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Cancer stem cells (CSCs) are subpopulations of cells with stem cell characteristics
that produce both cancerous and non-tumorigenic cells in tumor tissues. The
literature reports that CSCs are closely related to the development of hepatocellular
carcinoma (HCC) and promote the malignant features of HCC such as high invasion,
drug resistance, easy recurrence, easy metastasis, and poor prognosis. This review
discusses the origin, molecular, and biological features, functions, and applications of
CSCs in HCC in recent years; the goal is to clarify the importance of CSCs in treatment
and explore their potential value in HCC-targeted therapy.
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WHAT ARE CSCs?

Like stem cells in normal tissue, cancer stem cells (CSCs) are small populations of cells in tumor
tissue with ‘stem cell-like’ characteristics. CSCs have the capacity to self-renew and differentiate
into heterogeneous tumor cells, which are responsible for the maintenance and propagation of
the tumor (Batlle and Clevers, 2017). The capability of CD34+/CD138− cells to initiate tumors in
acute myeloid leukemia was the first conclusive evidence for CSC (Bonnet and Dick, 1997). Basing
on this breakthrough, CSCs were subsequently found in a variety of hematopoietic cancer and solid
tumors. Hepatocellular carcinoma accounts for most of the incidence of primary liver cancer, and
the existence of CSCs has been demonstrated through the identification of several surface markers
in HCC (Machida, 2017). Extensive research has demonstrated that CSCs provide HCC with a
proliferative, invasive, and recurrent advantage. Even so, the presence of CSCs is still controversial
in HCC, which is especially evident in the theory of the origin of CSCs (see Figure 1). Some studies
suggest that CSCs originate from liver progenitor cells (LPCs). The inflammatory induction of
LPCs into CSCs by macrophage-secreted TNF-α represents strong evidence for this theory (Li X.F.
et al., 2017). Other studies suggest that CSCs are derived from the de-differentiation of mature cells
and biliary cells under the influence of genetic and/or epigenetic changes (Nio et al., 2017). More
interestingly, the production of CSCs by pluripotent inducers, such as Nanog, Oct4, Yamanaka
factor, and Sox2, through reprogramming is also widely accepted (Yamashita and Wang, 2013).
There are also some studies that claim that CSCs are derived from bone marrow stem cells (Kim
et al., 2010). Faced with the controversy over the origin of CSCs, researchers tried to explore the
origin of CSC using in vitro culture and immunodeficient tumor models. For example, sphere cells
that originate from external culture and fusion cells, which originate from cancer cells and stem
cells, are deemed to be CSCs (Wang R. et al., 2016). However, questions remain as to whether CSCs
induced in vitro are consistent with CSCs in tumors in vivo (Magee et al., 2012). On the one hand,
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FIGURE 1 | The Origin of CSCs in HCC. LPCs can transform into CSCs linked with inflammation caused by various factors such as HBV or HCV infection, alcohol,
chronic exposure to toxicity, and non-alcoholic fatty liver disease (NAFLD). This process is associated with TNF-α. Hepatoblasts or biliary cells can transform into
CSCs by genetic or epigenetic changes. Hepatocytes derived from bone marrow stem cells can be dedifferentiated into CSCs.

in an experiment where the tumor microenvironment was
absent, a gap between the environment and the evolution
of CSCs in the body would be present, which may not
reflect the actual conditions in vivo. On the other hand,
immunodeficient tumor models are different from the human
immune environment. Future research should be designed in
more biologically appropriate environments and more suitable
immunodeficient models.

BIOLOGICAL CHARACTERISTICS OF
CSCs in HCC

Self-Renewal
Self-renewal refers to the production of one or more cellular
subtypes that retain maternal features and functions after the
symmetrical and asymmetrical division of stem cells. There
are a few CSCs in cancer, which can regenerate cancer cells
through self-renewal (Lobo et al., 2007). To treat HCC, many
researchers start by regulating CSC self-renewal. Current research
has made some progress in the maintenance and regulation
of a variety of intentional molecules involved in the self-
renewal of CSCs. These molecules affect the expression of
CSCs genes, regulate signaling pathways, and thus affect self-
renewal ability. In addition, studies suggest that the tumor
microenvironment inhibits CSC self-renewal. When the tumor
microenvironment is altered, it affects the self-renewal and
proliferation of CSCs, leading to HCC. In short, self-renewal

is the most fundamental characteristic of CSCs; therefore,
suppressing self-renewal of CSCs may fundamentally solve the
problem of tumorigenesis and expansion.

