator μi for a single sample
region is centered at μ. Pois( ⋅ ) is the Poisson distribution, thus, the half-width for
each sample region have mean and variance of λ= 100.

The first test (Supplementary Fig. 4a) consisted of inferring a single locus
(located at μ= 0) from an increasing number of replicates. A sample region for
each replicate was generated from Eq. (12). This simulation was repeated 10,000
times for each number of replicates being combined. The methods muMerge,
bedtools merge, and bedtools intersect were applied to each of the
10,000 simulations. The average error on the midpoint (its deviation from the true
locus position, μ= 0) and region width were calculated for the regions generated
from each method, averaged over all 10,000 simulations. The behavior of the
average positional error and region width as a function of number of combined
replicates is shown in Fig. 2b (Test 1).

The second test (Supplementary Fig. 4b) consisted of inferring two loci (μ1=−
x and μ2=+ x) as the distance between those loci was increased (from x= 0 to
200). This simulation was repeated 10,000 times for each value of x (with 3
replicates). The distribution of the inferred positions and widths were plotted,
using muMerge, bedtools merge and bedtools intersect. The distribution of positions
and widths as a function of the distance between μ1 and μ2 are shown in Fig. 2c
(Test 2).

TFEA: simulated motif enrichment. To generate test sequences for understanding
the contribution of positional signal to motif enrichment, we randomly sampled
10,000 sequences from detected bidirectional in untreated HCT116 cells22. As this
collection of ROI was obtained from nascent transcription data, it maintains true
biological sequence signals. To simulate differential transcription, we randomly
ordered the set of ROI. We then embedded instances of the TP53 motif in the
highest-ranked sequences with a normal distribution with μ= 0 and σ= 150
(representative of signal). Importantly—p53 is known to NOT be activated in
HCT116 DMSO samples22. To simulate background noise, we embedded instances
of the TP53 motif with a uniform distribution to a percentage of the remaining
sequences (chosen randomly). To calculate an F1 score, for each scenario of
varying signal to the background we generated ten simulations. We then calculated
the harmonic mean of precision and recall with the aggregate p values of all
10 simulations measuring all 401 TF motifs within the HOCOMOCO database
(total 4010 TF motifs). True positives, in this case, were the 10 instances of the
TP53 motif that should be significantly enriched. Any other significantly enriched
TF motifs were considered false positives. We performed two sets of tests: (1)
varying the amount of motif signal relative to the amount of background and (2)
varying the standard deviation of motif position in the highest signal tested (10%
signal; with the last scenario being uniform signal distribution) and the amount of
background.

TFEA: testing compute performance. The base (ATGC) content of regulatory
regions was calculated from the sites of RNA polymerase initiation inferred in
HCT116 DMSO (using Tfit; described in ref. 26). One million 3kb sequences were
subsequently generated based on the empirical probability of the positional base
composition. We then randomly sampled (without replacement) an increasing
number of sequences (up to 100,000) to be used in the computational processing
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tests. Run time and compute resources were measured using the Linux time
command on a single node of a 70-node mixed-platform high-memory compute
cluster running CentOS 7.4. To compute the runtime for a single processor, we
added the systime and usertime. To compute memory usage for a single processor,
we reran TFEA using only a single processor.

PRO-Seq in MCF10A. We generated PRO-seq libraries for MCF10A cells before
(DMSO) and 1 hour after Nutlin-3a, described in detail below. Our MCF10A cells
carried a WTp53 insertion at the p53 locus, as they were developed for a study of
p53 isoforms71. A complete description of the cell line construction is provided
here for completeness.

Cas9RNP formation. sgRNA was formed by adding tracrRNA (IDT cat#
1072533) and crRNA (TP53 exon 2, positive strand, AGG PAM site, sequence:
GATCCACTCACAGTTTCCAT) in a 1:1 molecular ratio together and then
heating to 95 °C and then allowing to slowly cool to room temperature over 1 h.
Cas9RNP was then formed by adding purified Cas9 protein to sgRNA at a ratio of
1:1.2. 3.7 μL of purified Cas9 protein at 32.4 μM was added to 2.9 μL of 50 μM
sgRNA. This was then incubated at 37 °C for 15 min, and used at 10 μM
concentration within the hour.

Donor plasmid construction. Vector Builder was used to constructing plasmid.
The insert was flanked by 1.5 kb homology arms, and mCherry was inserted as a
selection marker.

