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Abstract: The chilling requirement (CR) is the main factor controlling the peach floral bud break
and subsequent reproductive growth. To date, several peach CR quantitative trait loci (QTLs) have
been identified. To improve the accessibility and convenience of this genetic information for peach
breeders, the aim of this study was to establish an easy-to-use genotype screening system using peach
CR molecular markers as a toolkit for marker-assisted selection. Here, we integrated 22 CR-associated
markers from three published QTLs and positioned them on the Prunus persica physical map. Then,
we built a PCR-based genotyping platform by using high-resolution melting (HRM) analysis with
specific primers and trained this platform with 27 peach cultivars. Due to ambiguous variant calls
from a commercial HRM software, we developed an R-based pipeline using principal component
analysis (PCA) to accurately differentiate genotypes. Based on the PCA results, this toolkit was
able to determine the genotypes at the CR-related single nucleotide polymorphisms (SNPs) in all
tested peach cultivars. In this study, we showed that this HRM-PCA pipeline served as a low-cost,
high-throughput, and non-gel genotyping solution. This system has great potential to accelerate
CR-focused peach breeding.

Keywords: chilling requirement (CR); genotyping; high-resolution melting (HRM) analysis;
marker-assisted selection (MAS); principal component analysis (PCA); quantitative trait loci (QTLs);
single nucleotide polymorphisms (SNPs)

1. Introduction

The chilling requirement (CR) is a characteristic that evolved in deciduous fruit tree species,
such as peach trees (Prunus persica), and is a measure of the period of time during which trees
withstand low temperatures to avoid flowering in winter. The CR duration is the major climatic
adaptation that limits the geographic distribution in which an individual tree can flower [1]. To
effectively increase the distribution of peach cultivation regions from temperate zones, it is necessary
to breed new cultivars with low CRs that are better adapted to subtropical or tropical regions [2,3].
Furthermore, it is important to breed peach cultivars with low CRs given that global climate change
has contributed to insufficient chill accumulation that has resulted in decreased peach production [2,4].
However, peach breeding to produce low CRs requires years of cultivation for individuals to reach the
adult stage, and CR phenotyping requires multiple years of observation of cumulative chilling and
blooming dates. Additionally, the CR in peach trees is known to be a polygenic and heritable trait [5,6]
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with high broad-sense heritability (e.g., H2 = 79.5%) [7]. The characteristics of the CR increase the
complexity of breeding for CR traits. Therefore, comprehensive genetic CR studies are needed that
provide the necessary knowledge to improve breeding efficiency and adapt peach varieties to future
climatic conditions.

Three current studies have made major genetic breakthroughs by mapping the quantitative trait
loci (QTLs) associated with CRs and blooming dates [7–10]. The first study included 378 individuals of
an F2 population derived from the parental cultivars ‘Contender’ × ‘Fla.92-2C’ with high- and low-CR,
respectively, for QTL mapping [7]. Four QTLs were found to be responsible for controlling the CR. This
study also utilized two low-CR and two high-CR individuals from the F2 population for whole genome
sequencing to generate a list of candidate genes associated with the QTLs, the intervals of which
were represented using 18 simple sequence repeat (SSR) markers [8]. Two independent QTL studies
used similar bi-parental approaches on two different progeny populations [9,10]. Briefly, 12 QTLs
controlling the CR and six representative single nucleotide polymorphisms (SNPs) were identified in
the ‘V6’ × ‘Granada’ F2 population [9]. The third study utilized the genotyping-by-sequencing (GBS)
method to identify nine SNPs and one SSR representing 10 QTLs from the ‘Hakuho’ × ‘UFGold’ F2

population [10]. These mapping results have contributed positional genetic data and have provided
important information for further functional genomic research. Integrating the positions of these QTLs
that were identified from each study is important to determine the overlapping QTL region.

These CR-related QTLs are promising in terms of genetic mapping, but the development of
convenient breeding tools is required to break the technical entry barriers associated with the use of
marker-assisted selection (MAS) [11]. SSR markers can be detected using polymerase chain reaction
(PCR)-based techniques with common lab equipment, which is accessible for most breeders. Eighteen
SSRs have been used to indicate eight CR-related QTL intervals [8], but these SSR markers only cover a
portion of the reported peach CR-related QTLs [7–10]. Although SSR markers are highly accessible
and cost effective, the efficiency of such gel-based and laboratory-intensive approaches may be greatly
reduced when the number of samples or markers increases.

A shift in molecular marker approaches from SSR markers to SNP markers has been observed in
this decade [12]. The release of the peach reference genome has facilitated the exploration of SNPs from
broader genetic pools using genome-wide sequencing and has further developed the SNP array [13–15].
As far as peach SNP-based mapping goes, GBS has been utilized to identify SNPs for the construction
of linkage maps and to identify QTLs associated with CRs and blooming dates [10]. The peach 9K
Infinium II array [13] has been used to genotype SNPs for QTL mapping of the CRs, flowering times,
heat requirements, and ecodormancy releases [9]. These sequencing- and array-based approaches are
the high-throughput and multiplex platforms. These platforms are able to sequence multiple samples
in a single Illumina HiSeq lane and/or to identify thousands of SNPs simultaneously for each sample in
an array. Nevertheless, data management, bioinformatic platforms, and analytical tools are necessary
to convert sequence information to SNPs [11]. Since a 9K SNP array would generate extra data that are
not needed for MAS and the array approach is not designed for targeting particular traits in a MAS
when the sample number is large, the development of an accessible and economical MAS platform to
detect peach SNPs for CR-related QTLs is important.

The detection of SNPs can be accessible for common labs when various gel-free fluorescence-based
methods are employed, including TaqMan®assays, kompetitive allele-specific PCR (KASP) assays,
and high-resolution melting (HRM) analysis. The TaqMan®assay utilizes two PCR primers and a
dual-labelled allele-specific probe [16,17]. KASP uses three unlabeled primers in combination with
two universal fluorescence resonance energy transfer (FRET) quenching reporters [18]. HRM only
requires two allele-specific primers for PCR and the melting behavior of the PCR products is used to
discriminate SNP variance [19,20]. Given that HRM and KASP do not required fluorophore-labelled
allele-specific oligonucleotides and that HRM and KASP reactions can be carried out with universal
master mixes and universal FRET cassettes, respectively, these two methods are sufficiently flexible
and cost-effective to be adopted by breeders. Current studies have successfully utilized HRM for
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high-throughput plant genotyping [21–23], cultivar identification, and the authenticity analysis of food
products [24–26]. Considering that HRM only requires two short primers, the cost of HRM is likely to
be a little bit lower than that of KASP. Advanced statistical methods for HRM analysis are available to
improve variant calling [27], and using HRM for plant genotyping may be a feasible approach.

The establishment of a peach breeding toolbox is usually initiated from mapped genes or loci
that have been highly linked with horticulture traits, followed by the identification of specific genetic
markers according to genetic position for the implementation of further MAS. Major genes or markers
that are highly linked with several qualitative peach traits have been identified. For example, a
carotenoid cleavage dioxygenase gene has been characterized and shown to control for yellow or
white fruit flesh color [28,29]. Two genes encoding endopolygalacturonases (endoPGs) have also
been reported to be candidates that control traits related to stone adhesion and flesh texture [30,31].
Furthermore, the difference between peaches and nectarines is due to fruit skin pubescence, which is
controlled by a MYB transcription factor [32]. In addition, qualitative peach resistance to the green
peach aphid is conferred by an Rm2 dominant allele that encodes a member of the nucleotide binding
site leucine-rich repeat (NBS-LRR) resistance protein family [33]. Lastly, flat and round peach fruit
shapes are linked with an SSR marker, UDP98-412, that is present in most flat fruit cultivars [34]. For
the implementation of MAS, the association of fruit shape traits is further improved by the use of a
haplotype that is represented with 3 SNPs or by a primer pair for two small indels [35]. Notably, the
peach blush trait, the color red on the fruit skin surface, is able to be routinely predicted using a 5-SNP
haplotype test in a single PCR-based assay [36]. The potential implementation of high-throughput
MAS has been further developed based on the positional information for these multiple qualitative
traits using peach SNP arrays [37,38] or GBS [39].

