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Abstract

Small proteins encoded by short open reading frames (ORFs) with 50 codons or fewer are emerging as an important class of cellular
macromolecules in diverse organisms. However, they often evade detection by proteomics or in silico methods. Ribosome profiling
(Ribo-seq) has revealed widespread translation in genomic regions previously thought to be non-coding, driving the development of
ORF detection tools using Ribo-seq data. However, only a handful of tools have been designed for bacteria, and these have not yet
been systematically compared. Here, we aimed to identify tools that use Ribo-seq data to correctly determine the translational status
of annotated bacterial ORFs and also discover novel translated regions with high sensitivity. To this end, we generated a large set of
annotated ORFs from four diverse bacterial organisms, manually labeled for their translation status based on Ribo-seq data, which
are available for future benchmarking studies. This set was used to investigate the predictive performance of seven Ribo-seq-based
ORF detection tools (REPARATION_blast, DeepRibo, Ribo-TISH, PRICE, smORFer, ribotricer and SPECtre), as well as IRSOM, which
uses coding potential and RNA-seq coverage only. DeepRibo and REPARATION_blast robustly predicted translated ORFs, including
sORFs, with no significant difference for ORFs in close proximity to other genes versus stand-alone genes. However, no tool predicted
a set of novel, experimentally verified sORFs with high sensitivity. Start codon predictions with smORFer show the value of initiation
site profiling data to further improve the sensitivity of ORF prediction tools in bacteria. Overall, we find that bacterial tools perform
well for sORF detection, although there is potential for improving their performance, applicability, usability and reproducibility.
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Introduction
Identification and characterization of the proteome is
crucial for understanding the biology of viruses and
cellular organisms, including bacteria. While mass
spectrometry (MS) has been the classical genome-
wide approach for protein discovery, it often requires

pre-existing protein-coding gene or open reading frame
(ORF) annotations, can be of limited sensitivity, and is
strongly influenced by the biochemistry of each protein
species. Small proteins (here defined as those ≤ 50 amino
acids, aa) are especially difficult to detect by MS [1, 2]. The
limited sequence information content of their encoding
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small ORFs (sORFs) makes them challenging to predict
using in silico approaches, although novel sequence-
based tools, as well as improved proteomics analysis
methods, are emerging to provide better access to the
small proteome [3–8]. In addition, it is becoming apparent
that ORFs of ’canonical’ length can even harbour short
protein-coding genes hidden in/out-of-frame or even
encoded on the opposite strand. These might also be
challenging to detect via sequence analysis [9–13]. Small
ORFs are therefore likely under-represented in most
current bacterial genome annotations [14, 15], despite
emerging evidence that they play central roles in diverse
physiological processes, including those underlying
virulence [2, 15, 16].

Translation is the last step in protein biosynthesis
that utilizes RNA, and the power of RNA-seq technology
has led to the development of the ribosome profiling
(Ribo-seq) approach to detect putative protein-encoding
genes based on translation of their mRNAs [17]. Ribo-
seq provides a snapshot of the ‘translatome’, which is
defined as the set of of actively translated transcripts in
the cell. Ribo-seq coverage therefore serves as a proxy
for protein expression. This snapshot is generated by
high throughput sequencing of so-called ribosome foot-
prints: mRNA fragments that are generated, after halt-
ing translation, by nuclease digestion of RNA not pro-
tected by the ribosome. In parallel, the total transcrip-
tome is also sequenced to help to define untranslated
regions (UTRs) and estimate the available mRNA input
for translation. In this way, ORF boundaries can also
be defined since Ribo-seq reads are restricted to cod-
ing regions. Ribo-seq can also be modified by apply-
ing specific inhibitors that target initiating ribosomes
at the start codon (e.g. harringtonine/lactimidomycin in
eukaryotes [18] or retapamulin/oncocin in bacteria [19,
20]), which restricts ribosome footprints to those of initi-
ating ribosomes. This allows the mapping of translation
initiation sites (TISs) and start codons and thereby can
reveal ORFs hidden within ORFs and increase confidence
in the reading frame. In addition to detecting translation
of annotated ORFs, Ribo-seq can also identify novel ORFs
missed in genome annotations and proteomic studies.
For example, the large number of apparently non-coding
transcripts discovered in bacteria by RNA-seq can be
reinvestigated for their coding potential [21]. Ribo-seq
is especially powerful for detection of sORFs [22], and
data from diverse organisms, including bacteria, archaea,
yeast, mammalian cells, viruses and even mixed bacte-
rial communities, has identified a wealth of previously
unappreciated coding potential, which is often enriched
in sORFs [18, 23–27](reviewed in [28]).

Despite its power, challenges arise in the experimental
set-up and analysis of Ribo-seq data to generate robust
ORF predictions for downstream characterization. Sev-
eral groups have provided guidelines for application of
Ribo-seq to bacterial species [28–30]. Initially, measures
such as translation efficiency (TE), also termed ribosome
coverage value [31, 32], which is defined as the ratio

of ribosome footprint to total transcriptome coverage,
were employed to quantitatively detect coding regions.
However, this approach can produce high false positive
rates [33].

Various groups have developed computational tools
that use Ribo-seq coverage patterns and other sequence
features for robust identification of translated ORFs
(Table 1). These can be grouped into two categories:
prediction pipelines and stand-alone prediction tools.
ORF prediction pipelines (e.g. Proteoformer [34], HRIBO
[35]) incorporate a variety of steps like preprocessing
with trimming and mapping, quality control as well
as postprocessing (e.g. differential expression analysis).
Importantly, such pipelines include (multiple) stand-
alone or built-in ORF prediction tools.

ORF prediction tools vary in their methods, but are
commonly designed and tested using eukaryotic Ribo-
seq data. Ribo-TISH [36], which was developed for
eukaryotes, tests ORFs with a nonparametric Wilcoxon
rank-sum test on the read count difference for each
nucleotide position to determine the translated ORF.
SPECtre [37] is based on spectral coherence to predict
regions of active translation from mapped Ribo-seq data.
It matches the periodic reading frame function with the
signal of aligned reads using a Welch’s spectral density
estimate to compute SPECtre scores. Distributions
of these scores are then used to assign a posterior
probability that predicts if a given region is translated.
PRICE [38] (Probabilistic inference of codons activities
by an Expectation-Maximization (EM) algorithm) filters
noise from the read signal with an EM algorithm. The
filtered start codons are then classified by a logistic
regression model to identify candidates with active
translation and tested for significance using a binomial
distribution. ribotricer [39] uses a novel method to
detect three-nucleotide periodicity in coverage. For each
codon of the profile, the tool searches for a ‘high-low-low’
pattern. The pattern is determined by the transformation
of a 3D codon vector to a 2D unit vector, which calculates
a phase-score that distinguishes between active and non-
active translation by the help of a cutoff. Predetermined
cutoffs are available for different eukaryotes.

Experimental challenges have mostly precluded the
use of three-nucleotide periodicity in bacteria [40].
Instead, bacterial tools have so far relied on detection
of coverage and sequence features using machine
learning [41, 42]. Bacterial genomes also present unique
characteristics that can interfere with computational
ORF predictions, including high coding density with
overlapping genes, unique translation initiation sig-
nals and leaderless transcripts. To the best of our
knowledge there have been three tools specifically
designed for bacteria. REPARATION [42] trains a random
forest classifier on all possible ATG-, GTG- and TTG-
initiating ORFs. Candidates below a minimum RPKM
(reads per kilobase million) cutoff for footprint coverage,
determined by the lower bend point of a sigmoid curve,
are considered as noise and removed from the prediction.
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Table 1. Overview of identified ORF detection tools. Most tools make no statement about the taxonomic domain they were developed
for. Some, however, utilize eukaryotic data as proof-of-principle (indicated by ∗). The first eight tools were benchmarked in this
manuscript.

Name Input data Method Availability Taxonomy

DeepRibo [41] Ribo-seq Deep Learning github Prokaryotes
REPARATION_blast [42] Ribo-seq Random Forest bioconda, github Prokaryotes
SPECtre [37] Ribo-seq Spectral Coherence github Eukaryotes∗

Ribo-TISH [36] Ribo-seq Negative Binominal Test bioconda, github Eukaryotes∗

IRSOM [21] RNA-seq Self-Organizing Map gitlab, webservice Eu-, Prokaryotes
smORFer [44] Ribo-seq Fourier transform github Eu-, Prokaryotes
PRICE [38] Ribo-seq EM-algorithm and statistical testing github Eukaryotes∗

ribotricer [39] Ribo-seq 3D to 2D projection for periodicity bioconda, github Eukaryotes∗

RiboTaper [47] Ribo-/RNA-seq Multitaper Spectral Analysis bioconda, galaxy Eukaryotes∗

RiboHMM [48] Ribo-/RNA-seq Hidden Markov Models github Eukaryotes
ORFrater [49] Ribo-seq Linear Regression github Eukaryotes∗

RibORF [50] Ribo-seq Logistic Regression github Eukaryotes∗

Rp-Bp [51] Ribo-seq Markov Chain–Monte Carlo github Eukaryotes∗

After training, the REPARATION classifier is then used on
all potential ORFs satisfying the thresholds. The second
tool, DeepRibo [41], uses a convolutional network with
a one-hot encoding [43] of the DNA sequence to detect
sequence motifs such as the Shine–Dalgarno sequence.
This network is then combined with a recurrent neural
network architecture to model the patterns in Ribo-seq
coverage. DeepRibo models have been trained on Ribo-
seq datasets from several bacterial species. DeepRibo
also uses the same noise filtering strategy based on a
sigmoid curve as REPARATION. Recently, a modular tool
for ORF prediction based on both Ribo-seq and TIS data
(smORFer [44]) was introduced, which incorporates three-
nucleotide periodicity information. The first module
generates all potential sORF candidates, which can be
filtered by Fourier transformation of their Ribo-seq read
signal and/or based on a region of interest. The next
two modules are optional and can add confidence to
sORF candidate selection. The first uses a read count
threshold and tests for three nucleotide periodicity, with
an optional filter based on calibrated alignment files.
The second module uses TIS data to aid selection of the
best start codon for candidates.