Differentiation
Cancer stem cells produce the same tumorigenic cells through
self-renewal and grow into non-tumorigenic cancer cells
through differentiation, promoting tumor proliferation
(Reya et al., 2001). Researchers have shown that CSCs
can differentiate into different tumor cells in liver cancer
through monoclonal experiments (Liu et al., 2013). CSCs
multi-directional differentiation affects tumor heterogeneity
(Huang Z. et al., 2015). Accumulating evidence suggests that
CSC differentiation is associated with specific markers in
HCC. For example, one meta-analysis suggests that there
is a link between CSCs markers and less differentiated
pathological types (Flores-Téllez et al., 2017). CD24+cells
show stronger differentiation ability than CD24− cells and a
higher CK18 expression can be observed in CD24+ cells upon
differentiation (Lee et al., 2011). Knockout CD44 promotes
CSCs to differentiate to a normal cell-like morphology (Han S.
et al., 2015). A study has revealed that Li-7 HCC cells maintain
a clearly heterogeneous hierarchy and instability based on
CD13+ CSCs differentiation (Yamada et al., 2015). Moreover,
specific markers such as EpCAM (Yamashita et al., 2009) and
CD133 (Ma et al., 2007) can be utilized to identify CSCs based
on their differentiation stage. During CSCs differentiation,
Histone deacetylatase sirtuin 1(SIRT1) expression decreases
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while endogenous Nanog decreases and albumin increases
(Liu et al., 2016). β2 spectrin has a positive effect on CSC
differentiation while inhibiting the CSCs properties (Chen Y.
et al., 2018). These may provide new perspectives on anti-CSCs
differentiation strategies.

Cell Autophagy
Autophagy is the degradation and removal of endogenous
proteins and damaged organelles by lysosomes. Recent studies
have found a close relationship between autophagy and CSCs
in HCC. In terms of gene expression, autophagy promotes
CSC characteristics by inhibiting p53 expression (Liu et al.,
2017b). In terms of molecular characteristics, autophagy is
related to Axin2+ CD90+ CSC induction (Li J. et al., 2017).
In terms of biological characteristics, CD133+ CSCs escape the
living pressure caused by the lack of nutrition and the hypoxic
environment of HCC by means of autophagy, especially low
glucose concentrations (Chen H. et al., 2013). Interestingly, it has
been demonstrated that autophagy provides the decomposable
metabolites needed for repair, removes toxic substances, and
reduces cytoplasmic acidification to contribute to the survival of
CD133+ CSCs in response to hypoxia and nutrient starvation
stress (Song et al., 2013; Nazio et al., 2019). In addition, it was
found that 3-methyladenine and bafilomycin A1 significantly
reduced the number of CD133+ CSCs and ball formation ability,
which are related to autophagy (Liu et al., 2017b). Altogether,
autophagy is clearly evidenced in the tumor initiating and
drug resistance capabilities of CSCs (Garcia-Mayea et al., 2019).
The development of autophagy inhibitors will revolutionize the
appearance and maintenance of CSC stemness (Li and Zhu,
2019), and autophagy inhibitors alone or combined with existing
chemotherapeutic drugs will play an important role in HCC
formation and drug resistance.

THE ROLE OF CSCs IN HCC

CSCs INITIATE HCC
In 2007, the infinite value-added accumulation of CSCs was
proposed to trigger HCC. A hierarchical model was proposed in
2010 to indicate that apical CSCs are responsible for the initiation
of primary cancer. Years of theory have continually optimized
and confirmed that CSCs are tumorigenic after division and
differentiation. The side population (SP) cells were isolated
from human HCC cell lines MHCC97-H, MHCC97-L, Huh7,
and HCCLM3 and transplanted into murine-induced murine
HCC130, which provided sufficient evidence for the ability of
CSCs to initiate tumorigenesis. In summary, the occurrence of
HCC is closely related to CSCs, and the specific mechanism has
not yet been elucidated. Targeting CSCs to inhibit tumorigenesis
will contribute to the treatment of HCC.

CSCs Affect the Malignant Features of
HCC
CSCs Affect HCC Metastasis
The effects of CSCs on HCC metastasis, drug resistance,
prognosis, and relapse have been confirmed in recent years.

CSCs may be part of the critical drivers of HCC metastasis
with inextricable elements including self-renewal and the tumor-
initiating ability of CSCs (Lambert et al., 2017). The plasticity
of CSCs and the promotion of EMT activity are also important
causes of HCC metastasis (Wang S.S. et al., 2015). CSC
markers and the EMT phenomenon are closely linked to
the metastasis of HCC. ROS enhances tumor metastasis via
migration, invasion, and angiogenesis (Lee et al., 2019) while
CD13 overexpression effects metastasis by reducing ROS via
an EMT phenomenon (Kim et al., 2012). Studies have found
that Notch inhibitor PF-03084014 inhibits the self-renewal and
proliferation of CSCs and further inhibits HCC metastasis,
which is evidence of the potential application of gamma-
secretase inhibitors in a targeted therapy for HCC (Wu C.X.
et al., 2017). Sorafenib inhibits CD90+ CSCs and extracellular
vesicle production to inhibit distant HCC metastasis (Yoshida
et al., 2017). Knocking out CD44 in vivo and in vitro is
beneficial in suppressing tumor metastasis. This process may
be related to EMT reversal and the ERK/Snail pathway (Gao
et al., 2015). The linkage between special CSC markers and the
EMT phenomenon provides a potential therapeutic perspective
against HCC metastasis.