To facilitate peach cultivar breeding with the desired CR traits, we aimed to establish an easy-to-use
genotyping platform with which plant breeders can develop new peach cultivars by genotyping the
representative QTL markers that control the CR. In our study, the publicly available whole genome
sequences in the Genome Database for Rosacea [40] were used as a physical reference to integrate
published CR-related QTLs, and HRM-optimized primer pairs were designed to be specific to each
major-effect QTL. To improve the genotyping accuracy for HRM data, we developed a free and open
source R-based pipeline for variance calling. A genotyping toolkit that consists of these primer sets
and a pipeline for variant calling will allow breeders to determine the genotypes of the SNP markers
that are linked to the CR-related QTLs.

2. Results

2.1. Integration of Genetic Cofactors Representing Major- and Minor-Effect CR-related QTLs on a Physical
Peach Genome Map

To situate the genetic cofactors representing the CR-related QTLs onto a physical map, we took
advantage of the Prunus persica genome v.2.0.a1 [14], using it as the physical reference with which to
position the cofactors based on SSR allele-specific primer sequences or SNP marker sites that were used
for QTL mapping in previous studies [8–10]. All cofactors were assigned to represent either peach CR
major-effect QTLs (Table 1) or minor-effect QTLs (Appendix A Table A1), according to the statistics
and descriptions of the original QTL mapping studies [8–10].
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Table 1. Major-effect peach chilling requirement (CR)-related quantitative trait loci (QTLs) and the
representative markers.

Selected Marker 1 Original Cofactor 2 QTL 3 LOD 4 R2 (%) 5 Physical Position
(Original Cofactor) 6

Marker
Distance
From The
Cofactor 7

Romeu et al., 2014 [9]

SNP_IGA_122351 SNP_IGA_122057
CRW-AA/EJ
CRU-AA/EJ
CRD-AA/EJ

16.3–22.3 64–76 Pp01:41981168 +20228

SNP_IGA_779222 SNP_IGA_779224
CRW-AA

CRU-AA/EJ
CRD-AA/EJ

3.2–4.5 14–25 Pp07:15717070 −138

SNP_IGA_769251 SNP_IGA_769194 CRW-EJ
CRU-EJ 3.7–3.9 18–20 Pp07:12156489 +3271

Zhebentyayeva et al., 2014 [8]

SNP_IGA_134905 Pchgms29 qCR1a-2008
qCR1a-2009

46.8 (2008)
17.8 (2009)

44.1 (2008)
19.1 (2009) Pp01:43499388..43499459 372

SNP_IGA_381567 Pchgms174 qCR4a-2008
qCR4a-2009

10.3 (2008)
2.6 (2009)

11.4 (2008)
3.4 (2009) Pp04:2431831..2431882 −2207

SNP_IGA_780662 UDAp-460 qCR7-2009 2.4 24.4 Pp07:16270932..16270953 +2102
SNP_IGA_786935 UDAp-409A qCR7-2008 17.2 18.5 Pp07:19150241..19150290 −9274

Bielenberg et al., 2015 [10]
1_40995799 1_40995799 qCR1-2009 4.62 24.8 Pp01:41969066 N/A 8

SNP_IGA_131284 1_44762763 qCR1-2008 12.78 16.0 Pp01:45053074 4078
SNP_IGA_427604 4_14984691 qCR4-2009 5.13 27.8 Pp04:14995235 −220

4_13747914 4_13747914 qCR4c-2008 12.29 14.9 Pp04:13758549 N/A
1 Selected marker: the flanking single nucleotide polymorphism (SNP) marker representing the original cofactor as
the selected SNP marker. 2 The original cofactor linked with QTL. 3 QTL: quantitative trait loci identified in each F2
population. 4 LOD: logarithm of the odds. 5 R2 (%): percentage of phenotypic variance explained by the QTL. 6

Physical position: the position of the original cofactor on the P. persica genome v.2.0.a1 physical map. The physical
position of each marker was defined by scaffold and bp position (scaffold:bp position for SNP and scaffold:bp.bp
region for simple sequence repeat (SSR)) in the P. persica genome v.2.0.a1. 7 Marker distance from the cofactor
indicates the upstream (+) or downstream (−) distance of the cofactor from the selected SNP marker. When the
cofactor is an SSR marker, the distance is counted from the side closest to the selected SNP marker (i.e., from the left
side of the SSR for upstream SNPs; from the right side of the SSR for downstream SNPs). 8 N/A: not applicable.

Briefly, 6 SNP markers, including SNP_IGA_122057, SNP_IGA_779224, SNP_IGA_769194,
SNP_IGA_297497, SNP_IGA_293752, and SNP_IGA_635355, were filtered from 12 QTLs in ‘V6’
× ‘Granada’ F2 progeny [9], according to the logarithm of the odds (LOD) score and the percentage of
phenotypic variance of these QTLs. With similar criteria, 12 SSR markers (i.e., Pchgms29, Pchgms174,
UDAp-460, UDAp-409A, UDA-053, BPPCT036B, Pchgms170, AMPA103, M12a, ssrPACITA21,
EPPISF002, and PacC13) were selected for 17 QTLs from the ‘Contender’ × ‘Fla.92-2C’ F2 population [8],
and 10 QTLs containing 9 SNP markers and 1 SSR marker (i.e., 1_40995799, 1_44762763, 4_14984691,
4_13747914, 2_16900230, 4_00772820, 4_11060745, 5_13713689, BPPCT038, and 8_11718744) were chosen
from a study using the ‘Hakuho’ × ‘UFGold’ F2 population [10]. Taken together, the 28 cofactors linked
to the QTLs controlling the CR were integrated into a physical map. To further classify these QTLs into
major- or minor-effect QTLs, their degree of influence on the CR was used by setting a threshold for
each QTL study. Around 10–20% of the phenotypic variance was set as the cut-off threshold to select
major-effect QTL candidates. These candidates were further assessed individually by considering the
LOD scores and presence of over-lapping/nearby QTLs (Table 1 and Appendix A Table A1).

2.2. Selection of SNP Markers Presenting Cofactors and the Detection of the Selected SNPs via HRM Analysis

For the establishment of a breeder-accessible genotyping system, cofactors were surveyed by
detecting their flanking SNPs via HRM analysis. In order to increase the uniformity of the HRM analysis,
all cofactors linked with the SSR markers and some SNP markers were replaced with adjacent SNP
markers (i.e., selected markers). To perform HRM genotyping, specific primer pairs with a near—100%
PCR efficiency were designed for all selected markers (Appendix A Table A2). The performance of
HRM using these primer pairs was tested by polymorphism genotyping in our collection of 27 peach
cultivars, including 15 low-chill cultivars and 12 high-chill cultivars. Nonetheless, no suitable primers
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were designed among the 28 cofactors that were able to differentiate the genotypes of the four cofactors
linked to the four minor-effect QTLs in the genomic region, including SNP_IGA_293752, ssrPACITA21,
PacC13, and BPPCT038 (Appendix A Table A1). In addition, no polymorphisms were detected on the
flanking SNPs of two other minor-effect cofactors, Pchgms170 and SNP_IGA_635355, in any of the 27
tested peach cultivars. Considering that the influence of these minor-effect cofactors on the observed
phenotypes was relatively low, these six cofactors were excluded from subsequent experiments. In
summary, a total of 22 SNP markers were selected that were comprised of 11 major-effect (Table 1) and
11 minor-effect (Appendix A Table A1) QTLs.

Using the P. persica genome v.2.0.a1 [40] as a reference, we positioned all 22 SNP markers on the
physical map to represent the locations of the major- and minor-effect CR-related QTLs (Figure 1).
Notably, the SNPs linked to the major-effect QTLs were mainly located in LG1, LG4, and LG7 and
the markers linked to the minor-effect QTLs were scattered on seven out of a total of eight linkage
groups (LGs) (Figure 1). In addition, the farthest physical distance between the original cofactors and
the selected SNP markers was 20 kbp and most were located within 10 kbp of each other (Table 1 and
Appendix A Table A1), indicating that the recombination rate between these cofactors and the SNP
marker pairs was very low.
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the commercial software, High Resolution Melt Software v. 2.0 (Applied Biosystems, Waltham, MA, 

Figure 1. Location of selected SNP markers linked to chilling requirement (CR)-related QTLs on the
P. persica genome v.2.0.a1 physical map. The numbers on the left side of the bars indicate the linkage
group (LG). The selected SNP markers are shown as closed circles (markers linked to major-effect
QTLs) and open circles (markers linked to minor-effect QTLs). Circles filled with red, blue, and yellow
represent the markers identified from the ‘V6’ × ‘Granada’ [9], ‘Contender’ × ‘Fla.92-2C’ [8], and
‘Hakuho’ × ‘UFGold’ [10] F2 populations, respectively. The map was plotted using the genoPlotR
package in RStodio [41,42].