CRISPR/Cas9 genome editing. MCF10A cells cultured in DMEM/F12 (Invitrogen
#11330-032) media containing 5% horse serum (LifeTech #16050-122), 20 ng/mL EGF
((Peprotech #AF-100-15), 0.5 μg/mL Hydrocortisone (Sigma #H0888-1g), 100 ng/mL
Cholera toxin (Sigma #C8052-2mg), 10 μg/mL insulin (Sigma #I1882-200mg), and 1×
Gibco 100× Antibiotic–Antimycotic (Fisher Sci, 15240062) penicillin–streptomycin.
Cells were split 24 h prior to the experiment and grown to approximately 70%
confluency on a 15 cm plate. Media was aspirated, and the cells were washed with PBS.
Totally, 4 ml of trypsin per plate were used to harvest adherent cells, after which 8mL
of resuspension medium (DMEM/F12 containing 20% horse serum and 1× pen/strep)
was added to each plate to neutralize the trypsin. Cells were collected in a 15ml
centrifuge tube and spun down at 1000 × g for 5min, then washed in PBS and spun
down again at 1000 × g for 5min. Cells were counted using a hemocytometer and 5 ×
105 cells were put in individual 1.5mL Eppendorf tubes for transfection. Cells were re-
suspended in 4.15 μL Buffer R, 10 μM Cas9RNP (6.6 μL), 1 μg WTp53 donor plasmid
(1.25 μL). The mixture was drawn up into a 10 μL Neon pipet tip, electroporated using
the Neon Transfection Kit with 10 μL tips (1400 V, 20ms width, 2 pulses). Transfected
cells were then pipetted into 2mL of antibiotic-free media. After 1 week of recovery,
cells were then single-cell sorted into 96-well plate based on mCherry expression.
Clones were then verified with sequencing, PCR, and western blot.

Replicates. A single validated clone of MCF10A WTp53 cells was selected for
subsequent PRO-seq analysis. All experiments were conducted in duplicate from
separate cell growths.

Nuclei preparation. MCF10A WTp53 cells were seeded on three 25 cm dishes
(1 × 107 cells per dish) for each treatment 24 h prior to the experiments (70%
confluency at the time of the experiment). Cells were treated simultaneously with
10 μM Nutlin-3a or 0.1% DMSO for 1 h. After treatment, cells were washed 3×
with ice-cold phosphate-buffered saline, and then treated with 10 ml (per 15 cm
plate) ice-cold lysis buffer (10 mM Tris-HCl pH 7.4, 2 mM MgCl2, 3 mM CaCl2,
0.5% NP-40, 10% glycerol, 1 mM DTT, 1× Protease Inhibitors (1 mM Benzamidine
(Sigma B6506-100G), 1 mM Sodium Metabisulfite (Sigma 255556-100G), 0.25 mM
Phenylmethylsulfonyl Fluoride (American Bioanalytical AB01620), and 4 U/mL
SUPERase-In). Cells were centrifuged with a fixed-angle rotor at 1000 × g for
15 min at 4 °C. The supernatant was removed and the pellet was resuspended in
1.5 mL lysis buffer to a homogenous mixture by pipetting 20–30× before adding
another 8.5 mL lysis buffer. The suspension was centrifuged with a fixed-angle
rotor at 1000 × g for 15 min at 4 °C. The supernatant was removed and the pellet
was resuspended in 1 mL of lysis buffer and transferred to a 1.7 mL pre-lubricated
tube (Costar cat. No. 3207). Suspensions were then pelleted in a microcentrifuge at
1000 × g for 5 min at 4 °C. Next, the supernatant was removed and pellets were
resuspended in 500 μL of freezing buffer (50 mM Tris pH 8.3, 40% glycerol, 5 mM
MgCl2, 0.1 mM EDTA, 4 U/ml SUPERase-In). Nuclei were centrifuged 2000 × g for
2 min at 4 °C. Pellets were resuspended in 100 μL freezing buffer. To determine the
concentration, nuclei were counted from 1 μL of suspension, and freezing buffer
was added to generate 100 μL aliquots of 10 × 106 nuclei. Aliquots were flash-frozen
in liquid nitrogen and stored at −80 °C.

Nuclear run-on and RNA preparation. Nuclear run-on experiments were
performed as described72 with the following modifications: the final concentration
of non-biotinylated CTP was raised from 0.25 to 25 μM, a clean-up and size
selection was performed using 1× AMPure XP beads (1:1 ratio) (Beckman) prior to
test PCR and final PCR amplification, and the final library clean-up and size
selection was accomplished using 1× AMPure XP beads (1:1 ratio) (Beckman).

Sequencing. Sequencing of PRO-Seq libraries was performed at the BioFrontiers
Sequencing Facility (UC-Boulder). Single-end fragment libraries (75 bp) were
sequenced on the Illumina NextSeq 500 platform (RTA version: 2.4.11, Instrument
ID: NB501447), demultiplexed and converted BCL to fastq format using bcl2fastq
(bcl2fastq v2.20.0.422); sequencing data quality was assessed using FASTQC
(v0.11.5) and FastQ Screen (v0.11.0), both obtained from https://www.

bioinformatics.babraham.ac.uk/projects/. Trimming and filtering of low-quality
reads was performed using BBDUK from BBTools (v37.99) (Bushnell B. BBMap.
http://sourceforge.net/projects/bbmap/) and FASTQ-MCF from EAUtils (v1.05)73.