CSCs Affect HCC Drug Resistance
It is worth mentioning that the plasticity of CSCs is also
one of the things that affects HCC drug resistance. Another
effect related to drug resistance is the fact that CSCs can
quickly mediate toxic efflux and rapidly respond to oxidative
stress and DNA damage. Furthermore, some markers and RNA
associated with CSCs can be potential targets of defeating
resistance to chemotherapy. For example, sorafenib resistance
may be associated with Nanog+ CSCs (Chen C.L. et al.,
2016), whereas lncRNA THOR inhibits CSCs and increases
HCC sensitivity to sorafenib (Cheng et al., 2019). In terms
of prognosis, studies have shown that CSC heterogeneity
promotes HCC molecular and biological diversity, leading to
a poor prognosis. In addition, CSCs may be used to assess
prognosis, such as CSCs-associated DKK1 mRNA as a prognostic
indicator for HCC.

CSCs Affect HCC Recurrence
In terms of recurrence, CSCs have greater resistance to
chemotherapeutic drugs, stimulate invasion through EMT, and
can survive and reoccur after treatment (Cheng Z. et al.,
2016). Stable overexpression of miR-216a/217 induced EMT
increased the CSC population of HCC. Circulating miR-1246
has been shown to be a predictor of survival and tumor
recurrence in HCC patients after liver transplantation (Xia et al.,
2013). Interactions between CSCs and angiogenesis should be
attributed to the recurrence and angiogenic treatment resistance
of patients with HCC. Chemoradiotherapy may induce non-
CSCs to differentiate into CSCs, causing tumor recurrence
(Chen X. et al., 2017). CSC enrichment and proliferation
induced by stress also points to a mechanism for recurrence
in HCC (Huo et al., 2019). In addition, β-catenin signaling
is associated with tumor malignant differentiation and is
involved in tumor recurrence. Changes in IL-6 concentration
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in the tumor microenvironment promote tumor invasion and
metastasis and participate in recurrence. Studies have confirmed
that some markers are closely related to HCC recurrence.
For example, CD13+ CSCs form cell clusters along the
fibrous envelope, which is closely related to the recurrence
of HCC after TAE (Haraguchi et al., 2010). The recurrence
rate of patients with a high CD133 expression is higher
than that of a low CD133 expression (Song et al., 2008).
The process of CD133+ CSCs promoting the recurrence of
HCC is closely associated with VEGF (Liu et al., 2017a).
Other studies have shown that CD44 expressions in non-
tumor tissues may predict HCC recurrence (Tovuu et al.,
2013). Presently, acyclic retinoid (600 mg/d) targets MYCN+
CSCs and successfully reduces the 2-year recurrence rate
after liver cancer treatment (Qin et al., 2018). In short,
CSCs play an important role in HCC progression. This
suggests that more effort should be put into clarifying the
molecular mechanisms and developing targeted drugs for the
treatment of HCC.

CSCs and Epithelial-Mesenchymal Transition
EMT refers to the process in which epithelial cells lose cell
polarity and intercellular adhesion and obtain migration and
invasiveness capabilities as mesenchymal stem cells. The EMT-
related genes and the K19+ CSC gene are jointly expressed
in HCC (Kawai et al., 2015). Exogenous overexpression of
Twist2 is associated with EMT enhancement of CSC-related
gene expression such as BC-1, Sox2, and Nanog, which
improves CD24+ CSCs self-renewal ability (Liu A.Y. et al.,
2014). This is also one of the examples of joint expression.
Moreover, EMT-related factors promote the expression of
CSCs marker (Park et al., 2016) and the development of
CSCs. In addition, EMT activation confers greater invasiveness
and resistance to CSCs and promotes tumor recurrence
(Ikemoto et al., 2017).

CSCs and Angiogenesis
Cancer stem cells participate in angiogenesis; for example, CSCs
initiate tumor angiogenesis via the lateral differentiation of
EMT or angiogenic factors and CD133+ CSCs with abnormal
IL-8, NTS, and CXCL1 expression induces angiogenesis (Yang
et al., 2010). Additionally, CD90+ CSCs release exosomes
containing lncRNA H19 and regulate the angiogenic phenotype
(Conigliaro et al., 2015).

Vasculogenic mimicry (VM) refers to an invasive tumor
cell that mimics the embryonic angiogenic vascular network.
CSCs may be involved in the formation of VM, affecting the
reverse transformation between VM and endothelium dependent
blood vessels (Fan et al., 2013). In different differentiated states
of HCC, CSC gene expression has different effects on VM
formation. Slug (SNAI2) (Sun et al., 2013), lncRNA n339260
(Zhao et al., 2018), Twist, c-Myc, and Sox2 are key factors for
CSCs to promote VM.

In conclusion, CSCs play a role in angiogenesis and vascular
mimicry, which are related to malignant features such as
HCC metastasis and recurrence. Therefore, the development of
targeted agents for CSCs to inhibit tumor blood supply, and

the combination of the original radiotherapy and chemotherapy
drugs, can improve the effectiveness of HCC treatment.