Approaches designed to evaluate the coding poten-
tial using RNA-seq transcriptome data only, such as
CPAT [45], CPC2 [46], and IRSOM [21], have also been
developed. Since these cannot use Ribo-seq-specific
features like three nucleotide periodicity, they rely on, e.g.
sequence or RNA-seq coverage features. IRSOM, estab-
lished in eukaryotes, uses multiple features such as read
distribution over different regions of the ORF, as well
as length and reading frame properties. Additionally,
sequence features, e.g. nucleotide and k-mer motif
frequencies, GC content, and codon properties, are used
to create a supervised classifier based on self-organizing
maps with a fully connected perceptron layer.

As the above tools have not yet been benchmarked
together on bacterial data, their broad utility in these
organisms is unclear. While DeepRibo and REPARATION

have been compared previously, they were compared

with the datasets used to train the default model of
DeepRibo [41]. In this study, we have identified and com-
pared stand-alone tools for their utility in discovering
ORFs from bacterial Ribo-seq datasets, with a special
focus on sORFs (Figure 1). Importantly, we used bacterial
datasets that were not used for development of any of
the tools. Moreover, a large set of verified novel ORFs is
necessary to make a statistically meaningful observa-
tion. We therefore generated a novel benchmark ORF set
manually curated for translation based on Ribo-seq data
from four diverse organisms.

We then used these to quantify and compare the per-
formance of ORF prediction tools (seven Ribo-seq-based
and one RNA-seq based) that we found could handle
bacterial data. All stand-alone tools were integrated into
our ORF prediction pipeline (HRIBO [35]) to standard-
ize preprocessing steps. This way, we avoided bias from
different adapter trimming or mapping tools. We also
tested how well the tools can identify a set of bacterial
sORFs that were only recently identified and validated
[20]. Finally, we compared tool applicability, usability, and
reproducibility to provide a complete picture of their
utility. Our benchmark shows clear superiority of tools
designed for bacteria, and we make recommendations
for tool selection and future developments.

Materials and Methods
Ribosome profiling of E. coli
Growth of bacteria

The E. coli MG1655 wild-type strain was grown and har-
vested for Ribo-seq essentially as described previously
[25]. Cultures were grown to mid-log phase (OD600 approx.
0.4) in 200 ml lysogeny broth (LB) at 37◦C with shaking
at 200 rpm. A sample for total RNA was transferred
to RNA stop mix [95% ethanol, 5% buffer-saturated
phenol (Roth)] and snap-frozen in liquid N2. Bacteria
were then treated with 100 μg/ml chloramphenicol (final
concentration, Sigma) for 2 min at 37◦C, followed by
harvest via rapid filtration through a 0.45 μm PES
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Figure 1. Overview of the Benchmark approach. The main contributions of this study are summarized in this figure. First, we provide human labeled
benchmark ORF sets for four organisms. To the best of our knowledge, these datasets were not used for the development of ORF prediction tools so
far, and therefore provide a valuable resource for the community (left blue box). Second, we provide a complete workflow where future novel tools can
be easily tested (blue box, right). Finally, we compare the predictive performance and secondary measures of eight tools with our benchmark set of
prokaryotic ORFs and corresponding Ribo-seq data.

(polyethersulfone) membrane (Millipore) and immediate
freezing in liquid N2.

Cell harvest

Harvested cells were processed for Ribo-seq as described
previously [25] with minor modifications. Frozen cells
were resuspended in chilled lysis buffer (100 mM NH4Cl,
10 mM MgCl2, 20 mM Tris-HCl, pH 8, 0.1% NP-40, 0.4%
Triton X-100, 1 mM chloramphenicol) supplemented with
50 U DNase I (Thermo Fisher Scientific) and 500 U RNase
inhibitor (moloX, Berlin) and lysed in Fastprep Lysing
Matrix B (MP Bio) for 15 s at speed 4. Clarified lysates
(20 A260 units) were digested with 2000 U micrococcal
nuclease (New England Biolabs) for 1 h (25◦C, shaking at
14 500 rpm). Digests were stopped with EGTA (final con-
centration, 6 mM), immediately loaded onto 10–55% (w/v)
sucrose density gradients freshly prepared in sucrose
buffer (100 mM NH4Cl, 10 mM MgCl2, 5 mM CaCl2, 20
mM Tris-HCl, pH 8, 1mM chloramphenicol, 2 mM dithio-
threitol) and centrifuged (35 000 rpm, 2.5 h, 4◦C) in a
Beckman Coulter Optima L-80 XP ultracentrifuge and SW
40 Ti rotor. Gradients were fractionated (Gradient Station
ip, Biocomp) and the 70S monosome fraction (identified
by following fraction A260) was immediately frozen in
liquid N2. RNA was extracted from fractions or cell pellets
for total RNA using hot phenol:chloroform:isoamyl alco-
hol or hot phenol, respectively, as described previously
[52, 53]. Total RNA was digested with DNase I, depleted
of rRNA (RiboZero Bacteria, Illumina) and fragmented
(Ambion 10X RNA Fragmentation Reagent) according to
the manufacturer’s instructions. Monosome RNA and
fragmented total RNA was size-selected (26–34 nt) on gels
as described previously [54].

Library preparation, sequencing and data deposition

Libraries were prepared by vertis Biotechnologie AG
(Freising, Germany) using a Small RNA protocol without

fragmentation and sequenced on a NextSeq500 instru-
ment (high-output, 75 cycles) at the Core Unit SysMed at
the University of Würzburg. The data has been deposited
in the NCBI Gene Expression Omnibus (GSE131514).

Public data retrieval
Escherichia coli K-12 MG1655:

Published proteomics data [55] were obtained from
Supplemental Table S9 of the cited manuscript. Cultures
were grown at 37◦C in LB until they completed ten
divisions in exponential state. In order to test the ability
of the tools to detect novel sORFs, we retrieved an
additional E. coli MG1655 dataset, distinct from our newly
generated dataset. We retrieved published [20] Ribo-seq
(SAMN10583712, SAMN10583713) dataset for bacteria
grown at 37◦C in MOPS EZ Rich Defined media with 0.2%
glucose to an OD600 of 0.3. Experimentally verified novel
sORFs were retrieved from Table 1 of the publication.

Listeria monocytogenes EDG-e:

For L. monocytogenes, we utilized data from a published
screen for antibiotic-responsive ribo-regulators [56]. We
retrieved the Ribo-seq (SAMEA3864955) and RNA-seq
(SAMEA3864956) datasets for the wild-type strain EDG-e
from SRA. Cells were grown in brain heart infusion (BHI)
medium at 37◦C to an OD600 of 0.4–0.5. The culture was
supplemented with control medium for 15 min before
harvesting. For our analysis, the untreated control library
was used. Published proteomics data [57] were obtained
from Supplemental Tables S2, S3, S4, S5, S6, S7, S8 of
the cited manuscript. Cultures were grown at 37◦C to an
OD600 of 1.

Pseudomonas aeruginosa PAO1:

The data for P. aeruginosa is from a study investigat-
ing expression differences in strains with high sequence
similarity but differences in substrate consumption effi-
ciency using a multi-omics approach [58]. We retrieved

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
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the Ribo-seq and RNA-seq (SAMN06617371) datasets for
the PAO1 wild-type strain grown on n-alkanes to mid-
log phase. Corresponding proteomics data was retrieved
from Supplemental Tables S21–S24 of the same publica-
tion.

Salmonella typhimurium 14028s:

Finally, we used data generated to investigate the impact
of the RNA-binding protein CsrA on S. typhimurium
virulence-associated stress responses and metabolism
[59]. We retrieved Ribo-seq (SRX3456030) and RNA-seq
(SRX3456038) datasets for wild-type strain 14028s grown
in LB medium at 37◦C to an OD600 of 0.5. The published
[60] MS data were obtained from Supplemental Table S1
of the cited manuscript. Cultures were cultivated under
identical conditions as for Ribo-seq.

Bioinformatic analysis
We used part of a pre-release version of our HRIBO (high-
throughput annotation by Ribo-seq) workflow, which
we have developed to analyze prokaryotic ribosome
profiling experiments [16, 35], to process Ribo-seq data
prior to benchmarking. The genomes and annotations
of E. coli K-12. MG1655 (ASM584v2), L. monocytogenes
EGD-e (ASM19603v1), P. aeruginosa PAO1 (ASM676v1,
ASM75657v1) and S. typhimurium 14028s (ASM2216v1)
retrieved from the National Center for Biotechnology
Information (NCBI) [61] were used. The HRIBO workflow
consists of three steps: the preprocessing of the input
data, the execution of the individual prediction tools,
and a postprocessing step. A detailed description of
how to run the RiboReport pipeline is provided in
the RiboReport GitHub repository. To integrate the
prediction tools into our pipeline, we created docker
containers for each tool that were not available via
bioconda [62]. The individual steps of the RiboReport

pipeline are described in the following paragraphs.

Preprocessing

To generate the required input files for the benchmarking
tools, adapters (see Supplemental Section F- Adapter
sequences used for trimming) were first trimmed from
the input reads using cutadapt [63]. Next, reads were
mapped to the genome using segemehl [64], which has
higher sensitivity than other mappers, and its high com-
putational costs are still acceptable for small genomes.
Finally, the reads mapping to ribosomal RNA or multiple
genomic locations were filtered out using samtools [65].
Adapted annotation files were also generated, as several
tools require very specific formatting of gene transfer
format (GTF) files. DeepRibo requires coverage files as an
input. The coverage files were produced using a custom-
made script, following the instructions in the DeepRibo

documentation [41]. In summary, we generated read
alignments to the respective reference genomes for Ribo-
seq and RNA-seq libraries in BAM (binary version of
sequence alignment map format) as well as transcript
files in BED (Browser Extensible Data) and read coverage

files in BEDGRAPH format. In addition, we monitored
the quality of each of these steps using fastQC and
aggregated the results into a MultiQC [66] report.