The raw fluorescence data from the 22 SNP markers of the HRM analysis were analyzed with the
commercial software, High Resolution Melt Software v. 2.0 (Applied Biosystems, Waltham, MA, USA).
The temperature regions of the melt curves, such as the pre-melt and post-melt regions, that were used
for each primer pair are listed in Table 2. In each of the difference plots, the curves of the 27 cultivars
were clustered into 2–3 variants based on the reassembled melt curve patterns (Figure 2). Cultivars in
the same cluster were assumed to share the same genotypes for the given SNP marker. To assess the
genotypes of the SNP targets, at least three cultivars from each cluster were randomly selected for
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Sanger sequencing. The sequencing results showed that some cultivars in the same cluster possessed
different genotypes (Figure 2). As an example, the accuracy of three marker (i.e., SNP_IGA_780662,
SNP_IGA_786935, and 8_1171818744) variant calls from HRM Software v. 2.0 (Applied Biosystems,
Waltham, MA, USA) was 55.6%, 64.3%, and 80%, respectively (Figure 2). To determine whether this
low observed accuracy of the two SNPs was attributed to either the HRM reactions or the use of HRM
Software v. 2.0 (Applied Biosystems), the reproducibility of the HRM reactions was assessed by carrying
out independent HRM reactions for correctly and incorrectly genotyped samples. After the subsequent
analysis of these samples with HRM Software v. 2.0 (Applied Biosystems), we concluded that it is
likely that the observed low accuracy was due to the use of HRM Software v. 2.0 (Applied Biosystems)
since both the correctly and incorrectly genotyped samples were reproducible in multiple independent
experiments. Thus, an alternative analysis method to improve the variant call was required.

Table 2. Primer pairs and parameters for the high resolution melting (HRM) analysis of the SNP markers.

Optimized Temperature Regions for Normalization (◦C)

Selected
Marker 1 Primer Pairs

Applied Biosystems HRM
Software v2.0 Principal Components Analysis

Pre-Melt
Region 2

Post-Melt
Region 2 Lower Limit 3 Upper Limit 3

SNP_IGA_122351 S1_4102b-f1/r1 72.6–73.0 82.0–82.5 73.0 82.0
SNP_IGA_297497 S3_0363-f2/r2 69.1–69.5 79.8–80.2 63.5 79.0
SNP_IGA_769251 S7_1256-f1/r1 78.7–79.1 87.0–87.5 79.1 87.0
SNP_IGA_779222 S7_1611-f1/r1 72.7–73.1 81.8–82.3 77.5 82.0

rs159238319 S1_1690-f2/r2 67.1–67.5 77.1–77.6 67.5 77.0
SNP_IGA_134905 S1_4631-f2/r2 74.5–74.9 82.6–83.1 73.0 82.5
SNP_IGA_381567 S4_2429-f2/r2 68.7–69.1 78.1–78.6 69.0 78.0
SNP_IGA_419106 S4_1351-f1/r2 69.6–70.1 76.3–76.8 70.1 76.3
SNP_IGA_695463 S6_2645-f2/r2 73.6–74.0 83.2–83.7 74.0 83.5
SNP_IGA_786935 S7_1954b-f1/r1 77.2–77.6 83.9–84.4 77.6 83.9
SNP_IGA_112592 S1_3674-f2/r2 68.6–69.0 77.8–78.2 69.0 78.5

rs159239801 S4_9208b-f1/r1 71.0–71.5 77.2–77.7 71.5 77.7
SNP_IGA_780662 S7_1667-f1/r1 75.7–76.0 85.2–85.6 77.5 85.0
SNP_IGA_131284 S1_4475-f1/r1 71.4–71.8 79.5–80.0 71.8 79.5

1_40995799 S1_4099-f1/r1 74.2–74.4 82.1–82.5 74.0 82.5
2_16900230 S2_1690-f1/r1 79.1–79.3 85.5–86.2 79.3 85.5
4_00772820 S4_0077-f1/r1 72.1–72.3 80.2–80.6 72.5 80.0
4_11060745 S4_1106-f1/r1 77.9–78.1 85.4–85.8 77.0 85.5
4_13747914 S4_1374-f1/r1 74.8–75.0 81.1–81.3 75.0 81.0

SNP_IGA_427604 S4_1498b-f2/r2 72.9–73.3 80.5–81.0 73.0 81.0
5_13713689 S5_1371-f2/r2 74.7–75.2 82.5–83.0 75.0 82.5
8_11718744 S8_1171-f1/r1 74.2–74.6 80.9–81.5 70.5 80.5

1 Selected marker: the flanking SNP marker replacing the original cofactor as the selection marker. The related
cofactors are shown in Table 1 and Appendix A Table A1. 2 Pre-melt/ Post-melt region: the temperature regions
before/after the active melt region that are used to align the data and perform clustering with the Applied Biosystems
High Resolution Melt software v. 2.0. 3 Lower / Upper limit: the minimum/maximum temperatures of the active
melt region that are used to align the data and perform clustering via PCA in R studio.
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Figure 2. Validation of high resolution melting (HRM) analysis for three representative SNP markers in
27 peach cultivars followed by variant calling using a commercial software, HRM v. 2.0, and an R-based
principal component analysis (PCA) with variant validation by Sanger sequencing. The genotyping
results grouped with (A) HRM software v. 2.0 (Applied Biosystems, Waltham, MA, USA) and (B) the
PCA pipeline. The validation of the HRM detection results was conducted with Sanger sequencing.
The accuracy of HRM software or PCA results was calculated as follows: the number of variant calls
consistent with Sanger sequencing/total sample number sequenced with Sanger sequencing.

2.3. HRM Followed by Principal Component Analysis (PCA) Is a Robust Variant Calling Method for
Differentiating Genotypes Based on the Selected SNP Markers

To provide a robust method to call variants for HRM analysis, we established a free and open
source R-based pipeline to execute variant calling with PCA, based on the rationale of a previous
study [27]. This study claimed regular HRM software uses the shape of melting curves that are
not supported by statistics, and suggested automated statistical methods such as PCA was more
appropriate [27]. In our simplified version, the normalization of the raw fluorescence data for HRM
analysis was carried out using the optimized lower limit (pre-melt region) and upper limit (post-melt
region) temperatures of the melt curve analysis for each primer pair (Table 2). All peach cultivars
were grouped into 2–3 clusters, and we randomly selected some cultivars from each cluster for Sanger
sequencing to validate the genotypes. As a result, the prediction accuracy was significantly increased
with the PCA pipeline method compared to that of the results produced by HRM Software v. 2.0
(Figure 2). For example, the genotyping accuracy of SNP_IGA_780662 and 8_11718744 increased
from 55.6% and 80% to 100%, respectively, and the accuracy of SNP_IGA_786935 increased from
64.3% to 92.9% when the PCA clustering method was applied (Figure 2). These results support the
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conclusion that the developed R-based PCA script, which is free to use, is a highly reliable tool for
HRM variant calling.

2.4. Genotyping of 22 CR-related SNP Markers for 27 Peach Cultivars

The PCA pipeline was subsequently used to determine the genotypes of all the selected SNP
markers, including the 11 major-effect markers (Table 3) and the 11 minor-effect markers (Appendix A
Table A3) for 15 low-chill and 12 high-chill peach cultivars. The accuracy of the PCA for most markers
was higher than 80%, including 14 markers that showed 100% agreement with the results of the Sanger
sequencing validation. All 22 SNPs were observed to have only two types of sequence variants for
each SNP position. Notably, the presence of certain SNPs was relatively higher in either the low-chill
or high-chill cultivars. For example, SNP_IGA_122351, a selected SNP marker linked to major-effect
CR-related QTLs, was homozygous for the A/A genotype in 12 out of 12 high-chill cultivars, and this
SNP presented the G/G or A/G genotypes in 14 out of 15 low-chill cultivars (it presented the A/A
genotype in the low-chill ‘Kuu Taur’ cultivar), suggesting that A/A is associated a high-chill genotype
(Table 3). Another major-effect SNP, SNP_IGA_427604, was homozygous for the G/G genotype in 15
out of 15 low-chill cultivars but homozygous for only 2 out of 11 high-chill cultivars, suggesting a
low-chill associated role of the G/G genotype (Table 3). To further support the association between
genetic markers and CR traits, a chi-squared (X2) goodness-of-fit test was used to assess the observed
versus expected genotype frequency in low-chill and high-chill peach cultivars. All 11 major-effect
markers were significantly associated (p < 0.05) with CR traits, and seven of them presented p values <

0.001 (Table 3). Taken together, the developed PCA pipeline for HRM analysis was successfully applied
with 22 CR-related markers for the genotyping of 27 peach cultivars, and potential low-chill associated
genotypes for these SNPs were observed.