CSC MARKERS AND HETEROGENEITY
IN HCC

Cancer stem cells, with a strong ability to self-renew and strong
tumorigenicity, are isolated from tumor cells, cultured, and then
implanted into mouse models to produce new tumor masses.
Based on this technique, both accuracy and efficiency are of
primary concern. In order to improve separation quality, CSC
specific markers are used for fluoresce-activated cell sorting
(FACS) as this method can obtain a purer CSC population. The
search for specific CSC markers has therefore become a new
target for researchers. In recent years, researchers have found
a variety of markers that are expressed by CSCs (see Table 1).
Specifically, CSC markers can be summarized by four functions:
self-renewal, differentiation, proliferation, and tumorigenic
ability (Wang et al., 2018). For example, EpCAM promotes CSC
self-renewal and differentiation (Yamashita et al., 2009), keratin
19 (K19) enhances the proliferation of CSCs (Kawai et al., 2015),
and overexpression of the calcium channel α2δ1 increases the
tumorigenic capacity of CSCs (Zhao et al., 2013).

In addition, phenotypic heterogeneity of CSCs refers to the
fact that they express a variety of different stem cell markers,
which can be used to identify and isolate CSCs as well as
represent different clinical and prognostic significances. In
addition, CSCs showed significant heterogeneity in self-renewal
and differentiation potential (Zheng et al., 2018). Nevertheless,
the phenotypic heterogeneity of CSCs not only bring some
difficulties to the accurate separation and identification of CSCs,
but the existence of multiple phenotypes is also not conducive to
the efficiency and universality of modeling. Studies have found
that the heterogeneity of CSCs (Tang, 2012; Flores-Téllez et al.,
2017) is not limited to biological phenotypes. There is also some
heterogeneity in transcriptomics, such as karyotype evolution
and gene expression profiles (Colombo et al., 2011). However,
this is limited to the single-cell level, and the transcriptome
heterogeneity of CSC groups is significantly reduced. This is also
a controversial topic in CSC transcriptional heterogeneity.

Intra-tumor heterogeneity is closely related to genetic and
functional diversities and is highly complex in HCC (Prasetyanti
and Medema, 2017). Until now, more than a dozen markers,
such as CD130, CD24. CD90, CD13, EpCAM, and K19 have
been identified in tumor cell populations, demonstrating the
phenotypical heterogeneity of tumor cells. The expression of
different markers is related to prognosis, metastasis, recurrence,
and drug resistance of HCC, which poses certain difficulties in
the treatment of HCC. In terms of prognosis, researchers applied
18F-fluorodeoxyglucose positron emission tomography (18F-
FDG-PET) to provide a more accurate prognostic prediction
based on the association between K19 and poor prognosis of
HCC (Kornberg and Friess, 2019). In addition, the application
of CD133 in prognostic prediction should also be noted. CD133
in the cytoplasm of CSCs indicates poor prognosis, while CD133
in the nucleus indicates the opposite. This finding provides an
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TABLE 1 | Different markers associated with CSCs in HCC.

Markers Functions in CSCs Signaling pathway References

EpCAM Drug resistance, tumorigenesis, invasion, self-renewal Wnt/β-catenin Terris et al., 2010

Calcium channel α2δ1 Calcium influx ERK Zhao et al., 2013

CD133 Drug resistance, tumorigenesis,
self-renewal, proliferation, angiogenesis

Akt/PKB, Neurotensin/IL-8/CXCL1 Ma et al., 2008;
Tang et al., 2012

CD90 Drug resistance, tumorigenesis,
self-renewal

PI3K/Akt1, TGF-β Yamashita et al., 2013;
Zhang et al., 2015

CD24 Drug resistance, tumorigenesis STAT3-mediated NANOG regulation Lee et al., 2011

K19 Proliferation, EMT, drug resistance, invasion Smad/TGF-β Kawai et al., 2015

CD44 Regulation of redox status through xCT,
self-renewal, drug resistance, maintenance, tumorigenesis

ROS-induced stress
Notch3

Ishimoto et al., 2011;
Asai et al., 2019

important theoretical basis for the future prediction of prognosis,
based on the sub-localization of CSC markers (Chen Y.L. et al.,
2017). There is no doubt that many markers, especially CD13,
CD44, and K19, affect HCC drug resistance. Further research has
found various mechanisms by which markers affect resistance.
For example, CD13 blocks HCC apoptosis under the influence
of genotoxic chemotherapeutic fluorouracil (Haraguchi et al.,
2010). The effect of CD44 on antioxidant capacity is related to
glutathione peroxidase 1 (GPX1) and thioredoxin (Asai et al.,
2019). Furthermore, K19 is involved in endothelial-mesenchymal
transition (EMT) and TGF-β signal transduction to regulate drug
resistance. A better understanding of the mechanism of marker-
related drug resistance will greatly assist the future development
of targeted drugs.

Cancer stem cell markers are also important in other aspects
of HCC, such as metastasis and recurrence. Future studies on
targeted CSC therapy can focus more on K19, CD90, CD44,
Toll-like receptors 4 (TLR4), SRY-related HMG-box gene 12
(SOX12), and aldehyde dehydrogenase (ALDH) to inhibit tumor
metastasis. At the same time, more attention should be paid to
CD133, K19, CD13, and TLR4 to cope with HCC recurrence. The
accurate isolation and identification of CSCs is of great benefit
to the targeted CSC therapy of HCC. Using CSC markers is
currently a mainstream practice. Furthermore, CSC markers also
open the way for exploring other potential biological functions
and characteristics of CSCs.