Execution of ORF detection tools

Tools compatible with bacterial data and annotations
were investigated: Ribo-TISH, REPARATION_blast,
DeepRibo, SPECtre, IRSOM, ribotricer, PRICE, and
smORFer. As we discovered that most tools designed
for eukaryotes do not work (or less reliably) with
reference annotations from NCBI [61], we chose to
generate annotation files from our NCBI annotation
in the older general feature format (v2 GTF), like those
available from Ensembl Bacteria [67]. These files contain
some features like transcripts and exons that are
usually required for most eukaryotic tools, but which
are not present in most general feature format (v3
GFF) files for bacteria. We chose to generate our own
files instead of using the files from Ensembl Bacteria
directly, as they were from different assemblies and
would have introduced some bias. Since all tools, with
the exception of Ribo-TISH, do not handle replicates,
we selected a single replicate for each organism.
Ribo-TISH was called using default parameters using
the mapping files generated from the Ribo-seq data,
the reference genome and the adapted annotation file.
REPARATION_blast was run using default parameters
with the Ribo-seq mapping files, the reference genome
and annotation and the uniprot_sprot [68] database.
Since REPARATION uses the commercial tool ublast

internally, we replaced ublast with protein blast (blastp)
[69] and adapted the tool to allow the input of BAM files.
Since blastx is more sensitive while consuming more
CPU-time compared with ublast [70], we expect that
our modified tool behaves similarly in comparison to the
original version. We made this adapted version, called
REPARATION_blast, available via bioconda [62]. SPECtre
was executed with default parameters, using a isoforms
file created by cufflinks [71].

For DeepRibo, parameters for noise reduction need
to be adapted for each dataset. We used the script pro-
vided in the DeepRibo GitHub repository (s_curve_cutoff_
estimation.R) for this purpose. This script provides cut-
off values for coverage and RPKM (reads per kilobase
million). Furthermore, we provided it with the requested
input coverage and acceptor site coverage files, as well
as the reference annotation, the reference genome, and
the included pretrained model. IRSOM was called using
default parameters and the included pretrained model
for E. coli. All other pretrained models are dedicated to the
use of eukaryotic organisms. Further, we used cufflinks
to extract transcript regions from the alignment files
generated from RNA-seq data and provide these to IRSOM
for prediction. For ribotricer, we used a script provided
in their GitHub repository to learn a phase-score cutoff
using a Ribo-seq and RNA-seq library from our used
datasets. This is important due to the difference in cutoff
values between eukaryotic and prokaryotic data. Then,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
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we created a ribotricer index file using our Ensembl-
like annotation and the respective genome file. These
files were then used to run ribotricer. For PRICE, we
generated a genome index file with the script provided
in their GitHub repository, our Ensembl-like annotation,
and the respective genome file. For smORFer, we manu-
ally (not using our pipeline) created calibrated alignment
files for E. coli as was described in the smORFer docu-
mentation. This was not possible for the other datasets
due too high memory consumption. For these datasets
we used a helper script, provided in the smORFer GitHub
repository, to create calibrated alignment files using the
middle nucleotide of each mapped read. These files were
also recommended for TIS prediction and we therefore
generated them for the novel sORF analysis as well. For
S. typhimurium, the step for filtering the initial can-
didates for sequence periodicity using Fourier Trans-
form failed, and we had to run the analysis without
this step. For the TIS analysis of smORFer, we created
a script to retrieve the next in-frame stop codon for
each predicted start codon. This was done because we
could not see the full potential of the tool due to a low
coverage Ribo-seq library. Moreover, we tried to create
two sets of smORFer predictions for each datasets. For
one, we used the default length settings and for the
second we increased the maximum ORF length to 3000
nt. We tested multiple upper boundaries, but the run-
time and memory usage increased drastically with the
change of this parameter. As we test for annotated ORFs,
we had to increase the upper ORF length boundary in
order for smORFer to be able to detect annotated long
ORFs.

Postprocessing

Postprocessing steps were performed by parsing the pre-
diction results of each tool into a GTF format file that can
be used for evaluation. As each tool has a different output
format, each result file had to be parsed differently.
For ribotricer, REPARATION_blast, and SPECtre, we
converted the results from a text file into GFF format.
For Ribo-TISH, we used the RiboPStatus column to select
only the best result for each start codon. For DeepRibo
we used the SS_pred_rank column to select only the best
result for each stop site. Finally, for IRSOM, which reports
whether a result is coding or noncoding, we only used
results labeled as coding. For PRICE we used both the
filtered and unfiltered results. We transformed the final
output tables into GFF format. As there were few results
in the filtered file, we chose to use all predictions, as
PRICE is predicting many truncated ORFs and otherwise
cannot compete with the other tools. For smORFer, we
transformed the output BED files (or BED-like tables)
into GFF format. Additionally, the workflow generates
multiple excel files containing different measures, like
translational efficiency, RPKM, amino acid count and
others. These files were used in order to assist with the
manually labeled dataset of the annotated features.

Processing of MS data

MS data were first converted to GFF format. The
exact steps required for the different datasets can be
reproduced as described in the RiboReport proteomics
directory.

Benchmark of ORF detection
Manual labeling of translated regions based on Ribo-seq
data

We tested the predictive power of the tools using
ORFs within the NCBI annotation for each organism,
which were labeled as translated or not based on
inspection of paired Ribo-seq and RNA-seq libraries. For
this, a human expert (S.L.S.) made judgments about
whether each annotated ORF is ‘translated’ or ‘not
translated’ as follows. Briefly, one RNA-seq replicate
and its corresponding Ribo-seq (70S footprint) library
(normalized to the lowest number of reads between the
two) was loaded into the Integrated Genome Browser
[72] together with the genome reference sequence and
ORF annotation. RNA-seq and Ribo-seq coverage for each
ORF was visually inspected at the same scale without
knowledge of the locus tag or gene product name. Each
experiment (organism) was curated independently. A
single strand was labeled in one sitting. ORFs were called
as ‘translated’ using the following criteria. First, coverage
in RNA-seq and Ribo-seq libraries was required to be,
generally, at least ten reads per nucleotide normalized
by sample size. Due to uneven coverage across most
ORFs, this was only a rough estimation. We therefore
also discarded any positively labeled ORF with RPKM <1
as ‘not translated/expressed’ after the curation process.
Second, the Ribo-seq signal was generally required to be
comparable to the transcriptome library (i.e. TE approx.
1). Third, the shape of the Ribo-seq coverage over the ORF
was considered: ORFs with Ribo-seq coverage near the
start codon and/or restricted within ORF boundaries (and
excluded from 5’/3’UTRs) were called as translated, even
if the TE was <1. For manual labeling of the 33 western
blot-validated sORFs from [20], the same approach was
taken, with the exception that only the Ribo-seq library
was inspected as no RNA-seq library was provided with
the dataset. The associated TIS library is only included in
screenshots and was not used for the manual labeling.

Computation of prediction quality

For each organism, we used the manually labeled
datasets (labels.gff ) to split the ORFs into two files
(positive_labels.gff , negative_labels.gff ) representing trans-
lated and nontranslated ORFs, respectively. The set of
condition-positive ORFs (those labeled as translated in
our manual curation) should therefore be found by a
prediction tool, while the condition-negative ORFs (those
labeled as not translated) and should not be called as
translated).

To determine whether a prediction should be assigned
to an annotated ORF from our benchmark set, we defined
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different overlap thresholds between the genomic coor-
dinates of a prediction and the ORFs labeled as trans-
lated or nontranslated. The overlap was computed using
bedtools intersect [73].

We set reciprocal overlap thresholds of 1%, 70% and
90%, requiring that the label–prediction overlap, and vice
versa, is at least as big as the selected threshold. For
example, the overlap threshold of 1% tests whether a tool
detects translation at a certain locus at all, whereas the
90% threshold tests if a tool can also predict its correct
length. The results created with a threshold of 1% are not
a useful measure of a tool’s predictive performance, as
this only reports whether a tool makes any prediction in
the proximity of an ORF. We decided to use a threshold
of 70% to emulate the inspection strategy of a researcher
who will inspect ORFs of interest afterwards. This cutoff
tests for translation of a locus but includes the possibility
to identify novel truncated or nested ORFs.

Based on the intersection between the tool predictions
and our manually labeled ORF sets, each ORF prediction
was classified as a true positive (TP), true negative (TN),
false positive (FP) or false negative (FN). An annotated
gene with a positive label was counted as a TP if there was
at least one prediction that was associated with the gene,
and as a FN if no prediction was associated with the gene.
An annotated gene with a negative label was counted
as an FP if there was at least one prediction associated
with the gene or a TN if no prediction was associated
with the gene. The association of predictions and genes
was determined for each tool and dataset individually.
There were two cases where a prediction was not counted
for a labeled gene. First, an annotated gene might have
an overlap with multiple predictions from a given tool.
In this case, only the prediction with the best predictive
score or probability, depending on the tool, was consid-
ered. All other predictions were counted as suboptimals
and ignored for the remaining analysis. Second, there
were predictions that did not overlap with any annotated
ORFs. These predictions were not counted at all, as the
ground truth is not known in this case (i.e. we cannot
determine whether they were novel predictions or FPs).

In addition to comparing the tools for the E. coli NCBI
ORF annotation, we also investigated their performance
on novel sORFs using a Ribo-seq dataset for E. coli that
was generated in parallel with a TIS library that revealed
33 novel sORFs that were independently validated by
western blotting (see subsection Novel sORFs).

To measure the prediction quality of the tools in deter-
mining the correct labels for each ORF of our benchmark,
we computed the sensitivity and specificity of their pre-
dictions. Since our positive and negative datasets were
unbalanced, we computed the F1 measure as an unbi-
ased tool performance measurement. Furthermore, we
plotted Precision–Recall Curves (PRCs) and calculated
their area under the curve (AUC) to compare the per-
formance of the different tools between the organism.
The PRC avoids an overlap threshold bias, unlike the F1
measure, which can only be calculated for one overlap

threshold. To compute PRCs, the positively and nega-
tively labeled ORFs were used to generate the positive
and negative datasets, respectively. Since the computed
scores of the tools were not directly comparable, all
predictions were ranked based on their given scores.
Annotated ORFs without an associated prediction (FN
and TN) were included in the ranking with the lowest
possible score that each tool could provide.

Evaluation scripts are located in the evaluation direc-
tory of the RiboReport repository, with a description on
how they were executed. The PRC and AUC were com-
puted using scikit-learn [74] and plotted using matplotlib
[75]. In addition to the PRC, each plot includes a base-
line [baseline = positivelabels/(positivelabels+
negativelabels)], which represents how many positive
predictions are expected to occur by chance. For each
Venn diagram, overlap sets of the correctly discovered,
positively labeled ORFs were computed. We used the
Jvenn webserver to produce the Venn diagrams [76] in
Figures 4 and 6 and python scripts utilizing the seaborn
[77] and simple_venn library for Figure S1.