2.5. Potential CR-Related Haplotypes

By combining several SNPs at a specific locus into a single haplotype, the haplotype would
then represent multiple CR-related QTLs. Although it would have been a more stringent to develop
haplotypes that encompassed each previously reported QTL, we alternatively considered that nearby
regions were putative haplotypes given that CR-related QTLs were mainly located on nearby regions of
chromosome (Chr) 1, 4, and 7 (Figure 1). Instead of determining the genotypes of multiple CR-related
SNPs, we designed four putative haplotypes to represent these four CR-related loci. Two, 2, 2, and 3
SNPs were used in the haplotype analysis of CR-related loci on Chr 1 (i.e., two positions: Chr1-1 and
Chr1-2), Chr 4, and Chr 7, respectively (Figure 3). The frequencies of certain genotypes in some of these
SNPs were enriched in high-CR or low-CR cultivars (Figure 3, upper panel). Haplotypes were inferred
using the Expectation-Conditional-Maximization (ECM) algorithm (CHAPLIN software) [43,44]. For
Chr1-1 and Chr1-2, the frequencies of the CA haplotype (53.4%) of Chr1-1 and the GA haplotype (47.1%)
of Chr1-2were high and may represent high CR traits (Figure 3, bottom panel, left). The AA and GA
haplotypes of Chr4 could also represent high CR traits (Figure 3, bottom panel, middle). Furthermore,
the ATA haplotype of Chr7 may represent high CR traits, while GCC and ACC haplotypes could
represent low CR traits (Figure 3, bottom panel, right).
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Table 3. Genotypes of the selected SNP markers linked to major-effect CR-related QTLs in 27 peach cultivars.

Cultivar 1 CR (h) SNP_IGA
_122351

SNP_IGA
_769251

SNP_IGA
_779222

SNP_IGA
_134905

SNP_IGA
_381567

SNP_IGA
_786935

SNP_IGA
_780662

SNP_IGA
_131284 1_40995799 4_13747914 SNP_IGA

_427604

Low-chill cultivars
Okinawa 100 G G† C A G A† C† G C G G
Flordared 100 G A/G C G A/G A† C A† G A/G G†

Ruby 100 A/G G C† A/G† A/G† A/G† C A/G C/G† G G
Xiami 125 G A/G C A A/G A† C A† C A/G† G

Yinggetao 125 G† G C G† G A† C G G† G G
Premier 150 G A/G C A A/G A† C A C A/G† G

Flordabelle 150 A/G† A/G T/C G G† A C A C/G† G† G
Flordabeauty 150 A/G† G† C† A A A/G† C A C/G† A/G G
TropicPrince 150 A/G G† C G A G† C† A G A† G

Kuu Taur 150 A A† T A† G A† C A C† G† G
Chuenfeng 150 G A/G C G A† A C† A G A/G† G

TropicSweet 175 A/G G T/C† G A/G A/G C/A A† C/G A/G G
SpringHoney 180 G G C A/G A/G A/G† C A/G† G A/G G
Tropicsnow 200 A/G A/G T/C† A G† A/G† C/A A C A/G G

Fushou n.a. 5 G A/G T/C† A/G G A C/A† A/G† G A/G† G†

High-chill cultivars
Yamane Hakuto 800 A A T A† A G A G C G A

Shiga Hakuto 800 A† A T† A† A G A† G† G A† A/G†

Okubo 850 A A T A A G A G C G A
Shanghaishuimi 850 A A/G† T A A A/G† C/A† A/G† C A/G A/G†

Okitsu 900 A A T/C A A A C/A† G† C A G
Aki Hakuto 900 A A† T A† A G† A A/G C G A

Hongqingshui N/A A A T A/G† A G A† A/G C† A† A
Nakatsu Hakuto N/A A A† T† A† A G A G C G A†

Sunago wase N/A A A/G† T A A/G A/G A G C A/G A/G†

Yamato Wase N/A A† A T A/G† A G A† G C† A A†

Odama Hakuho N/A A A T† A A G† A G† C G A†

Tsao Sheng Yu Tao N/A A A/G† C† A A† A/G C G C A† G†

Putative low chill
associated marker G G C G G A C A G G G

Significance (X2-test) 3 *** *** *** * *** ** *** *** ** * ***

Accuracy (ratio; %) 4 9/9;
100% 9/9; 100% 9/9; 100% 6/9; 66.7% 8/8; 100% 13/14; 92.9% 9/9; 100% 9/9; 100% 6/7; 85.7% 8/10; 80% 9/9; 100%

1 Cultivar name: for cultivars without English names, the names were transliterated based on the pronunciation of their Japanese or Chinese name. 2 Putative low chill specific markers:
the SNP sequence variant is relatively more frequent in low-chill cultivars than in high-chill cultivars. 3 Association analysis between genetic markers and peach chilling requirement (CR)
traits using a contingency table chi-squared (X2) test. * p < 0.05, ** p < 0.01, and *** p < 0.001. 4 The accuracy of each marker was calculated as follows: the number of variant calls consistent
with Sanger sequencing / total sample number sequenced with Sanger sequencing in both the ratio and percentage. 5 N/A: not available. † The genotyping results validated with the Sanger
sequencing method.
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Figure 3. Summary of 4 potential CR-related marker sets based on putative haplotyping. The
SNP frequency is reflected by the stack symbol height (upper panel) generated by WebLogo [45].
Putative CR-associated SNPs for high CR (red text) or low CR (blue text) is based on SNP frequency
and association analysis. CHAPLIN software was used for haplotype analysis and to determine
haplotype frequencies.

3. Discussion

3.1. Breeder Toolbox for Peach CRs

In agreement with qualitative trait approaches, we developed a toolkit in this study to analyze
markers associated with a quantitative trait, CR, based on the allelic positions from QTL studies for
the further implementation of MAS. Prior to this study, breeders would need to retrieve the genomic
sequences close to the CR-related markers from the breeder’s toolbox marker converter of the Genome
Database for Rosacea [40]. To determine the variants of the retrieved markers, intensive work and
validation are required, including the design of primers or probes, the validation of primer efficiency
and specificity, the collection of germplasms with low and high CR, and the validation of variant
calls using Sanger sequencing. Our study presents a comprehensive approach with experiment-based
primer validation that was successfully applied to a collection of peach cultivars with low and high
CR levels. A free and open-source R script for HRM variant calling is provided with step-by-step
user instructions in addition to a data input template (Supplementary Materials). Alternatively, SNP
markers for peach CR-related QTLs are available from previous studies [8–10], which can be detected
using either GBS or SNP arrays if the breeder is able to afford the expense, equipment, and possesses
the knowledge and facilities required for an integrated analysis. In addition, targeted genotyping and
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sequencing services are available from commercial companies, such as SeqSNP by LGC Biosearch
Technologies (Petaluma, CA, USA). As such, indicating the SNPs of interest provided in this study to
these services could be an efficient evaluation approach.

3.2. Advantages and Limits of Using HRM for Genotyping

Although GBS and SNP arrays are high-throughput approaches to determine the genotypes of
the markers linked to the CR-related QTLs [8–10], some main issues impeding their widespread use
in common breeding operations have not yet been resolved. First, no low-cost and high-efficiency
genotyping method has been proposed for the genotyping of peach CR-associated SNP markers prior
to this study. Either GBS or the peach 9 K Infinium II array may not be cost-effective for the genotyping
of only 10–20 markers with hundreds of samples. Several CR-related QTLs can also be genotyped
by SSR markers [8], which may be cost-effective as this method only requires the use of common lab
equipment. Nevertheless, there are some drawbacks associated with the use of SSR markers. For
example, when assessing the genotypes of the ‘Hongqingshui’ cultivar, the amplification efficiency
for ssrPACITA21 was observed to be very low, and multiple products were found in the PCRs of
AMPA103 and PacC13, indicating that the PCR amplification efficiency and specificity of some of
the SSR primer pairs were low for some cultivars. Additionally, genotyping using the gel-based SSR
method is relatively labor-intensive. This limits the SSR method from being applied in large-scale
genotyping projects and makes it particularly susceptible to human error.