FACTORS REGULATING CSC FUNCTION
IN HCC

The acquisition and maintenance of CSC characteristics are
regulated by many factors. Although the detailed mechanisms
are not clear, the regulatory roles of gene expression,
tumor microenvironment, and multiple signaling pathways
is beyond a doubt.

Gene Expression and Epigenetics
A single-cell gene analysis found that the characteristics of
CSCs are related to the expression of many genes. For example,
the maintenance of tumorigenicity of CSCs is related to the
BC047440 gene, and NF-κB and HNF4 may be key regulators
(You et al., 2014). Other examples show that the self-renewal

ability of CSCs is related to genes C8orf4 (Zhu et al., 2015),
BMI1, p53, Numb and p53, and Numb may form an expression
network where one interacts with the other (Siddique et al., 2015).
Alterations in stemness genes, related transcription factors, and
proteins affect CSC characteristics. All of these provide new
insights into the development of potential drug targets. Future
research efforts should focus on the development of characteristic
gene regulatory molecules and more in-depth mechanisms to
improve the effectiveness and safety of targeted therapies.

Epigenetic changes are inextricably linked to CSC phenotypes,
HCC biological behaviors, and patient clinical outcomes. There
have been certain breakthrough in the research on the regulation
of CSCs in terms of DNA modification, histone modification,
non-coding RNA regulation, and chromatin remodeling.
For example, DNA methylation regulates the development
and application of CSC tumorigenicity-inspired methylation
inhibitors DNMT1 and DNMT3. The transcriptional repressor
SALL4 is modified by deacetylation to promote the overactivation
of CSCs (Zeng et al., 2014). The effect of BMI-1 on the properties
of CSCs may be accomplished by means of chromatin changes.
In recent years, non-coding RNA has become a hot topic in
research and the results are remarkable (see Tables 2, 3). In short,
intervention and regulation of epigenetic regulatory factors
may have a positive effect on the development of probes to
accurately identify CSCs and the development of novel targeted
drugs. The commonalities and differences between traditional
gene expression and epigenetic changes in CSCs have not been
perfectly explained. These two points require further efforts
from researchers.

Tumor Microenvironment
In HCC, the tumor microenvironment regulation of CSCs is
associated with multiple signaling pathways, cancer-associated
fibroblasts (CAFs), and tumor- associated macrophages (TAMs).
On the one hand, more than 50% of CAFs are shown to be
CD90+ CD44+ (Yamashita and Wang, 2013) and promote CSCs
through HGF-mediated cMet/FRA1/HEY1 signaling (Sun et al.,
2019). On the other hand, TAMs induce IL-6 to activate the
STAT3 pathway and promotes the growth of CSCs. M2 TAMs
secrete TNF-α, activate the Wnt/β-catenin pathway in SMMC-
7721 hepatoma cells, and induce the appearance of EMT and
CSCs (Chen et al., 2019). Even more surprisingly, TAMs promote
CSC-like properties via TGF-β1-induced EMT and they may
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TABLE 2 | Different microRNAs associated with CSCs in HCC.

MicroRNA Impact on CSCs References

miR-122 Inhibits the growth of CD133+ CSCs and inhibits tumor stemness Song et al., 2015

miR-150 Inhibits the subgroup of CD133+ CSCs Zhang et al., 2012

miR-152 Inhibits CD133+ CSCs cloning and growth Huang H. et al., 2015

miR-613 Inhibits CD24+ or OV6+ self-renewal and amplification Li et al., 2019

miR-200 Inhibits tumor stemness Wang J. et al., 2015

miR-let-7 Inhibits self-renewal and gene expression Han H. et al., 2015

miR-155 Influences phenotypic expression Han et al., 2012

miR-429 Promotes self-renewal, tumorigenicity and chemical of EpCAM+ CSCs Li et al., 2015

miR-1246 Promotes tumor stemness Chai et al., 2017

miR-449a Promotes tumor stemness Zhang Q. et al., 2017

miR-25 Promotes proliferation Feng et al., 2016

miR-21 Promotes invasion and migration Jiang et al., 2016

miR-16 Inhibits drug resistance Qiu et al., 2019

TABLE 3 | Different lncRNAs associated with CSCs in HCC.

lncRNA Impact on CSC References

lnc Sox4 Promotes self-renewal Chen Z.Z. et al., 2016

lnc TCF7 Promotes self-renewal Wang Y. et al., 2015

lnc β-Catm Promotes self-renewal Zhu et al., 2016a

lnc BRM Promotes self-renewal and tumorigenicity Zhu et al., 2016b

lnc THOR Low expression promotes self-renewal and expansion, reduces drug resistance Cheng et al., 2019

lnc CUDR Promotes self-renewal and amplification Pu et al., 2015

lnc ARSR Promotes amplification Yang et al., 2019

lnc HULC and lnc MALAT1 Promotes proliferation in a coordinated way Wu et al., 2016

lnc HOTAIR Promotes proliferation and non-CSC transformation to CSC Wu L. et al., 2017

lnc CAMTA1 Promotes tumor stemness Ding et al., 2016

lncHAND2-AS1 Promotes self-renewal Wang et al., 2019

contribute to the prognosis of HCC (Fan et al., 2014). This
suggests that the combination of CSCs and TAM can be a
new target for HCC treatment. The hypoxic state of the tumor
microenvironment is closely related to the activity of CSCs, and
HIF-1α may be an inducer (Muramatsu et al., 2013). In addition,
abnormal expression of CSCs under hypoxia promotes malignant
activation and the tumorigenesis of CSCs. This is particularly
evident in the abnormal expression of angiogenesis-related genes,
cell signaling, structure, metabolism, growth, and other related
genes (Choi et al., 2017).