Selection of subsets

Besides the whole translatome dataset, we also tested
tool performance on the following subsets: (1) close-
proximity genes were defined as groups or intervals
of neighboring genes on the same strand with an
intergenic distance of less than 200 nucleotides (https://
github.com/RickGelhausen/RiboReport#extract-operon-
regions-from-the-annotation). (2) Stand-alone ORFs are
those that do not overlap with the close-proximity gene
intervals. (3) Small ORFs were defined as genes with length
≤ 150 nt (50 aa) [20]. Based on these definitions, we
generated labeled positive (translated) and negative (not
translated) sets for each subset. These files are available
in our GitHub repository.

Computation of run time and peak memory consumption

Runtime and memory consumption of the tools was
evaluated by running them individually on our newly
generated E. coli dataset with either a single or with ten
CPU threads. This analysis was run on a cloud instance
using 28 VCPUs of an AMD EPYC (with IBPB) proces-
sor and 64 GB of RAM. The used operating system was
Ubuntu 20.04.3 LTS (kernel version 5.4.0-88-generic).

Evaluation of manual labeling with MS data

To validate our labeling method, each annotated ORF in
the four bacterial genomes was first manually labeled
as translated or not based on manual inspection of
Ribo-seq data in a genome browser (see above section
on manual labeling for details). We then validated our
labeling approach by comparison to available published
MS datasets (proteomics) for the same strains grown
under similar conditions (see Supplemental Section—
Validation of labeling method, Figure S1). The MS
data were selected to be as similar as possible to the

https://github.com/RickGelhausen/RiboReport#extract-operon-regions-from-the-annotation
https://github.com/RickGelhausen/RiboReport#extract-operon-regions-from-the-annotation
https://github.com/RickGelhausen/RiboReport#extract-operon-regions-from-the-annotation
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Table 2. Generation of a curated benchmark ORF set. The benchmark set archives contain GFF files for labels of all annotated ORF
sets (positive/negative), MS labels, tool predictions, close-proximity genes, genome sequences, and reference annotations to enable
inspection in a genome browser. Links to the original data sources are provided. For each dataset the sequencing depth is given (total
number of reads times average read length divided by genome length) [80]. The number of ORFs from each annotated ORF set
(translatome, sORFs, close-proximity genes and stand-alone genes) that have been identified as translated (positive) or nontranslated
(negative) are listed.

Organism E. coli L. monocytogenes [56] P. aeruginosa [59] S. typhimurium [58]

Benchmark set [zip] E. coli L. monocytogenes P. aeruginosa S. typhimurium
Growth conditions WT, LB @ 37◦C WT, BHI @ 37◦C WT, n-alkanes WT, LB @ 37◦C
Data GSE131514 SAMEA3864955 SAMN06617371 SRX3456030

SAMEA3864956 SRX3456038
Sequencing depth 42.98 939.76 81.92 38.92

Set Positive Negative Positive Negative Positive Negative Positive Negative
Translatome 2763 (65%) 1485 (35%) 2288 (80%) 579 (20%) 3935 (71%) 1638 (29%) 3284 (66%) 1689 (34%)
sORFs 54 (48%) 60 (52%) 7 (100%) 0 (0%) 7 (58%) 5 (42%) 31 (31%) 69 (69%)
Close-proximity genes 1794 (64%) 1015 (36%) 1622 (80%) 432 (20%) 2511 (69%) 1113 (31%) 1947(66%) 1010(34%)
Stand-alone genes 969 (67%) 470 (33%) 666 (82%) 147 (18%) 1424 (73%) 525 (27%) 1337 (66%) 679 (34%)

Ribo-seq experimental conditions see above section,
(Data Retrieval).

Results & Discussion
Applicability of available tools to bacterial data
By screening reviews [47, 78] and recently published
studies [38, 39, 41, 42, 44], we found 12 stand-alone Ribo-
seq based ORF detection tools (Table 1). Additionally,
we identified several tools that predict potential ORFs
from only RNA-seq (transcriptome) data and included
the newest example (IRSOM) for comparison. We first
tested these thirteen tools for their compatibility with
bacterial annotations using our E. coli benchmark
dataset. We found that only eight tools could accept and
process this dataset: REPARATION_blast, Ribo-TISH,
IRSOM, SPECtre, smORFer, PRICE, ribotricer, and
DeepRibo. Since RiboTaper and RiboHMM do not work
with bacterial annotations, we could not run them. We
were not able to install Rp-Bp on our cluster system or
locally in a reasonable amount of time. For ORFrater

and RibORF, several steps of their pipelines could be
executed, but we did not obtain a result output. Seven
of the tools that could handle bacterial data are open
source. However, REPARATION uses the proprietary
homology search tool ublast [79] internally, which we
replaced by the open tool blastp [69] to make the tool
viable for open source usage, e.g. in pipelines. We refer to
this version as REPARATION_blast.

Benchmark datasets
A robust performance evaluation of sORF detection tools
requires data from a variety of prokaryotic organisms.
Therefore, we added several publicly available datasets
covering different bacterial species to our de novo-
generated E. coli benchmark set. Criteria for selection
included quality [published, sufficient sequencing
quality (e.g. the sequencing quality score or per base
sequence content), sufficient documentation (i.e. adap-
tor sequences)] as well as the availability of a paired

RNA-seq library to aid manual labeling of translation
and for evaluation using the RNA-seq-based tool IRSOM.
In total, the four benchmark datasets include our newly
generated E. coli dataset and publicly available datasets
for wild-type strains of L. monocytogenes, P. aeruginosa and
S. typhimurium (Table 2) (see Materials and Methods
for details). We used these data to manually label the
translation status of all annotated ORFs in each genome
(for details, see Materials and Methods). Labeling quality
was assessed by comparison to MS data and inspection
of specific examples (Figure 2A, Supplemental Figures
S1–S3). These manually labeled Ribo-seq ORF sets are,
to our knowledge, the first available for bacterial Ribo-
seq data for the purpose of tool benchmarking and are
available from the GitHub repository.

Benchmark results
DeepRibo and REPARATION_blast have been recently
compared for their performance [41]. However, this
comparison was based on a dataset used to train the
default model of DeepRibo; this is therefore not an unbi-
ased benchmark. We thus used our novel, comprehensive
benchmark set to evaluate the performance of all eight
ORF detection tools that we found accept bacterial data
(Table 1). Prediction quality metrics were computed (see
Materials and Methods subsection Benchmark of ORF
detection) for the whole translatome, as well as for specific
ORF subsets that have properties that could possibly
influence prediction results. We compared whether the
tools show a different behaviour for ORFs of genes in
close-proximity and stand-alone regions, as well as for
annotated sORFs and a set of western blot validated
novel sORFs from E. coli using an additional Ribo-seq
dataset [20].

Bacterial tools generally show more robust performance

The tools were first compared on the whole comple-
ment of annotated ORFs for each organism (hereafter the
translatome set) (Table 2). Tool performance was mea-
sured by determining the AUC of a PRC [84]. We selected

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
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Figure 2. Comparison of manual Ribo-seq curation, proteomics data, and tool performance for representative E. coli genes. for the translatome
sets of the four organisms. Highly conserved and translated long ribosomal protein operon between rpmJ and secY, including several essential sORFs.
Related to Supplemental Figure S4. (B) The highly conserved Gammaproteobacteria cydABX operon in E. coli. The final gene in the operon, cydX, encodes
a functional small protein [81]. Related to Supplemental Figure S2. The space between cydA and cydB is 15 nt. (C) The ORF encoding the small protein
AcrZ, an antibiotic efflux pump specificity factor [82, 83]. For all screenshots, genes that are detected in the publicly available proteomics (MS) dataset
and by manual curation of the Ribo-seq data (label) are indicated in dark gray. Detection by the indicated tools at a 70% overlap threshold is indicated
in gray based on Ribo-seq data (or RNA-seq, IRSOM). Those that are not detected as translated are white. Transcriptional start sites, if available, are
indicated with a bent arrow (+1).

this metric because the number of positively and neg-
atively labeled ORFs were imbalanced, especially for L.
monocytogenes (80% of ORFs were in the positive set). The
PRC compares the recall of the tool against its precision
value for a given score cutoff. The recall in this context
is the fraction of correctly predicted, labeled ORFs (TPs)
versus the sum of all positively labeled ORFs (including
FN), yielding (TP/TP + FN). The precision is the fraction of
correctly predicted, positively labeled ORFs (TPs) versus
the sum of all positively predicted ORFs (including FP)
yielding (TP/TP + FP). We compared the AUC for each

tool at different overlap thresholds to test not only if they
were able to predict the presence of an ORF, but also if
they could correctly determine its length (Table 3). We
used thresholds of 1%, 70%, and 90% (i.e. the prediction
must cover at least 1%, 70%, 90% of the ORF length).
For single-gene examples of TP, FP, TN, FN, please see
Supplemental Figure S3. DeepRibo, REPARATION_blast,
SPECtre, ribotricer, and IRSOM showed a stable per-
formance over the three thresholds, meaning that when
they predict an ORF they also can correctly predict its
length. Ribo-TISH, smORFer, and PRICE, however, often

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
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Table 3. Overall tool performance at different overlap thresholds. The AUC of the PRC is given for the tools with each of the four
organism datasets (whole translatome ORF set) at the prediction overlap thresholds of 1%, 70% and 90%. The overlap threshold is the
percentage of the ORF length that the prediction must satisfy.