We propose that HRM may be a more suitable method for the genotyping of CR-related markers.
Firstly, HRM instruments and reagents are less expensive and more universal than those of either
the microarray or sequencing approaches. Secondly, the in silico genotyping pipeline provided here
not only increases the throughput but also decreases the chance of producing biased results due to
human error. Although the singleplex nature of HRM limits its throughput potential for detecting
large numbers of SNPs, HRM remains a rapid and simple solution for genotyping peach CR-related
markers when compared to that of GBS or SNP arrays. Among all 22 selected SNPs representing the
CR-related QTLs, 11 of the selected SNPs were linked with major-effect cofactors (Figure 1), which are
the first priority for the implementation of MAS. With respect to qualitative traits, the SNPs associated
with six qualitative traits were identified [37,39]. If one SNP represents each qualitative trait and the
HRM-PCA pipeline is adopted, a breeder toolbox consisting of a total of 17 SNPs associated with
quantitative CR traits and six qualitative traits could be developed in the future. HRM-based methods
would thus represent an efficient approach for analyzing this number of markers.

3.3. Advantages of Using PCA for Variant Calls

To date, commercialized software packages, such as HRM Software v. 2.0 (Applied Biosystems,
Waltham, MA, USA), are probably still the most common tools for analyzing HRM results, but there
are some drawbacks associated with the use of these commercial tools. In this study, when HRM
Software v. 2.0 (Applied Biosystems) dealt with the widespread melt curves, its accuracy decreased.
For example, the accuracy of HRM Software v. 2.0 (Applied Biosystems) for analyzing SNP_IGA780662,
SNP_IGA786935, and 8_17718144 was only 55.6%, 64.3%, and 80%, respectively (Figure 2). In addition,
the price of commercial software may represent a huge expense for some breeders with limited budgets.
An alternative statistical software, ScreenClust (Qiagen, Venlo, The Netherlands), has been developed
to improve the HRM allele assortment and is powered by PCA clustering [27]. By adopting this concept
and simplifying the analysis approach, we developed an R script using PCA for melt curve clustering.
As a result, our R script presents several advantages. First, the accuracy of our R script is higher when
compared to that of HRM software v. 2.0 (Applied Biosystems). For example, the accuracy of our R
script for analyzing SNP_IGA780662, SNP_IGA786935, and 8_17718144 was 100%, 92.9%, and 100%,
respectively (Figure 2). Moreover, our R script is free and can be modified by users according to their
needs. Not only are step-by-step user instructions described in the Materials and Methods section, but
the R script and an input data template file are also available in the Supplementary Materials.
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3.4. Putative Low CR-Assoicated SNPs Are Potential Candidates for MAS

When reviewing most of the selected markers in the cultivar collection, the frequency of one
specific SNP variant was found to be much higher in cultivars with low CR than that of cultivars
with high CR (Table 3). These types of SNPs are considered to be putative low-chill associated SNPs.
For example, with SNP_IGA_780662, there are more C/C homozygous genotypes observed in the
cultivars with low CR, while more A/A homozygotes or A/C heterozygotes are found in high-chill
cultivars. Two popular high-chill cultivars, ‘Hongqingshui’ and ‘Nakatsu Hakuto,’ in the Taiwan
market both show the A/A genotype at this SNP site. The association between genotypes and CR
traits is strengthen by the results of our chi-squared test, and this SNP site was found to be highly
significant (p < 0.001). Although more germplasms and SNPs in the genome may be required to further
the statistical support for this association, it is still very likely that the C/C genotype is a low-chill
specific SNP for SNP_IGA_780662 (Table 3). The putative low chill-associated SNPs of most of the
selected markers have been identified (Table 3 and Appendix A Table A3), and they could be potential
genotypes for the selection of parental germplasms and candidate progenies for breeding cultivars
with low CR.

3.5. Recommended Marker Lists for Users of This Toolkit

When linkage maps and QTLs are built for traits controlling the CR [7–10], it becomes possible
to carry out CR MAS at the seedling stage. Three peach F2 populations have been employed for the
mapping of these QTLs [7–10]. The molecular markers used for genotyping the first F2 population
were SSRs and amplified fragment length polymorphism (AFLP) markers [7]. This was followed by
re-sequencing to refine the QTL resolution and develop gene-targeted SSR markers [8]. The other
two F2 peach populations have been mapped using high-throughput SNP arrays and GBS [9,10]. To
adopt such various marker systems for MAS, SNP arrays or GBS have been considered to be useful
tools to integrate the markers from the three QTL maps, but these tools require advanced facilities
and bioinformatic analysis, which represent a barrier to breeders from common labs, as previously
discussed. Another feasible strategy is to adopt only one of these three QTL maps and stick with
the original marker system used for mapping. By doing so, breeders can avoid the processes of QTL
integration and the installation of multiple marker systems in their labs. Nevertheless, a main issue
related with the use of only one QTL map derived from one F2 population is the lack of information of
other major-effect QTLs mapped by other F2 populations. This issue was highlighted in the integration
of information in this study given that many major-effect SNP markers that originated from different
maps did not overlap and were not co-localized on the physical map produced (Figure 1). To address
these issues, this study has contributed a simplified and cost-effective HRM-PCA pipeline, integrated
with most of the available major-effect CR-related markers and with a low entry threshold for peach
breeders. To further reduce the costs and labor associated with genotyping all selected markers, we
offer recommendations to prioritize candidate markers.

The nature of a quantitative trait, such as the CR, is that the trait is controlled by multiple genes
and some of these genes contribute to a higher genetic variance of the trait. These genes are known
as major-effect genes. As such, selecting genes with high effectiveness and gene pyramiding are key
concepts for the prioritization of candidate markers. To this end, markers in this study were categorized
as either major- or minor-effect markers according to their contribution to the CR (Figure 1; Table 1;
and Appendix A Table A1). Among these markers, 11 SNPs for major-effect QTLs are recommended to
breeders as part of a priority list for genotyping. Considering the concept of gene pyramiding, these
markers have been suggested so that breeders may survey the genotypes of their germplasm collections.

With respect to the technical limitations of the HRM-PCA method and the polymorphic diversity
of the CR-related markers in the peach gene pool, the marker lists provided in this study may even
be shortened depending on the accuracy of the HRM primer pairs and the associations between
markers and traits. Even though we have optimized the amplification efficiency for all primer pairs
to nearly 100%, some of the primer pairs still exhibit lower accuracies than the others (Table 3 and
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Appendix A, Table A3). For example, the accuracy of SNP_IGA_134905, 1_40995799, and 4_13747914
was 66.7%, 85.7%, and 80%, respectively. For breeders with limited budgets, we recommend only
using markers with high accuracy for major-effect QTLs. Similarly, for breeders who aim to genotype
minor-effect QTLs, we recommend first selecting the markers with 100% accuracy. Considering the
significant level of association between genetic markers and peach CR traits, a contingency table
chi-squared test was carried out to assess this association. A concise list of markers can be generated
by selecting the markers with highly significant levels of association. Since 11 major-effect markers
and 4 minor-effect markers were found to be significantly associated (p < 0.05) with CR-related traits
(Table 3 and Appendix A Table A3), the selected markers can be filtered down from 22 to 15 markers
according the association level. Alternatively, putative haplotypes on three loci would be useful to
simplify the genotyping for peach CR traits (Figure 3, bottom). These three sets of putative haplotypes
can be assessed by determining a total of only 9 SNPs. Nevertheless, this haplotype analysis was based
on only 27 germplasms that are relevant to CR studies of peach cultivars in the Taiwan and Southeast
Asia regions, so a large number of progeny or peach germplasms that have already been phenotyped
for the CR may be required to confirm the association of these putative haplotypes.

In summary, although a total of 22 markers are provided in this study, we recommend that
breeders use the marker sets that represent putative haplotypes. If possible, breeders can also select
several or all of the markers that are linked with major-effect and/or minor-effect QTLs. We suggest
that breeders adjust the number of markers by considering the accuracy of the HRM primer pairs and
the significance of the associations between markers and traits.