Multiple Signal Pathways
TGF-β
TGF-β signaling is involved in controlling the occurrence,
differentiation, and maintenance of CSCs. As early as 2013,
researchers found that in CD133+ CSCs, TLR4 targeting Nanog
inhibits the tumorigenicity and drug resistance of CSCs and
is associated with TGF-β abnormalities. However, simultaneous
silencing of YAP1 and IGF2BP3 restored TGF-β signaling (Chen
C.L. et al., 2013). In 2016, a study revealed that TGF-β affects
the tumor microenvironment of CSCs, especially CSCs under
the stimulation of reactive oxygen species (Carnero and Lleonart,
2016). A year later, the effects of TGF-β on EMT and plasticity
of CSCs were clearer. Both TGF-β and TNF-α can promote the

transformation of non-CSCs into CSCs, as well as promote the
self-renewal and tumorigenic effects of CSCs phenotypes in HCC
cell lines (Malfettone et al., 2017). Throughout the past 2 years,
more studies have revealed the abnormal expression of genes
in this signaling pathway, such as the gene c-Myc and Sox2
expression activation signaling pathway and mitotic cell cycle
regulation. Undoubtedly, TGF-β is currently the most promising
target, prompting researchers to explore the detailed mechanisms
in this signaling pathway.

Akt
The Akt signaling pathway is involved in the regulation
of CSC homeostasis and drug resistance. There are several
key molecules in the Akt pathway, such as EGFR, PI3K,
GSK-3β, β-catenin, etc. In the EGFR/Akt signaling pathway,
CD133 affects EGFR internalization, makes EGFR unstable,
inhibits EGFR/Akt signaling, and affects drug resistance and
tumorigenicity (Jang et al., 2017). While PI3K/Akt signaling
mediates the formation of CSCs, the initiation of HCC occurs
and mTOR is the downstream molecule (Gedaly et al., 2013).
In addition, the study also found that HBV X protein promotes
alpha-fetoprotein (AFP) expression and relies on PI3K/Akt
signaling to promote CSC proliferation (Zhu et al., 2017). At
the same time, the inhibitory effect of 2-morpholino-8-phenyl-
4H-chromen-4-one (LY294002) and 5-fluorouracil (5-FU) on
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FIGURE 2 | Emerging signaling pathways in CSCs. Silencing of both YAP1 and IGF2BP3 restores TGF-β signaling and eliminates drug resistance of CSCs. HBV X
protein (HBx) promotes the initiation of CSC by promoting the expression of α-fetoprotein through the PI3K/AKT signaling pathway. Shp2 promotes CSC expansion
and prognosis by activating β-catenin signaling. β-catenin interacts with TCF/LEF factors and induces transcriptional activity of Wnt signaling genes such as cyclin
D1, c-Myc, and surviving. Chitosan promotes stem cell properties associated with Wnt-STAT3 signaling. miR-491 reduces the CSC-like properties of HCC via the
NF-κB signaling pathway. Inhibition of miR-21 attenuates osteopontin (OPN) expression by blocking Notch and its downstream target transcription factor
RUNX2/HES1. OPN also promotes CSC-like phenotypes via the integrin αvβ3–NF-κB–HIF-1α pathway.

CD90 + CSCs also depends on PI3K/Akt signal (Peng et al.,
2016). At present, the study found that Akt/GSK3 β/β-catenin
promotes the proliferation and invasion of CSCs (Xu et al.,
2017). Unfortunately, inhibition of Akt activity reduces CSCs
self-renewal accompanied by multiple adverse events such as liver
damage, inflammation, hyperglycemia, and hyperinsulinemia
(Wang et al., 2017). Targeting Akt against CSCs (Liu L. et al.,
2014), in addition to elucidating a more detailed mechanism of
action to improve the effectiveness of treatment, should also be
considered in reducing the incidence of adverse drug reactions.

Notch
Notch regulates the biological properties of CSCs, of which
Notch1 and Notch3 are particularly prominent. On the one hand,
Notch1 regulates the expression levels of p53, p21, and p27 by
HES1 and cyclinE, and affects the self-renewal and expansion of
CD90+ CD133+ CSCs (Zender et al., 2013). Mechanistically, the
Notch1 intracellular domain of NICD1 activation is dependent
on Wnt/β-catenin, and there is a non-proteasome-mediated
regulatory loop between both (Wang R. et al., 2015). Even
the anti-tumor and metastatic ability of Notch inhibitor PF
03084014 was associated with Notch1 inhibition, signal pathway
inactivation, and decreased EMT (Wu C.X. et al., 2017). On

the other hand, Notch3 as a positive regulator of CSCs has a
negative correlation with the expression level of β-catenin and
synergizes with it to regulate the characteristics of CSCs in HCC.
Although we still wonder whether the interaction mechanism
between Notch3 and β-catenin signaling is the same as that of
Notch1, we can determine the mechanism of action that clarifies
the coordination of multiple signaling pathways to better target
CSCs in the treatment of HCC.