Organism: E. coli (AUC) L. monocytogenes (AUC) P. aeruginosa (AUC) S. typhimurium (AUC)

Overlap: 1% 70% 90% 1% 70% 90% 1% 70% 90% 1% 70% 90%

DeepRibo 0.97 0.96 0.95 0.88 0.88 0.88 0.95 0.95 0.95 0.97 0.96 0.95
REPARATION_blast 0.82 0.82 0.82 0.93 0.93 0.93 0.88 0.87 0.87 0.88 0.90 0.89
Ribo-TISH 0.85 0.60 0.60 0.83 0.75 0.75 0.85 0.68 0.65 0.87 0.73 0.73
IRSOM 0.67 0.67 0.67 0.78 0.78 0.78 0.68 0.68 0.68 0.68 0.69 0.69
SPECtre 0.76 0.76 0.76 — — — 0.48 0.48 0.48 0.46 0.46 0.46
smORFer 0.94 0.82 0.78 — — — — — — — — —
PRICE 0.57 0.77 0.77 0.74 0.86 0.86 0.6 0.68 0.71 0.62 0.76 0.77
ribotricer 0.61 0.61 0.61 0.75 0.75 0.75 0.69 0.69 0.69 0.62 0.63 0.63

predicted only a short region of the annotated ORF as
translated. This can be observed, for example, in E. coli,
where the high AUC of 0.85 for the 1% overlap threshold
then drops to an AUC of 0.6 for the 70% overlap threshold.
The PRCs for an overlap threshold of 70% (Figure 3) show
that DeepRibo and REPARATION_blast performed well
for detection of the translatome benchmark ORF sets from
all four organisms (AUC > 0.8). smORFer also had a high
AUC for the E. coli dataset, whereas it had a low number
of TP predictions compared with the two other tools
designed for bacteria. We could not run all datasets using
smORFer as we ran out of memory for L. monocytogenes
and P. aeruginosa when using a maximum ORF length of
3000 nt, due to the higher sequencing depth of these
datasets (Table 2). As smORFer was designed for sORFs
it would be unfair to use default settings, as it then
would not be able to detect ORFs greater than 50 codons.
ribotricer generally predicted many TPs, slightly more
than DeepRibo, but also predicted more FPs than the
other tools. In contrast, IRSOM, PRICE, SPECtre, and
Ribo-TISH generally had substantially lower AUCs—
almost close to random (gray baseline, see Methods sub-
section: Benchmark of ORF detection). PRICE tended to
only predict truncated ORFs and thus only a few TPs for
the 70% overlap threshold.
DeepRibo showed the highest AUC values for E. coli,

S. typhimurium, and P. aeruginosa, suggesting it has the
highest predictive power for most organism datasets,
whereas REPARATION_blast performed best for L.
monocytogenes. A possible explanation for this is that the
organisms DeepRibowas trained on might have different
genomic characteristics compared with L. monocytogenes.
However, it could also be the result of experimental
differences that change the distribution of the read
coverage. ribotricer had an average AUC as it also
predicted many FPs. ribotricer learns a phase score
cutoff based on Ribo-seq and RNA-seq libraries. This
cutoff turns out to be very low for bacterial data. It might
be that the automatic cutoff detection does not work well
for prokaryotes, as it was designed for eukaryotic data.
We next investigated the sensitivity, specificity and F1
measure of the tools (Table 4). The F1 measure, which is
the harmonic mean of recall and precision, showed that

IRSOM performed surprisingly well, even though it only
relies on RNA-seq data. IRSOM, however, could not com-
pete with the tools designed for bacterial Ribo-seq data
(DeepRibo and REPARATION_blast). This same trend
was observed for sensitivity and specificity. DeepRibo
showed overall a strong predictive performance and
was only outperformed by REPARATION_blast for the
L. monocytogenes dataset. The lower AUC value in this
case was due to a higher FP rate for this dataset (see
Supplemental Tables 1–4). ribotricer was the only
tool designed for eukaryotes that also performed very
well for bacterial data. It had a similar F1 measure as
DeepRibo and REPARATION_blast, although slightly
lower. Furthermore, sensitivity and specificity measures
were also comparable.

The sensitivity of Ribo-TISH was low for all four
datasets (Table 4). As already seen for the AUC at
different overlap thresholds (Table 3), Ribo-TISH did
not predict ORFs precisely, but rather predicted a short
signal nested in the region of a labeled ORF (average
sensitivity for overlap threshold 1% was 0.6). SPECtre,
similar to Ribo-TISH, had low sensitivity. However, its
specificity, while comparable, was slightly lower. We
could not generate SPECtre results for L. monocytogenes
reproducibly within 72 h. The lower performance of
Ribo-TISH and SPECtre might be explained by the fact
that they were not specifically designed for bacteria,
which have distinct translatome structures. In addition,
both of these tools rely on three nucleotide periodicity,
which is often not pronounced in bacterial datasets due
to experimental issues [40]. Moreover, SPECtre depends
on the transcript-calling performance of cufflinks [71],
which means that it might also be affected by the quality
of the coupled RNA-seq data. PRICE had a generally low
F1 measure. This was likely caused by the prediction
of many truncated ORFs that did not pass the overlap
threshold. While PRICE offers an additional filtering
method that reduces the amount of predictions, this did
not change the percentage of truncated ORFs it predicts,
still leaving a list of about 300 predictions. As smORFer

is modular, it offers a variety of ways to conduct the
analysis. We tried using the approach recommended
for this tool, which included a calibrated alignment

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
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Figure 3. PRCs for E. coli, L. monocytogenes, P. aeruginosa and S. typhimurium. Predictions were ranked according to the score provided by each tool
(e.g. the probability for REPARATION_blast or the prediction rank for DeepRibo). A prediction was associated with a labeled ORF if more than a 70%
overlap existed between the sequence of the prediction and the labeled ORF. If a labeled ORF had no prediction overlapping more than 70% of its coding
region it is classified as not predicted. The ranked instances were then used to plot the PRC and to calculate the AUC. The gray baseline indicates how
many predictions are expected to occur by chance.

file to filter for the best start codons. We omitted the
optional Fourier Transform step, as this further reduced
the number of results. While this is desirable for novel
ORF detection, it would reduce the AUC substantially
(data not shown). smORFer was designed for detection
of sORFs, which might explain its lower performance in
predicting annotated ORFs, which are generally longer.

In addition to computation of global performance
metrics, we also qualitatively compared how the tools
performed for specific ORFs. We inspected coverage
for specific examples of ORFs in genomic regions
conserved between the four benchmark organisms
and compared this with their detection by each of
the five tools at a 70% overlap threshold. For this and
future comparisons, genome browser tracks for all
tool predictions can be found as prediction.gff files in
the archives of each respective organism RiboReport

repository (data/*/misc_*.zip, * = organism). We first
compared the detection of genes in a ribosomal protein
island with conserved synteny to assess our labeling
performance vs MS, all of which are likely bona fide,
translated ORFs under the conditions tested due to

their central role in translation. Comparison of detection
by the eight tested tools in all four organisms showed
that in general, DeepRibo, REPARATION_blast, and
ribotricer called these ORFs as translated (Figure 2A,
Supplemental Figure S2). In comparison, SPECtre and
Ribo-TISH did not detect any of the 22 ORFs at this
threshold, while PRICE and smORFer detected only a
handful. Surprisingly, RNA-seq based IRSOM was mildly
successful, detecting a handful of ORFs in the organisms
other than E. coli. We also examined tool predictions
of two genes in an operon shared by all four bacteria:
that encoding a terminal oxidase (cydAB in E. coli, S.
typhimurium, and L. monocytogenes, cioAB in P. aeruginosa)
(Figure 2B, Supplemental Figure S4). Both cydA and cydB
were labeled as translated and detected by DeepRibo and
ribotricer in all organisms, while REPARATION_blast

detected all but cioAB in P. aeruginosa. The other tools
showed variable detection of the cydA/cydB homologues,
with PRICE detecting both genes in P. aeruginosa and
L. monocytogenes. Ribo-TISH and smORFer did not
detect either in any organism. Closer inspection of the
Ribo-TISH predictions (data not shown) indicated that

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
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Figure 4. Comparison of the correctly detected sORFs for E. coli and S. typhimurium by each tool to manual labeling Top: the number of correctly
predicted, translated sORFs by DeepRibo, REPARATION_blast, Ribo-TISH, IRSOM, SPECtre, ribotricer, PRICE, smORFer or manual labeling. Bottom:
the overlap of sORFs detected by DeepRibo (green), REPARATION_blast (blue), smORFer (reddish purple) or ribotricer (sky blue) with the sORFs
labeled as translated (purple) for E. coli (left) and S.typhimurium (right). Only the three tools that detected most sORFs are shown in the Venn diagram.
The number of TP sORFs detected by the tools were determined at an overlap threshold of 70%.

the tool was predicting several very short nested ORFs
in cydA and cydB. Together, these comparisons of tool
sensitivity and specificity on the whole translatome
ORF sets for each of the four bacterial species shows
that the bacterial Ribo-seq tools REPARATION_blast,
ribotricer and DeepRibo are superior to smORFer

and all other eukaryotic tools such as IRSOM and Ribo-

TISH.

ORFs in close-proximity and stand-alone genes

A unique feature of bacterial genomes is the operon
structure: several genes, often of related function, are
transcribed as one polycistronic mRNA. Operons often
have small distances between ORFs that might lead to
ambiguity in associating Ribo-seq signal with neighbor-
ing ORFs. They might even include overlap of coding
regions. These features could presumably affect ORF
prediction tools. Therefore, we tested whether the pre-
dictive power of the tested tools is different for ORFs
translated from genes having start/stop codon within 200
bp (close-proximity) compared with single transcribed
genes (stand-alone), (Table 5).

We classified the annotated ORFs of each of the four
organisms as originating from genes in close-proximity
or stand-alone (see Materials and Methods, Selection of
subsets). We then calculated the AUC of PRCs calculated
at a overlap threshold of 70% for all eight tools with either
the close-proximity or stand-alone gene sets separately
for each organism (Table 5). DeepRibo ribotricer and
REPARATION_blast had similar or better performance

for ORFs of close-proximity genes compared to the other
tools (with the exception of the Listeria dataset). The other
tools performed worse in all benchmark sets for genes
located in operons compared with single-standing genes,
which indicated a clear advantage of tools designed for
bacteria in this regard, with the exception of ribotricer
that performed equally well, while having more false
positive predictions.