4. Conclusions

This study provides a toolkit with optimized primers and experimental settings for assessing
the genotypes of 22 SNP CR-related peach markers, including 11 markers linked to major-effect
QTLs and another 11 markers linked to minor-effect QTLs. A cost-effective HRM genotyping system
was connected with a free and open-sourced R-based PCA variant calling pipeline to empower
this toolkit with high accessibility and flexibility for peach breeders. This pipeline has successfully
determined genotypes for a collection of peach germplasms consisting of low-chill and high-chill
cultivars. Although SNP arrays and GBS are high-throughput genotyping approaches, this simplified
and rapid toolkit still has high implementation potential. With this toolkit, breeders are able to assess
the genotypes of germplasms, screen a large number of progeny during the early developmental
stages, and accelerate peach breeding using MAS for quantitative CR traits. A future extension of this
HRM-based toolkit is slated to include SNPs and putative haplotypes linked with qualitative peach
traits, which will further establish this toolbox as a comprehensive tool for determining quantitative
CR traits and multiple qualitative traits. Considering the germplasms evaluated in this study, the
recommended markers are applicable for the germplasms relevant to the Taiwan and Southeast Asia
regions, and further studies are needed to validate these SNPs as CR markers in other germplasms
outside of Taiwan and Southeast Asia.
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5. Materials and Methods

5.1. Plant Materials

The young and fully expanded leaves of a total of 27 peach (Prunus persica L.) cultivars, spanning
low to high CRs, were collected for HRM genotyping. The CR phenotypes (i.e., chilling hours) of 20
cultivars have been previously reported (Table 3) [46–54] and were used for association analysis. Fifteen
peach cultivars including ‘Flordabeauty’, ‘Okinawa’, ‘Premier’, ‘Xiami’, ‘Tropicprince’, ‘Kuu Taur’,
‘Yinggetao’, ‘Flordared’, ‘Chuenfeng’, ‘SpringHoney’, ‘Tropicsweet’, ‘Ruby’, ‘Tropicsnow’, ‘Fushou’,
and ‘Flordabelle’ were sampled from the Taiwan Agricultural Research Institute in Taichung, Taiwan.
The other 12 peach cultivars including ‘Hongqingshui’, ‘Nakatsu Hakuto’, ‘Sunago wase’, ‘Okubo’,
‘Yamato Wase’, ‘Yamane Hakuto’, ‘Okitsu’, ‘Tsao Sheng Yu Tao’, ‘Shanghaishuimi’, ‘Aki Hakuto’,
‘Odama Hakuho’, and ‘Shiga Hakuto’ were collected from the Highland Experimental Farm of the
National Taiwan University in Nantou County, Taiwan. All samples were stored at –80 ◦C prior to
DNA extraction. These cultivars were mainly selected based on the availability of CR records and by
considering both their flavor and adaptation for East Asia and Southern East Asia, especially Taiwan.

5.2. Genomic DNA Extraction

Genomic DNA was extracted from peach leaf tissues by a modified cetyltrimethyl ammonium
bromide (CTAB) method [55]. Briefly, peach leaves were homogenized using a pestle and mortar in
liquid nitrogen. One gram of the homogenized sample was resuspended with 11 mL of DNA extraction
buffer (100 mM Tris-HCl at pH 8.0, 25 mM EDTA, 1.4 M NaCl, 0.1% polyvinylpyrrolidone with an
average mol wt of 40,000 (PVP-40), 2% CTAB, 0.2% β-mercaptoethanol, and 0.15 mg·mL−1 Proteinase
K). After being mixed well via inversion and incubated at 65 ◦C for 30 min, the extract was centrifuged
at 3000× g for 10 min. The supernatant was transferred to a fresh tube and then mixed with the same
volume of chloroform:isoamyl alcohol (24:1), followed by centrifugation at 8000× g for 10 min. The
upper aqueous phase was transferred to a new tube, and a half volume of 5 M NaCl and a 0.6–0.7
volume of ice-cold isopropanol were added. After standing the mixture at 25 ◦C for 1 h, precipitated
genomic DNA was pelleted by centrifugation at 10,000× g for 20 min. The genomic DNA pellet was
washed with 70% ethanol and air dried. The dried pellet was dissolved in 0.5 mL of high salt TE buffer
(1 M NaCl, 10 mM Tris-HCl pH 8.0, and 1 mM EDTA). To clean RNA contamination, the genomic
DNA solution was digested by the addition of 0.5 µL RNase A (20 mg·mL−1), followed by incubation
at 37 ◦C for 30 min. The RNase-treated DNA was cleaned up again by a chloroform:isoamyl alcohol
(24:1) extraction and subsequent alcohol precipitation with a 0.6–0.7 volume of cold isopropanol. After
spinning at 12,000× g for 30 min at 4 ◦C, the pellet was washed with 70% ethanol and air dried. The
dried genomic DNA pellet was dissolved in DNase-free water for subsequent analysis.

The integrity of the genomic DNA was visualized with 0.8% agarose gel electrophoresis. The DNA
concentration and purity (A260/A280 and A260/A230 ratios) were evaluated using an Epoch Microplate
Spectrophotometer (BioTek, Winooski, VT, USA). The final concentration of DNA was adjusted to 20
ng·µL−1 and stored at −20 ◦C for subsequent HRM analysis.

5.3. HRM Analysis

Specific primers with a near−100% PCR efficiency (Appendix A Table A2) were designed for the
HRM assays. To increase PCR efficiency, primer pairs are designed for amplicons with lengths shorter
than 150 bp [56]. In addition, PCR efficiency was determined by the construction of optimal standard
curves with Ct values and genomic DNA quantity. Briefly, peach leaf genomic DNA was serially
diluted with deionized water and used as a template for qPCR analysis. The PCR efficiency was
calculated with StepOnePlus v. 2.3 software (Applied Biosystems, Waltham, MA, USA) using a formula
of PCR efficiency (PCR efficiency = 10−1/slope−1) with two technical repeats. HRM was conducted
with 2.5 ng of genomic DNA as a template using a StepOnePlus Real-Time PCR System (Applied
Biosystems) and MeltDoctor HRM Master Mix (Applied Biosystems) according to the instructions
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from the manufacturer. The HRM thermocycles were set as follows: enzyme activation at 95 ◦C for
10 min, 40 cycles of denaturation at 95 ◦C for 15 s, and annealing/extension at 60 ◦C for 1 min. Prior
to the melting curve analysis, the PCR amplicons were denatured at 95 ◦C for 15 s and reannealed
at 60 ◦C for 1 min. The melting curves were generated by dissociation at 95 ◦C with a 1% ramp rate.
The amplification and dissociation curves were analyzed using StepOnePlus v. 2.3 software (Applied
Biosystems). In addition, a melt curve analysis at the post-PCR step was carried out using HRM
software v. 2.0.1 (Applied Biosystems).

5.4. PCA for HRM Output Result Clustering

After HRM analysis, raw melt region temperature data and melt region normalized fluorescence
data were exported with the StepOnePlus v. 2.3 software. Normalization and PCA were performed on
the HRM output raw fluorescence data in RStudio [42]. The samples were clustered and visualized
using the ‘mclust’ [57] and ‘plot3D’ packages, respectively. To verify the clustering results of the
HRM data analyzed via PCA, randomly selected samples from each cluster were sequenced by Sanger
sequencing (performed by Mission Biotech Co., Taipei, Taiwan). All R studio scripts are available
(Supplementary Materials, also available on GitHub, https://github.com/choulin2/PCA_HRM.git).
Please see Section 5.5 for step-by-step PCA pipeline instructions.

5.5. Instructions of the HRM Fast Genotyping Platform Analyzed with the PCA Pipeline

After PCR amplification and HRM dissociation, temperature data and normalized fluorescence
data of the melt region may be exported as a single file with StepOnePlus v. 2.3 software (Applied
Biosystems, Waltham, MA, USA). Afterwards, the temperatures of all wells on each fluorescence read
are averaged to represent the temperature of each fluorescence read. All single SNP fluorescence data
are listed with the corresponding temperature on each read. This data should be arranged based on
the format of the provided template (please see Supplementary Materials “PCA_HRM.example.csv”,
also available on GitHub, https://github.com/choulin2/PCA_HRM.git) and saved as a ‘.csv’ file using
Microsoft Excel (Microsoft, Redmond, WA, USA).