STAT3
In MHCC97-L cells, STAT3/Nanog pathway activation promotes
self-renewal and extensive proliferation of CSCs, which improves
drug resistance and tumorigenicity (Yin et al., 2015). In other
subtypes, the effects of various substances such as human growth
hormones (Chen Y.J. et al., 2017), lnc ARSR (Yang et al.,
2019), and miR-500a-3p (Jiang et al., 2017) on CSCs are also
dependent on the STAT3 signaling pathway, but the mechanisms
vary. The abnormal expression of human growth hormones
(hGH) is dependent on hGH-STAT3-CLAUDIN-1 and miR-
500a-3p targets multiple negative regulators such as SOCS2,
SOCS4, and PTPN11 in the JAK/STAT3 signaling pathway. In
conclusion, STAT3 signaling plays a key role in CSC self-renewal,
tumorigenicity, and resistance. Deepening the understanding of
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FIGURE 3 | Targeting CSCs Therapy Strategies for CSCs to treat HCC. CSCs markers and specific proteins or RNAs may be potential targets for drug development.
Regulation of CSCs-related gene expression or epigenetics is also a potential target. The application of other compounds and biotherapy is beneficial for targeting
CSCs. Targeting CSCs-related signaling pathways, CSCs microenvironment and inhibition of CSCs autophagy are also important directions of targeted therapy.

the STAT3 molecular mechanism and finding suitable targeting
molecules will open new avenues for targeted therapy.

Wnt
Wnt signaling maintains CSCs’ self-renewal capacity, inhibits
CSC differentiation, and is associated with CSC induced
resistance. β-Catenin is one of the molecules downstream of the
Wnt signaling pathway. Mechanistically, the Wnt ligand binds
to the Frizzled protein, which triggers cytoplasmic β-catenin
accumulation; β–catenin-incorporated TCF/LEF molecules
induce transcriptional activation of Wnt target genes (Chen D.
et al., 2018). Furthermore, Shp2 (Xiang et al., 2017) and ethanol
molecules may be promoters of Wnt/β-catenin signaling, and
MYCN may be a signal regulator (Qin et al., 2018). STAT3 may
be another downstream molecule of the Wnt signal, and chitosan
is involved in activating non-canonical Wnt/STAT3 signaling,
which induces CD44+ CSCs production (Chang et al., 2017).
The development of several downstream molecules targeting the
Wnt signaling pathway (Pez et al., 2013), especially β-catenin and
STAT3 inhibitors, will bring hope to targeted therapies. However,
this also inevitably affects other signal pathways. Therefore, the
more detailed regulatory mechanisms should also be clarified.

Other Signal Pathways
In recent years, research has also progressed in other CSC
signaling pathways. Researchers have a good understanding that
MEK (Cheng J. et al., 2016) and JNK (Tong et al., 2015) regulate
CSC self-renewal; Hedgehog (Jeng et al., 2013), NF-κB/snail
(Nikolaou et al., 2015), IL-33/p38 (Xie et al., 2019), and ERK1/2

(Mahati et al., 2017) are related to CSC features; and ERK is
also involved in the migration and invasion of CSCs (Sun et al.,
2017), providing another explanation for the transfer mechanism
of HCC. Although these signal pathway mechanisms vary widely,
they have made outstanding contributions to the regulation
of CSCs. Combining multiple signaling pathways to find hub
molecules in signaling pathway networks may provide a new
perspective for targeted therapies (Clara et al., 2019).

In summary, CSC characteristics are regulated by multiple
signaling pathways (see Figure 2). Elucidating the signaling
pathway mechanisms and developing key molecular targeted
agents will bring hope for curing HCC.

TARGETING CSCs THERAPY
STRATEGIES AND POTENTIAL VALUE

Presently, research views CSCs from a variety of perspectives
(see Figure 3). CSC markers like CD40 and CD90 are
the target standards for separation and drug targeting
(Yoshida et al., 2017). Additionally, targeting the tumor
microenvironment on which CSCs depend, such as the blood
supply and metabolism, inhibits the growth and differentiation
of CSCs. Epigenetic regulation of CSC gene expression
by histone modification and methylation is thought to be
promising. In contrast, the key signaling pathways that regulate
CSCs, such as Wnt/β-catenin, Notch, and STAT3 affect the
characteristics of CSCs. Furthermore, the development of CSC
vaccines for immunotherapy, the promotion of CSCs after
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differentiation and chemotherapy and radiotherapy, stimulation
of quiescent CSCs into the cell cycle, and the micro/nano-
targeting of CSCs are potential therapeutic strategies for
HCC (Locatelli et al., 2019). Contemporary mainstream
targeted therapies are based on the molecular or biological
properties of CSCs.