Above, we found that the bacterial tools DeepRibo

and REPARATION_blast were able to detect most
ORFs in a highly conserved ribosomal protein operon
and cydAB/cioAB terminal oxidase operons (Figure 2A
& 2B, Supplemental Figures S2 and S4A–C), whereas
the other tools performed less well. Interestingly, cydA
and cydB from L. monocytogenes overlap by 14 nt and
were detected poorly by both IRSOM and Ribo-TISH

(Supplemental Figure S4C). We selected an additional,
more weakly expressed eight-gene operon (ydjX, ydjY,
ydjZ, ynjA, ynjB, ynjC, ynjD, ynjE) in our E. coli dataset for
inspection (Supplemental Figure S5A). Here, all genes
were detected by IRSOM, and only some were missed
by REPARATION_blast and ribotricer. The remaining
tools performed poorly, including DeepRibo, possibly
because it has a more stringent expression cutoff. None
of these genes were manually labeled as translated
because of their overall low signal in both Ribo-seq and
RNA-seq libraries. In addition, we also inspected the well-
characterized overlapping ORFs btuB and murI, which
share 56 bp at the 3’ end of btuB, in our E. coli dataset.
All of the tools except Ribo-TISH, SPECtre, and PRICE

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
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Table 4. Detailed tool performance measures for 70% overlap. The sensitivity or true positive rate (TPR), specificity or true negative
rate (TNR) and the F1 measure were calculated for each tool with each organism benchmark dataset (translatome). The sensitivity
highlights how well the positive labels are detected and the specificity reveals how well negatively labeled ORFs are not predicted by
the tools. The F1 measure is an unbiased tool accuracy measurement. The values were calculated with the requirement that the
prediction of an ORF must be covered by at least 70% of its coding sequence

Organism E. coli L. monocytogenes P. aeruginosa S. typhimurium

measure TPR TNR F1 TPR TNR F1 TPR TNR F1 TPR TNR F1

DeepRibo 0.83 0.97 0.90 0.96 0.37 0.91 0.94 0.84 0.94 0.77 0.98 0.86
REPARATION_blast 0.98 0.48 0.86 0.82 0.63 0.85 0.59 0.82 0.7 0.92 0.69 0.88
Ribo-TISH 0.02 0.96 0.05 0.02 0.96 0.05 0.04 0.95 0.07 0.1 0.95 0.17
IRSOM 0.52 0.53 0.58 0.42 0.51 0.54 0.62 0.3 0.65 0.5 0.53 0.58
SPECtre 0.39 0.54 0.48 — — — 0.03 0.82 0.05 0.04 0.77 0.07
smORFer 0.41 0.73 0.53 — — — — — — — — —
PRICE 0.12 0.98 0.21 0.2 0.96 0.33 0.54 0.88 0.68 0.27 0.99 0.43
ribotricer 0.92 0.34 0.81 1 0.01 0.89 0.95 0.17 0.83 0.95 0.43 0.84

Table 5. Prediction of ORFs from genes within close-proximity. The predictive power of the eight tools for translation of genes either
within close-proximity or stand-alone (alone) was compared via the AUC for PRCs computed using an overlap threshold of 70%.

Organism E. coli (AUC) L. monocytogenes (AUC) P. aeruginosa (AUC) S. typhimurium (AUC)

ORF type close-proximity alone close-proximity alone close-proximity alone close-proximity alone

DeepRibo 0.96 0.96 0.88 0.91 0.95 0.95 0.96 0.96
REPARATION_blast 0.82 0.82 0.93 0.95 0.88 0.89 0.88 0.93
Ribo-TISH 0.59 0.62 0.75 0.77 0.73 0.71 0.71 0.74
IRSOM 0.65 0.71 0.78 0.83 0.66 0.71 0.65 0.74
SPECtre 0.74 0.8 — — 0.43 0.57 0.43 0.73
smORFer 0.81 0.84 — — — — — —
PRICE 0.75 0.81 0.86 0.89 0.66 0.7 0.75 0.76
ribotricer 0.6 0.36 0.75 0.77 0.68 0.71 0.59 0.69

called both ORFs as translated (Supplemental Figure
S5B). Finally, we inspected an example of a leaderless
ORF, rluC, in the E. coli dataset (Supplemental Figure
S5C). The same five out of the eight tools detected
rluC translation. Together, our global and single-locus
observations suggest that the bacterial tools perform
relatively well for both single-standing and operon-
encoded genes.

High sensitivity comes with high false positive rate in
predicting sORFs

Genome annotations are notorious for lacking sORFs -
those encoding proteins of 50 aa or less [1]. We therefore
tested the performance of the tools solely on short genes
by constructing a subset for each of the four organisms
including only annotated ORFs of 50 codons or less. The
general incompleteness of sORF annotation in bacte-
ria is supported by the L. monocytogenes (2.9 Mbp) and
P. aeruginosa (6.3 Mbp) sORF sets, which were smaller
(seven and 12 sORFs, respectively; Table 2) than might be
expected based on their genome size compared with E.
coli (4.6 Mbp, 114 sORFs) and S. typhimurium (5.1 Mbp,
100 sORFs), which are considered some of the best anno-
tated organisms for sORFs [15]. We therefore exclusively
investigated the E. coli and S. typhimurium sORF sets, which
were large enough for unbiased investigation.

Our manual labeling of the E. coli and S. typhimurium
sORF subsets suggested that 54 of 114 and 31 of 100

sORFs, respectively, were translated under the investi-
gated condition (Figure 4, top graphs and Table 2). Inspec-
tion of the tool predictions showed that ribotricer

detected 47, DeepRibo 44, SPECtre 18 and REPARATION_

blast 18 of the 54 positively labeled sORFs in the E. coli
sORF set (Supplemental Table 13). For S. typhimurium,
ribotricer flagged 29 of 31 positively labeled sORFs as
translated, whereas smORFer and DeepRibo flagged 28
and 26, respectively (Figure 4, top). In contrast,IRSOM and
Ribo-TISH detected hardly any of the positively labeled
sORFs in these organisms (4/3 out of 55 for E. coli and 5/3
out of 31 for S. typhimurium, respectively). This shows
that these tools do not perform well for sORF discovery
in bacteria. All 18 sORFs detected by REPARATION_blast
in E. coli were also detected by DeepRibo (Figure 4,
bottom left). ribotricer detected seven sORFs that
were not detected by the other tools and has the overall
best performance in detecting sORFs for our chosen
datasets. This was unexpected, as ribotricer was
developed in eukaryotes. ribotricer, DeepRibo and
REPARATION_blast made only a few false positive sORF
predictions for E. coli and S. typhimurium (8/7/9 and
11/5/1, respectively) and correctly did not predict most
of the sORFs that were labeled as not translated (52
out of 53) (Supplemental Table 13). Our data suggest
that ribotricer and DeepRibo work well for detecting
sORFs, since they detect nearly all annotated examples in
both datasets. smORFer detected most positively labeled

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
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S. typhimurium sORFs, but only one E. coli sORF (Figure 4).
We tried filtering with both manually calibrated align-
ment files and automatically generated middle nucleotide
alignment files, but this did not change the number
of sORFs predicted. We investigated whether the read
count cutoff was to blame, but both datasets should have
sufficient read coverage. For S. typhimurium, we did not
filter for sequence periodicity, which left us with slightly
more than 45 000 results. This was likely the cause of the
high proportion of sORFs correctly detected by smORFer

for this dataset. ribotricer performed well and tended
to predict more sORFs correctly, while sharing a large
overlap with the predictions of the other tools, as can
be observed for S. typhimurium (Figure 4, bottom right).
We assume that one of the main problems for smORFer
was the detection of the correct start codons based on
the Ribo-seq library alone. This problem would likely
be solved by using a TIS library as described in their
publication [44]. Three positively labeled E. coli sORFs
were not detected by any of the tools (Figure 4).

We next inspected specific examples of positively
labeled sORFs for their coverage compared with their
tool predictions. Translation of the ORF encoding the E.
coli small membrane protein AcrZ (49 aa), a regulatory
component of the AcrB-TolC antibiotic efflux pump
[15], was detected by DeepRibo, REPARATION_blast,
ribotricer and even IRSOM via RNA-seq coverage, but
not Ribo-TISH (Figure 2C). SgrT, encoded by the dual
function sRNA SgrS [15], was identified as translated
by DeepRibo and REPARATION_blast (Supplemental
Figure S5D). Again, we revisited the cydAB/cioAB operons
(Supplemental Figure S4). In many proteobacteria,
a small protein component of the terminal oxidase
complex is encoded downstream of cydAB/cioAB [85].
For example, CydX (37 aa) of E. coli and S. typhimurium
is encoded downstream of cydB, whereas the putative
sORF cioZ is encoded downstream of P. aeruginosa CioB
(Figure 2B, Supplemental Figure S4A and B). All three of
these sORFs were manually labeled as translated in E. coli,
S. typhimurium and P. aeruginosa. At an overlap threshold
of 70%, DeepRibo also detected translation of all three
sORFs, whereas REPARATION_blast only detected the
enterobacterial sORFs and SPECtre detected only E. coli
cydX. IRSOM and Ribo-TISH did not call any of the sORFs
as translated. So far, a similar small protein has not been
detected in Firmicutes such as L. monocytogenes [85]. We
therefore also inspected a different validated sORF from
L. monocytogenes, since it does not encode a cydX. The
sORF lmo1980 [57] was labeled manually as translated
and also detected only by the bacterial ORF prediction
tools DeepRibo and REPARATION_blast (Supplemental
Figure S4D).

Novel E. coli sORFs

Up to this point, we focused only on previously annotated
ORFs. However, the discovery of novel sORFs is one of
the most interesting applications of Ribo-seq [30]. To
understand how well the different tools can detect novel,

potentially more challenging, sORFs, we also ran our
benchmark pipeline on the untreated (no retapamulin)
Ribo-seq library that was generated as part of a TIS
profiling experiment to experimentally identify novel E.
coli sORFs [20]. This study validated the translation of
33 new sORFs detected by TIS profiling by epitope tag-
ging and western blotting. Thirty-one of these 33 ORFs
meet our definition of an sORF (≤ 50 aa). We labeled
these 31 sORFs based on Ribo-seq coverage alone (no
RNA-seq library was available and TIS coverage was not
used) without knowledge of western blot results. This
suggested that 19 of the 31 sORFs showed significant
Ribo-seq coverage and are likely translated. We then
compared the output of DeepRibo, REPARATION_blast,
Ribo-TISH, ribotricer, and PRICE to detect how many
of the 19 positively labeled novel sORFs where predicted
by each tool. As ribotricer needs an RNA-seq library
to determine the best phase score cutoff, but not for
the prediction process itself, we chose a very low cutoff
based on our observations for the four benchmarking
datasets. We did not include SPECtre or IRSOM in this
analysis, since these tools require an RNA-seq library,
which was not available. However, since SPECtre did
not predict any ORFs outside of the existing annotation
for the other benchmark datasets (Supplemental Tables
S1, S3 and S4), this suggests it likely has very limited
utility in the identification of novels ORFs in bacteria.
Inspection of the predictions for the remaining six tools
showed that REPARATION_blast, ribotricer, PRICE
and Ribo-TISH did not detect any of the 31 novel sORFs
(Supplemental Table S14). These tools were then omitted
from the comparison. In total,DeepRibo predicted 18 478
potential novel sORFs. Considering that only ∼4000 ORFs
(of which 114 are sORFs) are currently annotated in E. coli,
many of these predictions are likely false positives.
DeepRibo provides a score for each detected ORF