After converting the raw data into this R-readable format, the R scripts we provided (see
Supplementary Materials “PCA_HRM.v8.R”, also available on GitHub, https://github.com/choulin2/

PCA_HRM.git) can be loaded into R studio. Before running the R scripts, we recommend setting the
working directory to the folder containing this R script file and the data .csv file (Session /Set Working
Directory /Choose Directory). Then, the data can be imported by running the following scripts:

> input_file = readline(‘Enter the file name: ’)
> exported.data.file = read.csv(input_file,header = T)

After data input is complete, the upper and lower melt temperature limits may be set according
to the optimized temperature for each marker (Table 2) as follows:

> max_lim = readline(‘Enter the upper limit of the melt region: ’)
> min_lim = readline(‘Enter the lower limit of the melt region: ’)

After setting the melt region for analysis, the scripts may be directly run line-by-line from step
2 to step 6 to complete data normalization and conduct the PCA. Afterwards, the latest version of
the ‘mclust’ and ‘plot3D’ packages should be installed from The Comprehensive R Archive Network
(CRAN, https://cran.r-project.org/) for clustering and three-dimensional (3D) graph plotting:

> library(mclust)
> library(plot3D)

Two or three principal components (PCs) were chosen for clustering at step 7 based on the
explained variance of each principal component (PC) after the PCA:

https://github.com/choulin2/PCA_HRM.git
https://github.com/choulin2/PCA_HRM.git
https://github.com/choulin2/PCA_HRM.git
https://github.com/choulin2/PCA_HRM.git
https://cran.r-project.org/
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> cluster.data <- Mclust(PCA.analysis.file$rotation[,1:3], G = 3)
> df.PCA.MM1 <- as.data.frame(PCA.analysis.file$rotation[,1:3])
> cluster.data$classification

In the above script, both of the selected PCs and the expected genotype number for clustering are
adjustable. The number of selected PCs may be adjusted by changing the number of analyzed columns
from PCA.analysis.file$rotation[,1:3], while G defines how many expected genotype groups were used
for clustering.

In order to visualize the clustering results, scatter diagrams of the chosen PCs may be plotted with
the ‘plot’ function of step 7. In addition, the ‘identify’ function was used to identify selected points on
the interactive graphs by pressing the mouse button over the desired point.

> plot(df.PCA.MM1[,1:2], bg=cluster.data$classification, pch=21,xlab='PC1', ylab='PC2')
> identify(df.PCA.MM1[,1:2], labels = rownames(df.PCA.MM1))

After running the ‘identify’ function, it is necessary to press the ‘esc’ button or the finish tab in
order to finish the interactive plot and to run the following scripts. In the last data export step, 3D
clustering figures may be obtained, such as in Figure 2, in ‘.pdf’ format as well as a variant calling
file, such as “PCA_HRM.example.csv variant call.csv” (see Supplementary Materials). According to
the information of the variant call, samples that are clustered in the same group may be identified. A
web-based demonstration version of this R script and example data can be accessed on NextJournal
(https://nextjournal.com/RNA-Sick/hrm-analysis-with-pca-and-clustering). To validate genotypes,
at least one selected sample from each group is subjected to Sanger sequencing, and the represented
genotype of each variant call may be defined. In this manner, we may genotype all samples in silico for
all the selected CR-related markers (Table 3 and Appendix A Table A3).

5.6. Association Analysis and Haplotype Analysis

Peach cultivars were classified by high and low CR, and SNP markers were grouped by genotypes.
An association analysis between genetic markers and peach CR traits was performed using a chi-square
test in a contingency table that contained the counts of individuals in each category. The chi-squared
test statistic and p value of the test were calculated with the ‘CHITEST’ function in Microsoft Excel to
assess the changes of the observed versus expected counts in each category. Regarding the haplotype
analysis, genotype data of SNPs in three chromosome regions from all cultivars were converted to
“0”, “1”, or “2”. The homozygous AA SNP sequence was “0”, the heterozygous AB sequence was “1”,
and the homozygous BB sequence was “2”. These genotypic information were then formatted for
Case-control haplotype inference (CHAPLIN) software [43,44], setting low CR and high CR as the case
and control, respectively. The modeling of this likelihood approach was set as ‘general’.

https://nextjournal.com/RNA-Sick/hrm-analysis-with-pca-and-clustering
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CR Chilling requirement
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MAS Marker-assisted selection
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Appendix A

Table A1. Minor-effect peach chilling requirement (CR)-related quantitative trait loci (QTLs) and the representative markers.

Selected Marker 1 Original Cofactor 2 QTL 3 LOD 4 R2 (%) 5 Physical Position
(Original Cofactor) 6

Marker Distance
from the Cofactor 7

Romeu et al., 2014 [9]
SNP_IGA_297497 SNP_IGA_297497 CRW-EJ 3.8 10 Pp03:3635392 N/A 9

N/A 8 SNP_IGA_293752 CRD-EJ 2.5 6 Pp03:1985533

N/A SNP_IGA_635355 CRU-EJ
CRD-EJ 2.8-3.8 13-18 Pp06:10237718

Zhebentyayeva et al., 2014 [8]

rs159238319 UDA-053 qCR1d-2008
qCR1d-2009

2.9 (2008)
6.7 (2009)

3.1 (2008)
6.9 (2009) Pp01:1689830..1689847 +119

SNP_IGA_112592 BPPCT036B qCR1c-2009 2.4 2.7 Pp01:37719340..37719361 +55
N/A Pchgms170 qCR2-2009 2.3 3.4 Pp02:16917187..16917222

SNP_IGA_419106 AMPA103 qCR4b-2008 3.0 4.6 Pp04:13519992..13520025 +7012
rs159239801 M12a qCR4b-2009 2.7 3.6 Pp04:9219635..9219660 −264

N/A ssrPACITA21 qCR5-2008
qCR5-2009

3.9 (2008)
3.9 (2009)

4.6 (2008)
4.5 (2009) Pp05:10776287..10776338

SNP_IGA_695463 EPPISF002 qCR6-2008 3.4 3.9 Pp06:28325489..28325504 −2022

N/A PacC13 qCR8-2008
qCR8-2009

4.0 (2008)
2.4 (2009)

5.0 (2008)
2.8 (2009) Pp08:18135194..18135213

Bielenberg et al., 2015 [10]
2_16900230 2_16900230 qCR2-2008 7.72 10.5 Pp02:20476740 N/A
4_00772820 4_00772820 qCR4a-2008 6.23 5.9 Pp04:772922 N/A
4_11060745 4_11060745 qCR4b-2008 5.06 4.5 Pp04:11071616 N/A
5_13713689 5_13713689 qCR5a-2008 6.00 5.7 Pp05:13708460 N/A

N/A BPPCT038 qCR5b-2008 4.50 4.0 Pp05:14652958..14653005
8_11718744 8_11718744 qCR8-2008 8.64 9.0 Pp08:12463247 N/A

1 Selected marker: the flanking SNP marker representing the original cofactor as the selected SNP marker. 2 The original cofactor linked with QTL. 3 QTL: quantitative trait loci identified
in each F2 population. 4 LOD: logarithm of the odds. 5 R2 (%): percentage of phenotypic variance explained by the QTL. 6 Physical position: the position of the original cofactor on the P.
persica genome v.2.0.a1 physical map. The physical position of each marker was defined by scaffold and bp position (scaffold:bp position for SNP and scaffold:bp..bp region for SSR) in the
P. persica genome v.2.0.a1. 7 Marker distance from the cofactor indicates the upstream (+) or downstream (-) distance of the cofactor from the selected SNP marker. When the cofactor is an
SSR marker, the distance is counted from the side closest to the selected SNP marker (i.e., from the left side of the SSR for upstream SNPs; from the right side of the SSR for downstream
SNPs). 8 N/A: not available, indicating that no suitable primers with high PCR efficiency or specificity are available or that no polymorphisms were found at adjacent SNPs in all tested
peach cultivars. 9 N/A: not applicable.
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Table A2. Primer lists of SNP markers for high resolution melting (HRM) analysis.

Selected Marker 1 Original Cofactor 2 Primer Name Sequence (5’-3’) Ta (◦C) 3 Product Size (bp) Efficiency of PCR 4 R2

SNP_IGA_122351 SNP_IGA_122057 S1_4102b-f1 ATTTTGTATCTGCGTGTGGACGGAG 60.1 152 92.579 0.998
S1_4102b-r1 TGCGGTAATCTAGGAACTGGAGTCG 59.6

SNP_IGA_297497 SNP_IGA_297497 S3_0363-f2 AGTGACAAGGAAAGTCTCTCTGAAGGC 58.7 81 98.858 0.994
S3_0363-r2 CTGGCTCAAACACTCAACCAACTTG 58.8

SNP_IGA_769251 SNP_IGA_769194 S7_1256-f1 CGCACAGATTCCAACAGAGCCG 61.4 104 95.879 0.997
S7_1256-r1 GCGACTTTGGTCCACGTTATGCC 61.3

SNP_IGA_779222 SNP_IGA_779224 S7_1611-f1 GACCGAAGAATATCGACGTTAAGGGTTCTTTG 65.1 98 94.51 0.972
S7_1611-r1 AAAGTTCATGCAGAAGATACCAGCAGACTC 61.3

rs159238319 UDA-053 S1_1690-f2 CTCTTGTTGGTTATCTCATTGTTAAGTGATTTGACATG 65 77 122.991 0.967
S1_1690-r2 CAACCACAAGTCTCACAAAATGCACAC 60.5