Data processing. p53 ChIP data. Raw ChIP-seq data (GSE86222) from Andrysik
et al.40 was downloaded from the SRA database. Data were processed with the
ChIP-Flow pipeline (https://github.com/Dowell-Lab/ChIP-Flow) as follows. Reads
were trimmed using BBduk from BBMap version 38.05 with the following flags
ktrim=r qtrim=10 k=23 mink=11 hdist=1 maq=10 minlen=2074. Trimmed
reads were mapped to the human reference genome (GRCh38/hg38) using HISAT2
version 2.1.0 with the –very-sensitive and –no-spliced-alignment flags75. Next,
SAMtools version 1.876 was used to convert sam files to sorted bam files, and
duplicate reads were removed with Picard Tools version 2.6.077. Finally, MACS2
version 2.1.1 was used to call peaks using each of the input samples for each cell
line as control78.

ENCODE data. Raw bed and bam files were downloaded directly from
ENCODE (encodeproject.org). These files were input directly into the muMerge or
TFEA pipeline for processing and analysis. AME analysis was performed on the
ranked ROI list produced as an optional output from TFEA.

muMerge TF ChIP-seq comparison. Peak calls for each region were scanned for
an instance of the TF motif (from HOCOMOCO) using FIMO (MEME version
5.1.1), and peaks with significant hits to the TF motif (p-adj < 0.001) were
retained69. Sample regions were combined across replicates (cell types) and
conditions (with or without Nutlin-3a) with muMerge, bedtools merge, and bedtools
intersect (bedtools version 2.28.0)68. The point of interest for muMerge was the
center of the called peak, which was expanded by 1500 bp to specify the full ROI.
Distance to the motif instance was calculated using the region midpoint compared
to the midpoint of the best motif instance. For each method, we report the standard
deviation, mean, and median of distances for each region.

GRO/PRO-Seq data. All GRO-Seq and PRO-Seq data were processed using the
Nextflow79 NascentFlow pipeline (v1.180) specifying the “–tfit” flag. Subsequent
Tfit bed files from all samples were combined with muMerge to obtain a consensus
list of ROIs.

FANTOM data. Raw expression tables for the Macrophage LPS time series were
downloaded using the table extraction tool from the FANTOM Semantic catalog of
Samples, Transcription initiation, And Regulations (SSTAR; http://fantom.gsc.
riken.jp/5/sstar/Macrophage_response_to_LPS). Because the annotations for
regions within hg38 counts tables contained “hg19”, we performed this analysis in
the hg19 genome with the hg19 counts table instead of the hg38 counts table. We
then performed DESeq analysis (since there were no replicates) on each time point
compared to control and ranked the annotated regions within the counts table
similar to Fig. 1. We then ran TFEA and AME with default settings on each of the
three donors. We displayed only data for donor 2, as this sample had the most
complete time-series data.

Clustering FANTOM data. We retained TFs with at least 15 significant (p-adj <
0.1) time points (representing 2/3 of all timepoints) from the TFEA output and
applied K-means clustering. Clustering of the time series data was performed on
the first two hours only, in order to distinguish the early responses to LPS infection.
K-means clustering was conducted using the Hartigan and Wong algorithm with
25 random starts and 10 iterations for k= 381. The optimal number of clusters was
selected using the Elbow method82.

String database analysis. Protein names from TFs that were found to be
significant in at least 15-time points were taken from the HOCOMOCO database.
These proteins were inputted directly into the String database (https://string-db.
org). Clusters were formed by selecting the MCL clustering option with an inflation
parameter of 3 (default). Network edges were selected to indicate the strength of
the data support. Finally, nodes disconnected from the network were hidden.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
We generated PRO-seq libraries for MCF10A cells with and without Nutlin-3a. MCF10A
PRO-seq data generated for this study are available in GEO with accession numbers
GSE142419. In addition, a number of publicly available data sets were utilized and
analyzed. These data sets are available in the Short Read Archive (SRA) or ENCODE
repository with accession numbers presented in Supplemental Data 1. Additional
supporting data for figures is available at the Open Science Framework83.

Code availability
TFEA is available for download at https://github.com/Dowell-Lab/TFEA and comes with
muMerge integrated. Alternatively, muMerge can be downloaded independently at
https://github.com/Dowell-Lab/mumerge. Definition files for Singularity and Docker
containers are available in the TFEA GitHub repository. Usage of these containers is
recommended to simplify dependency management. Finally, all data analysis conducted
in preparation of this manuscript is available in Juypter notebook format at https://
github.com/Dowell-Lab/TFEA/tree/master/Jupyter_Notebooks.
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