(novel and annotated), where ORFs with a higher score
are of higher confidence. This score was can be used
to generate a ranking. However, it is left to the user to
find an appropriate cutoff. We found that DeepRibo

predicted 17 of the 31 verified novel sORFs with no cutoff
applied (Figure 6). To simulate the selection of novel
sORFs for experimental verification, we filtered for the
top 100 predicted by DeepRibo. Seven of these predicted
novel sORFs [excluding ynfU (56 aa), yibX (80 aa)] were
previously identified by TIS profiling and validated by
western blotting [20] (Table 6). The next seven validated
sORFs from this study are then among the top 520
predictions, which would already be a large number
for manual inspection or experimental evaluation. We
therefore recommend manual inspection of Ribo-seq
coverage of the top 100 sORFs, which is manageable, fol-
lowed by western blot validation of a handful including
candidates for downstream functional characterization.
Alternatively, the top 500 could be reinvestigated using
available expression or functional genomics datasets to
prioritize those that might represent true sORFs that
encode small proteins with interesting functions, as

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab549#supplementary-data
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Table 6. Detection of novel E. coli sORFs by DeepRibo and smORFer. Successfully predicted, experimentally verified novel sORFs [20]
with their score and rank for all novel sORF predictions. For smORFer, the rank is based on the TIS read counts (RPF). Entries marked
with X indicate missed predictions due to low Ribo-seq or TIS coverage

Gene name smORFer Rank smORFer RPF DeepRibo Rank DeepRibo Score

ysaE 73 1718 519 −2.111
ysgD 89 1452 115 −1.115
ydgV 183 612 X X
ychT 292 334 42 −0.464
yncP 414 169 174 −1.464
ynaN 472 111 427 −2.000
yqgH 485 97 X X
ythB 489 83 23 0.006
yhgP 492 90 X X
argL 495 87 X X
yhiY 515 67 X X
ybgV 516 66 X X
yibX-S 516 66 X X
ytiB 539 43 1,129 −2.613
yljB 544 38 759 −2.353
ytgA 546 36 X X
yfiS 549 33 61 −0.600
ysdE 552 30 X X
yriB 555 27 X X
ykiE 561 21 45 −0.481
evgL 556 26 X X
ybiE 571 11 688 −2.282
yicU 572 10 X X
yqhJ 573 9 5,352 −4.078
yecV 573 9 X X
yqgG 576 6 15 0.169
yadX 576 6 498 −2.080
ymiD 577 5 46 −0.491
yqiM X X 520 −2.112
yodE X X 26 −0.006
yriA X X X X

Figure 5. Detection of novel, western blot-validated E. coli sORFs previously discovered by TIS profiling based. The translation of 31 western blot-
validated sORFs previously identified and validated in E. coli [20] was labeled by manual curation of the same Ribo-seq data. Labels were compared with
DeepRibo predictions based on the Ribo-seq data at an overlap threshold of 70% based on Ribo-seq data (DeepRibo) or TIS data (smORFer). (A) The
sORF ytgA (16 aa), in the 5’UTR of lptF, was labeled as translated and detected in TIS data by smORFer, but the DeepRibo prediction is extended at the
5’ end by three codons. (B) The low-ranked (DeepRibo) sORF yqhJ (19 aa). The ORF was detected by DeepRibo based on Ribo-seq data with a score of
-4.078, as well as by TIS profiling by smORFer. Dark gray genes were detected by western blot or labeling. Gray genes were detected by the tools. Hatched
arrows were detected, but with a slightly different length or position. White ORFs were not detected. The TIS track was not used for manual curation or
DeepRibo predictions and was only used for smORFer. Transcriptional start sites, if available, are indicated with a bent arrow (+1).

was performed previously for S. typhimurium [16, 86].
Together, in the absence of a clear cutoff suggested by
the tool itself and without TIS data, these strategies

should prove to be efficient means to identify novel
sORFs. Many putative sORFs were predicted by DeepRibo
with better scores than the 18/33 validated sORFs (data
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Figure 6. Overlap of novel sORFs detected by DeepRibo and smORFer and
a set of experimentally verified sORFs from a published E. coli dataset.
All predicted novel sORFs for DeepRibo and smORFerwere compared with
31 novel sORFs recently detected by TIS profiling and verified by western
blot in E. coli (orange) [20]. For DeepRibo only the Ribo-seq library was
used and for smORFer only the TIS library was used.

not shown), including four novel sORFs with higher
ranks than all western blot verified sORFs found by the
original study [20]. This suggests that casting a wide
net is preferable if additional datasets are available to
aid prioritization. While including TIS data might also
narrow down a list to higher-confidence candidates,
many predicted by DeepRibo were not identified by
TIS profiling in the original study [20]. Since antibiotics
used for TIS profiling can have different efficiencies on
different ORFs [29], this points to the utility of including
predictions based on ‘normal’ Ribo-seq data, for example
by DeepRibo, REPARATION_blast or smORFer, along
with ORF prediction based on start codon signals.

We inspected Ribo-seq coverage for some of the
sORFs missed by DeepRibo. The novel sORF ytgA (16
aa) was predicted as an N-terminally extended version
(Figure 5A). In comparison, validated yqhJ (19 aa) was also
both labeled as translated and detected by DeepRibo

(Figure 5B). However, this candidate has the lowest
DeepRibo score (-4.078) and was ranked 5352nd out of all
novel sORF candidates, despite having significant Ribo-
seq coverage and a strongly enriched TIS peak.

A major challenge in predicting novel ORFs is assign-
ing the correct start codon [44]. smORFer was specif-
ically designed to combine Ribo-seq and TIS libraries
together in order to find a set of promising sORF can-
didates in prokaryotes. The general idea would be to
first predict a list of sORFs based on the available Ribo-
seq library and then further filter this list using the TIS
library to determine the correct start codons. As the
coverage of the Ribo-seq library from the original study
[20] is low, smORFer was unable to detect any of the

novel sORFs using the Ribo-seq library alone. As the TIS
library would then be used to further filter the resulting
Ribo-seq predictions, smORFer would be unable to detect
any of the verified novel sORFs. In contrast to smORFer,
DeepRibo trains a cutoff based on the input data, which
allows it to adapt to the low coverage of the Ribo-seq
library. For smORFer to work well, both Ribo-seq and TIS
libraries should be of similar quality or the cutoffs man-
ually adjusted, which currently requires a change in the
smORFer scripts (as described in the GitHub documenta-
tion). Nevertheless, as smORFer is modular, it allowed us
to run the TIS analysis independently. This returned a list
of start codons with their respective read counts, based
on the TIS library. To compare these start codons to the
list of verified novel sORFs, we chose for each start codon
the next in-frame stop codon. This enabled us to detect
28 of the 31 novel sORFs. For the missing three sORFs,
one was of too low read coverage and the other two were
missed by one codon. Using the approach of filtering the
start codons, we ended up with a list of 12 381 candidates,
which is far too many for manual inspection. As shown in
Table 6, the predictions of smORFer (577 being the lowest
rank) behave in a similar fashion than the DeepRibo

predictions, in a sense that there are far more interesting
novel sORF targets to pick first before looking at the
verified novel sORFs. As it is unlikely that all of these
12 381 novel sORF candidates are actively translated, a
further filtering step would be required. However, this
result shows how powerful TIS data can be to determine
the correct start codons for a list of candidates. Using
the TIS data as suggested in smORFer to filter a strong
list of Ribo-seq sORF candidates with conflicting start
codons for the predicted stop codons could yield a small
list of promising novel sORFs that can be experimentally
verified.

The above observations suggest that even bacterial
prediction tools require further optimization in the con-
text of novel sORF detection or can be prone to missing
true candidates due to expression cutoffs. This was vis-
ible for the fixed read count cutoffs of smORFer, which
caused it to miss all novel sORFs when considering the
Ribo-seq library alone. However, many additional novel
sORFs not reported in [20] were detected by DeepRibo

and smORFer with a relatively high predictive score or
read count, respectively. While some of these might be
false positives that can be excluded based on TIS data,
others could be candidates for experimental verification.
Nonetheless, the ranking system of DeepRibo and the
observation of the rank-distribution of verified novel
candidates shows that a robust cutoff could improve
the usability of DeepRibo. Additionally, the results of
smORFer show the power of TIS data to further filter a list
of Ribo-seq detected candidates. In this particular case, a
combination of the DeepRibo Ribo-seq predictions and
the smORFer TIS predictions would likely result in a
solid list of sORF candidates. smORFer alone should be
sufficient when using a Ribo-seq library with higher read
coverage. While prediction tools can always be improved
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Figure 7. Summary of tool performance and secondary measures.
Shown are the scored tool prediction performances (AUC) on the
whole translatome and the subset of close-proximity (200nt) ORFs. The
performance on novel E. coli sORFs novel ORF is also scored. The last
four columns summarize the evaluated quality measures: here run time,
memory usage, applicability for experimental design (Applicability) and
user-friendliness (Usability) are scored. The systematic approach used
to define the performance (Superior, Satisfactory, Unsatisfactory) for the
evaluation is described in detail in the supplementary material.

in terms of their specificity, we suggest casting a wide
net of predictions based on the availability of additional
datasets to validate or screen for interesting candidates.
Finally, we recommend inspecting a short list of high-
confidence candidates in a genome browser for Ribo-seq
coverage patterns and genomic context information that
might be missed by current computational approaches
as a robust way to identify those for orthogonal valida-
tion and future functional characterization.

Secondary measures
Besides predictive power, other practical considerations
can influence the choice of the best tool for ORF detec-
tion. We therefore also investigated quantitative (run-
time and peak memory usage) and qualitative (usabil-
ity, applicability) [87] secondary measures for each tool
(Figure 7).

Runtime and peak memory usage of the tools were
investigated in a single and multi-threading scenario.
Runtime and memory were analyzed using the self-
generated E. coli benchmark set. The size of the associated
Ribo-seq BAM file is 159 MB (7 457 594 reads) and
the RNA-seq BAM file 197 MB (9 660 815 reads). The
annotation file used includes 4379 annotated coding
features. This analysis was run on a cloud instance using
28 VCPUs of an AMD EPYC (with IBPB) processor and 64
GB of RAM, using the taskset utility for all tools.