SNP_IGA_134905 Pchgms29 S1_4631-f2 TTCTACCAATATGAAAAAGCTACCTGGGGTT 62.2 88 123.755 0.984
S1_4631-r2 TGATTACCTCCGAGCTTCTGATAGGC 60

SNP_IGA_381567 Pchgms174 S4_2429-f2 GTGGAGTATCTTCGGAACTCAGAAAACCA 61.8 74 105.302 0.984
S4_2429-r2 CATGAGATGATCGTCAGTCTAAACTCTTAACTTACC 62

SNP_IGA_419106 AMPA103 S4_1351-f1 GTGACATTTGACTAGGTCTATCTGCCCTAAG 60.1 136 90.389 0.932
S4_1351-r2 CCATTAGGTATAAAAAGGGTTGGTTAAGTTGG 61.3

SNP_IGA_695463 EPPISF002 S6_2645-f2 CTTGTTCACCCGTCGTGGAGGCT 63.1 68 96.83 0.994
S6_2645-r2 GCACTTCCCAAGGTGGTCGTTTCC 63.5

SNP_IGA_786935 UDAp-409A S7_1954b-f1 CAATCCAAAGCTGCTCACCTCCA 60.1 124 102.906 0.986
S7_1954b-r1 GACCTGGCTCCTGACGGAGTTG 59.6

SNP_IGA_112592 BPPCT036B S1_3674-f2 ACAGAGAGGTTCACATTGGCTTTACAAA 59.5 149 92.303 0.960
S1_3674-r2 GAAGCTGGGTGATAAGTAATTTTCAATAAACAAGCA 64.6

rs159239801 M12a S4_9208b-f1 CTGTCTTGGTATCAATCCACTGTGAGACTT 60.1 150 89.051 0.996
S4_9208b-r1 AGCCAAGTCCAATTTCGTTTCAACTAATG 61.6

SNP_IGA_780662 UDAp-460 S7_1667-f1 GGTTTCGGTTTCTTCTTCGTCCA 58.2 97 91.915 0.998
S7_1667-r1 AACGACAAGTCGCATCAGGATCAG 59.2
S1_4475-r1 CCAATCCTGACAACTAGCATTGATTGAC 60.0

1_40995799 1_40995799 S1_4099-f1 CGAACAATCCAACTGGCAGTGC 59.1 96 102.331 0.999
S1_4099-r1 AGGAGTCATAAACAATTATTGATCCGTTTG 59.1

2_16900230 2_16900230 S2_1690-f1 CAAATTACAAACAGCCACCTCATCAGC 60.9 114 92.092 0.991
S2_1690-r1 GTGACCGTCGGATTCGCCAT 59.0

4_00772820 4_00772820 S4_0077-f1 CATGGTCGTGTTGTCTCTGCATTG 59.0 93 89.503 0.995
S4_0077-r1 GAGAAACGGTGTTGACTGAGCAGC 59.0

4_11060745 4_11060745 S4_1106-f1 CCGATTGGTTGATGCTGTGGATC 60.0 133 108.264 0.976
S4_1106-r1 GAAGTAAAGGTTATCGAAATGGTTTCTCG 59.0

4_13747914 4_13747914 S4_1374-f1 ACAAGGCTGGGTTGTAGGCTGC 59.2 131 99.112 0.984
S4_1374-r1 GCTGGATCAGGAGGCAAAATTAGG 59.1

SNP_IGA_427604 4_14984691 S4_1498b-f2 AATCTACTGAGATTCTAGTATGAGAGAGGTCTAAGC 58.9 134 99.598 0.982
S4_1498b-r2 CATTTTCCACCCACCAAACCTTCGAC 64.1

5_13713689 5_13713689 S5_1371-f2 CACTCTGAATCCTTCTGTTGGGTTGGC 63.7 132 92.307 0.992
S5_1371-r2 AATATCAGTGCAGCTTTCAGGGACAAGAAG 62.8

8_11718744 8_11718744 S8_1171-f1 CATGGAGATCAGTAATGAAACATCTCTGC 59.4 96 96.596 0.998
S8_1171-r1 GCCCACTGACAGCTTCTTCAACC 58.8

1 Selected marker: the flanking SNP marker representing the original cofactor as the selected SNP marker. 2 The original cofactor linked with QTL. 3 Ta: annealing temperature. 4 Efficiency
of PCR and R2 were determined by the optimal standard curves constructed using the Ct value and genomic DNA quantity. Specifically, peach leaf genomic DNA was serially diluted
with deionized water and used as template for qPCR. PCR efficiency was calculated with StepOnePlus software v. 2.3 with a formula of PCR efficiency (PCR efficiency = 10−1/slope – 1).
Technical repeats = 2.
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Table A3. Genotypes of the selected SNP markers linked to minor-effect CR-related QTLs in 27 peach cultivars.

Cultivar CR (h) SNP_IGA
_297497 rs159238319 SNP_IGA

_695463
SNP_IGA
_112592

SNP_IGA
_419106 rs159239801 2_16900230 4_00772820 4_11060745 5_13713689 8_11718744

Low-chill cultivars
Okinawa 100 C† C T A T† T T/G A G C† T†

Flordared 100 C C T A† T/C T/G G† A/G† C/G C C†

Ruby 100 C T/C† G G C T/G T A/G C/G C C
Xiami 125 C C T A T/C T/G† G† A/G C/G C† C†

Yinggetao 125 C C T† G C T† T A G C C†

Premier 150 T/C T/C† T/G A/G T T T/G A/G C/G C T/C†

Flordabell 150 T C† T† A/G C† T/G† T/G† A/G C/G† C† C
Flordabeauty 150 T/C C T/G A/G† T/C† T/G† T† A/G C/G C T/C†

TropicPrince 150 T/C C T/G A/G† T† T† T† A G† C/G† T
Kuu Taur 150 C C T A C† T T† A† G C T†

Chuenfeng 150 C T/C† T† A/G T/C T/G G G† C/G C T/C
TropicSweet 175 C C† T/G† A/G† T/C T/G T† A† C/G C T/C†

SpringHoney 180 C T/C† T/G G T/C T T/G A/G C/G C T/C†

Tropicsnow 200 C C† G A T† T/G† T/G A/G C/G C C
Fushou N/A 5 C C T G† T/C† T† T/G A† C/G C/G† C†

High-chill cultivars
Yamane Hakuto 800 T/C C G A C T T/G A C/G† C T

Shiga Hakuto 800 T C G A† T/C† T† T A C/G† C T
Okubo 850 T† C T/G A† C T T/G A C/G C T†

Shang Hai Shui Mi 850 T C T† A† T T T/G A C/G† C/G† T†

Okitsu 900 T/C C T G† T T T/G A/G G C† T
Aki Hakuto 900 T C T/G A C T T/G A G C T

Hongqingshui N/A T C T/G A C T† T† A/G† C/G C/G† T
Nakatsu Hakuto N/A T/C C† G† A C T T/G A† C/G C T†

Sunago wase N/A T/C C T A T/C† T T/G A C/G C† T
Yamato Wase N/A T/C† C G A C T T/G A/G† C/G† C T†

Odama Hakuho N/A T/C C G A C T T/G A† C/G† C T†

Tsao Sheng Yu Tao N/A C T/C† T A T T† T/G G G C T

Putative low chill associated
marker C – T G T T/G – G – – C

Significance (X2-test) 4 ** ns. ns. ** ns. ** ns. ns. ns. ns. ***

Accuracy (ratio; %) 3/3; 100% 8/9; 88.9% 5/6; 83.3% 9/9; 100% 6/9; 66.7% 10/10;
100% 5/8; 62.5% 9/9; 100% 7/7; 100% 9/9; 100% 15/15;

100%
1 Cultivar name: for cultivars without English names, the names were transliterated based on the pronunciation of their Japanese or Chinese name. 2 Putative low chill specific markers:
the SNP sequence variant is relatively more frequent in low-chill cultivars than in high-chill cultivars. 3 The accuracy of each marker was calculated as follows: the number of variant calls
consistent with Sanger sequencing / total sample number sequenced with Sanger sequencing in ratio and percentage. 4 Association analysis between genetic markers and peach CR traits
using a contingency table chi squared-test (X2). * p < 0.05, ** p < 0.01, and *** p < 0.001. ns.: not significant. 5 N/A: not available. † The genotyping results validated with the Sanger
sequencing method.
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