Moreover, endocrine hormones such as thyroid hormones
(Catalano et al., 2016) and dopamine affect the characteristics
of CSCs (Garcia-Mayea et al., 2019). The thyroid hormone
increases the proportion of CD90+ CSCs, promoting CSCs self-
renewal and tumorigenicity. TRα interacted with p65 induces
BMI1 expression by binding to the promoter region of the
BMI1 gene, revealing that TH signal plays an important
role in regulating CSC self-renewal, by activating the NF-κB
signaling pathway (Wang T. et al., 2016). Dopamine enhances
the expression of EMT markers (N-cadherin, Vimentin) and
sternness markers (Nanog, SOX2, and OCT3/4) in HepG2
cells. Dopamine promotes EMT and stemness of HCC by
inducing the expression of SULT1A3/4 (Zou et al., 2017) and
may provide a new strategy for the clinical targeted therapy
of HCC.

Bis(2-ethylhexyl) phthalate is a carcinogen of HCC while
curcumin may be a potential antidote to phthalate-induced
HCC progression. Curcumin may inhibit acyl hydrocarbon
receptor/ERK/SK1/S1P3 signaling, inhibit phthalate-induced cell
migration, invasion, and EMT, reduce the proportion of CSCs
in hepatoma cell lines in vitro, and inhibit the growth and
metastasis of HCC (Tsai et al., 2015). The antipsychotic drug
pimozide inhibits stemness and tumorigenesis of SP cells and
CD133+ cells, inhibiting the proliferation and migration of
HCC. Pimozide blocks EMT and affects the differentiation of
CSCs by inhibiting Wnt/β -catenin signaling (Tsai et al., 2015).
Cantharidin has certain effects on proliferation, autophagy, cell
cycle arrest, and apoptosis induction of CSCs in the HepG2
cell line. This process is associated with the phosphorylation
of histones H2AX, Myt1, cyclin A2, cyclin B1, p53 and Tyr15.
Nicloxamide inhibits stress induced by local treatment and
stimulates the enrichment, proliferation, and self-renewal of
CSCs (Tsai et al., 2015). Arsenic trioxide (ATO) significantly
reduced the characteristics of CSCs. The expression of the
minichromosome maintenance protein (MCM) 7, a potential
target of ATO, is raised in HCC, which is significantly
correlated with tumor size, cell differentiation, portal vein
embolism, and poor patient survival. ATO inhibits MCM7
transcription and CSC metastasis by targeting the serum
response factor (SRF)/MCM7 complex (Tsai et al., 2015).
Even non-mainstream treatments, such as bioviral oncolytic
adenovirus GD55, target CSCs to treat HCC. Biotherapy uses
the genetically modified oncolytic adenovirus to selectively
enter and spread into HCC, generating cytotoxicity and tumor
inhibition. Oncolytic adenovirus GD55 has a strong killing
effect on CSCs, and the novel oncolytic adenovirus, carrying
the tumor suppressor gene TSLC1, inhibits the Wnt signaling
pathway and inhibits the growth and metastasis of CSCs in vivo
(Zhang J. et al., 2017).

In conclusion, based on the important role of CSCs in
the development of HCC, targeting CSC markers, RNAs, and

signaling pathways are potential targets for targeted HCC
therapy. The potential value of CSCs for the treatment of
HCC can be explored through the molecular and biological
characteristics of CSCs. In addition, some compounds,
hormones, and biological agents can also explore the potential
value of CSC targeted therapy for HCC.

THE WAY AHEAD AND CURRENT
CHALLENGE

To a certain extent, CSCs reveal the intrinsic reasons for the
low 5-year survival rate of HCC. The scarcity of CSCs requires
greater accuracy in the separation of CSCs. Currently, researchers
mainly use CSC markers to separate and identify CSCs. Although
the reliability of this approach remains controversial, there is no
doubt that the use of surface markers to isolate and identify CSCs
has broad prospects. In addition, the production, maintenance,
and function of CSCs are related to many specific proteins
and RNAs. Understanding the regulation of these proteins or
RNAs will help in the development of new therapeutic drugs
for CSC targeting.

Cancer stem cells not only initiate HCC, but also affect HCC
metastasis, invasion, recurrence, drug resistance, and prognosis.
CSCs are also involved in maintaining and promoting the
malignant properties of HCC such as plasticity, heterogeneity,
EMT, angiogenesis, and vascular mimicry. The biological
characteristics of CSCs are closely related to specific gene
expressions and multiple signaling pathways. This means
that targeted drugs based on the molecular and biological
properties of CSCs, even targeting CSCs in combination with
standard therapies, provide opportunities for the complete
eradication of HCC (Wang et al., 2018). Future research
efforts should (1) improve the accuracy of isolation and
identification of CSCs in individual HCC patients, (2) elaborate
the molecular mechanisms involved in the regulation of CSCs
at various tumor stages, (3) develop targeted drugs for the
molecular and biological properties of CSCs, and (4) improve
the effectiveness of drug therapy. In conclusion, targeting
CSCs and their biological properties brings hope of a cure
for HCC.
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