The best runtimes using only one CPU core were
achieved by IRSOM and ribotricer, which completed
analysis of the dataset in under 3 min, followed by
Ribo-TISH (9 min), PRICE and DeepRibo (approx. 35
min) and REPARATION_blast (>2 h) (Table 7). DeepRibo
ignored the maximum number of threads assigned via

command-line attribute if the maximum number of
cores was not restricted by the operating system, using
the taskset command. This behaviour was reproduced
on another cloud instance with a different hardware
setup. SPECtre had an average runtime compared with
the other tools. We did not observe a difference in
runtime when providing multiple cores when using the
default settings of SPECtre. As smORFer is made up of
several modules, we checked the runtime of all modules
individually and summed them together. For smORFer,
the runtime and memory usage is highly dependant on
the modules and the maximum ORF length used. Using
smORFer as intended in the documentation requires
another separate analysis step that involves manual
work and is thus hard to time. When using larger
maximum ORF lengths (about 3000nt), the runs failed
after several days due to memory overflow (especially
when using large alignment files). As smORFer was
designed for the detection of sORFs, it is usable in a
reasonable amount of time for its intended purpose.

On a single core,Ribo-TISH had the lowest peak mem-
ory consumption (119 MB), followed by ribotricer (653
MB), IRSOM (853 MB), SPECtre (1535 MB), DeepRibo (3921
MB), REPARATION_blast (6412 MB), and PRICE (8604
MB). smORFer required 11 995 MB, but can go up to our
available 64GB if using a higher ORF length cutoff and
bigger alignment files.

Applicability of a tool can also contribute to its suit-
ability for a specific task. Ribo-TISH is the only tool
out of the eight tested that supports the input of repli-
cates. REPARATION_blast and PRICE, on the other hand,
do not produce a deterministic output, meaning that
the results of the tool with identical inputs are differ-
ent between calls. Only PRICE and smORFer use stan-
dard output formats (BED), whereas DeepRibo can create
standard output files (BEDGRAPH) via an included post-
processing script. The output of the other tools has to
be parsed or converted for downstream analysis by the
user (i.e. inspection in a genome browser). Only PRICE

uses some unit testing to ascertain the correctness of
functions and the reliability of results. Nevertheless, the
results of nearly all tools were consistent over different
species and annotations. For SPECtre and PRICE, the
results were inconsistent and for smORFer, we did not
obtain results for all organisms. We scored the applicabil-
ity of the tools as detailed in the supplemental material
(Subsection E.6, Applicability).

Usability determines how user friendly a tool is.
We scored the usability of each tool as detailed in
the supplemental material (Subsection D.7, Usability).
The eight benchmarked tools were stably available
from software hosting platforms. Only Ribo-TISH,
REPARATION_blast, and ribotricer could be installed
with dependencies via a package management system.
With the exception of Ribo-TISH, ribotricer, and
PRICE, all tools have had a sample dataset available for
testing. DeepRibo, Ribo-TISH, ribotricer, and PRICE

featured change-logs. They also featured, like SPECtre,
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Table 7. Runtime and peak memory consumption. Runtime and peak memory consumption for each tool running on a virtual
machine with either 1 or 10 CPU cores and processing one library of the self-generated E. coli dataset. *The smORFer runtime and
memory does not include the resources required to manually create a calibrated bam file

Time [s] Memory [MB]

Tools / threads 1 10 1 10

REPARATION_blast 8528 1332 6412 6796
Ribo-TISH 482 62 137 137
DeepRibo 2145 1079 3921 3901
IRSOM 87 — 853 —
SPECtre 3871 3894 1535 1534
smORFer* 12 934 — 11 995 —
PRICE 1851 590 8604 8657
ribotricer 152 — 653 —

a versioning scheme—a key criterion for reproducibility.
The documentation of the tools had varying levels of
detail and completeness, but all had documented tool
dependencies. However, the command line parameters
of IRSOM were not documented, DeepRibo was missing
documentation concerning its required input, and the
output documentation of IRSOM as well as REPARATION
was either missing or difficult to find. The published
version of SPECtre accepted only Ensembl-formatted
GTF annotation input, which makes it necessary for
many users to specifically preprocess their annotation.
All tools were open source, including REPARATION in the
REPARATION_blast variant.

Conclusions
With RiboReport, we aimed to identify the best available
tools for Ribo-seq based ORF detection in bacteria
using a set of trusted ORFs that we generated using
datasets from diverse species. Astoundingly, out of
the 13 tools found in literature, only three (DeepRibo,
REPARATION_blast, smORFer) were compatible with
bacterial annotations and genomes (Table 1), whereas
eukaryotic tools like Ribo-TISH, PRICE, SPECtre and
ribotricer required features that are not available in
NCBI annotations for bacteria, but are often provided
in old GTF format files from the Ensembl Bacteria FTP
server. Adapting the annotation of bacteria to use these
features made it possible to run most of the eukaryotic
tools with varying levels of success. In addition, the
coding potential detection tool IRSOM, which uses only
transcriptome data, was added to investigate the per-
formance gain achieved by using Ribo-seq data together
with specialized ORF detection tools. While the predictive
performance of DeepRibo and REPARATION_blast was
superior to the other tools, their runtime and peak
memory consumption were substantially higher than for
IRSOM, SPECtre, Ribo-TISH and ribotricer. smORFer
showed an equally promising predictive performance
for sORFs in general and for novel sORFs. However, for
the other three datasets, we were not able to calibrate
alignment files using candidates with longer ORF lengths
(around 3000 nt) without running into memory problems.

Before this study was conducted, ribotricer was the
only tool available from a package manager. To integrate
the tools into our pipeline, we have created either conda
packages or docker containers for each of the working
tools.
DeepRibo and REPARATION_blast showed a supe-

rior predictive performance over SPECtre, Ribo-TISH,
ribotricer, PRICE and IRSOM for all organisms and
all annotated ORF sets (translatome, sORFs, close-proximity
genes and stand-alone genes). A set of recently identified
and validated sORFs outside of the E. coli annotation
[20] was used to test novel sORF detection. These sORFs
were poorly detected by all tools, with the exception of
DeepRibo and smORFer. DeepRibo predicted 17 of the
31 novel sORFs, but most of these predictions did not
have a high rank (Table 6). One advantage of DeepRibo
is that it learns an RPKM and coverage cutoff based on
the input data. When analyzing datasets with low Ribo-
seq coverage, this might give it an edge over tools with
fixed cutoffs like smORFer. Moreover, DeepRibo provides
a neural network that is designed for bacteria and trained
on several bacterial datasets. Its pretrained model gives
it a certain independence from dataset quality, which
allows DeepRibo to work consistently well over sev-
eral datasets. Tools that retrain their model for each
dataset, like REPARATION_blast, are more dependant
on the quality of the data. smORFer was initially unable
to predict any of the novel sORFs because of the low
coverage of the Ribo-seq library used, but when also
using the results of the TIS analysis, it showed promising
results. Out of the 31 verified novel sORFs, 28 could be
detected using the TIS data. While many of these show
low read counts, this nevertheless supports the benefit of
combining both Ribo-seq and TIS data, as it helps to
detect the correct start codon. The detection of the exact
ORF boundaries is one of the main problems of tools
that are using only classical Ribo-seq libraries [44]. This
is one of the reasons we chose a 70% overlap cutoff for
predictions, rather than testing for exact matches.

The high sensitivity of DeepRibo appears to come
at a cost of a high false positive rate. While a score is
generated by the tool to provide a way to sort for
higher confidence candidates, a robust cutoff to allow
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investigation of strong candidates only is not offered.
While DeepRibo does a very good job at detecting the
correct boundaries based on Ribo-seq coverage alone, it
could still benefit from TIS data, especially to reduce the
number of false positive predictions. DeepRibo scored
distributes shows that it can detect translated ORFs
robustly; however, potential novel ORFs are scored very
low and are therefore not easy to find (Supplemental
Figure S6). However, testing of the top 100 novel sORFs
might be a strategy to identify candidate sORFs when no
TIS data are available. Some of these false positives might
result from highly structured noncoding RNAs, which
escape RNase digestion or associate with ribosomes [88].
Further optimization of ORF prediction tools to detect
artefacts such as this should be considered in the future.

Most eukaryotic tools like PRICE or ribotricer use
very strict expression or coverage cutoffs to filter the
final list of candidate ORFs, which is required for eukary-
otic data due to the number of predictions. However,
these cutoffs are likely too stringent for bacterial data.
ribotricer has an automatic cutoff detection, which
shows the contrast of these cutoffs. While ribotricer

uses a default phase-score cutoff value of 0.428, the
automatically detected cutoff for our E. coli dataset is just
0.088. This might be one explanation for the lower per-
formance of the eukaryotic tools as it shows how cutoff
values can differ between eukaryotes and prokaryotes.

For the tools that we could not test, there was no
mention of their taxonomic scope or if they are appli-
cable beyond the scope of what they had been designed
and tested on. Ribo-TISH, while unsatisfactory in terms
of predictive power, was also clearly not designed with
bacterial data in mind. However, it was the only tool that
supports replicates as input. Furthermore, Ribo-TISH
and smORFer are the only tools that support TIS data. As
TIS profiling is now established in bacteria and archaea
[19, 20, 89], we expect this to be an essential capability of
future tools. Looking to the future, we hope that support
for TIS data, replicates, and nonstandard organisms is
considered in new tools or improved versions of the
current tools, as smORFer clearly shows the benefits of
start codon detection based on TIS data.

Key Points

• Generated an ORF dataset for benchmarking ORF predic-
tion tools using Ribo-seq data in bacteria.

• Created a benchmarking pipeline that can be extended
with additional tools for future testing.

• DeepRibo is the first choice for bacterial ORF prediction
tasks using Ribo-seq data alone.

• Tool performance was comparable between ORFs trans-
lated from ORFs in close proximity to other genes versus
stand-alone ORFs.

• Identification of relatively high confidence novel sORFs
by DeepRibo is likely possible by selecting the top 100
novel candidates sorted by score for further manual
inspection.

• A significant number of sORFs recently discovered using
TIS profiling are not detected by tools despite sufficient
Ribo-seq signal.

• smORFer shows the strong potential of using TIS data to
determine correct start codons for candidate ORFs.

• Tools should embrace the use of replicates, TIS profiling
data, and also include improved software packaging,
usability, and documentation.
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