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Abstract: Pre-mRNA splicing is an essential process for gene expression in higher eukaryotes, which
requires a high order of accuracy. Mutations in splicing factors or regulatory elements in pre-mRNAs
often result in many human diseases. Myelodysplastic syndrome (MDS) is a heterogeneous group of
chronic myeloid neoplasms characterized by many symptoms and a high risk of progression to acute
myeloid leukemia. Recent findings indicate that mutations in splicing factors represent a novel class
of driver mutations in human cancers and affect about 50% of Myelodysplastic syndrome (MDS)
patients. Somatic mutations in MDS patients are frequently found in genes SF3B1, SRSF2, U2AF1,
and ZRSR2. Interestingly, they are involved in the recognition of 3′ splice sites and exons. It has been
reported that mutations in these splicing regulators result in aberrant splicing of many genes. In this
review article, we first describe molecular mechanism of pre-mRNA splicing as an introduction and
mainly focus on those four splicing factors to describe their mutations and their associated aberrant
splicing patterns.
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1. Introduction
1.1. Splicing Signals and Splicing Reaction

Pre-mRNA splicing is a critical step for protein expression in higher eukaryotes [1].
For constitutive splicing, all exons are ligated in order without any insertions and deletions
of nucleotides. The essential signals for splicing reaction mostly reside at both ends of
introns (Figure 1) [1]. At the 5′ end, consensus sequence of GURRGU (R stands for purine)
can be found in most of introns in mammals (Figure 1). This site is called 5′ splice site
(5′ss). CAG consensus sequence is often discovered at the 3′ end of introns (Figure 1),
which is called 3′ splice site (3′ss). In addition to them, pyrimidine (Y) residue stretch
precedes to 3′ splice site in order to support recognition of 3′ splice site in mammals
(Figure 1, (Y)nNCAG). A branch point sequence (BP), at which lariat formation occurs
by 2′–5′ phosphodiester bond formation with Guanine residue at 5′ splice site, resides
20–30 nucleotides upstream of the 3′ splice site (Figure 1). Although the sequence for
branch point in budding yeast is well-conserved as UACUAAC (underlined A is a branch
point) among introns, the conserved sequence around branch point in mammals is YUNAY
(branch point is underlined, Y and N stand for pyrimidine and any nucleotide, respectively),
which is more diverse (Figure 1) [2]. Then, pyrimidine residue stretch also supports branch
point sequence recognition (Figure 1). The splicing reaction consists of two steps, the first
step and the second step. In the first step reaction, cleavage at 5′ ss and formation of lariat
structure in intron occur. The second step reaction includes cleavage at 3′ ss and ligation
of exons to produce mRNA. Both steps require ATP and divalent cations in vitro. As a
divalent cation, magnesium is most efficient in in vitro splicing reaction.
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reaction, 5’ splice site is recognized by U1 snRNP by RNA-RNA pairing. U2 snRNP then 

come to associate with a branch point sequence with the help of U2 snRNP auxiliary factor 

(U2AF) complex that consists of U2AF1 and U2AF2 heterodimer. The RNA component of 
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Figure 1. A scheme for splicing reaction with two steps. Schematic representation of sequences re-
quired for splicing reaction. Boxes show exons, and lines between boxes represent introns. Conserved
sequence elements of metazoan pre-mRNAs. R and Y stand for purine and pyrimidine residues,
respectively. N indicates any nucleotides. Conserved 5′ and 3′ splice sites, and Adenosine residue
used for branch nucleotide are underlined.

1.2. Spliceosome Formation with Splicing Factors

Splicing reaction takes place in a large ribonucleoprotein complex, termed the spliceo-
some [1]. The assembly of the spliceosome on pre-mRNA occurs with stepwise association
of the uridine (U)-rich small nuclear RNPs (snRNPs) (U1, U2, U4, U5, and U6) (Figure 2)
and a multitude of non-snRNP splicing factors [1]. U snRNPs consist of short RNA, Sm
proteins, and a few specific proteins of each U snRNPs. As the first step of the reaction,
5′ splice site is recognized by U1 snRNP by RNA-RNA pairing. U2 snRNP then come to
associate with a branch point sequence with the help of U2 snRNP auxiliary factor (U2AF)
complex that consists of U2AF1 and U2AF2 heterodimer. The RNA component of U2
snRNP also hybridizes with pre-mRNA to recognize BP. The tri-snRNP, U4/U5/U6, then
becomes joining to the spliceosome. Two U snRNPs, U4 and U6, form a heterodimer by
pairing their RNA components. The spliceosome is activated by removal of U1 and U4
snRNPs to remodel pre-mRNA-U snRNPs and U snRNP-U snRNP interactions, and the
first step reaction, the cleavage at the 5′ splice site and formation of a lariat structure, takes
place. Then, the cleavage at the 3′ splice site and ligation of two exons occur as the second
step reaction. Several lines of evidence suggested that U6 snRNA has catalytic activity for
the splicing reaction.
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the middle. 

  

Figure 2. Splicing reaction and formation of spliceosome. Schematic representations of major and minor spliceosome
formations. Both splicing reactions take place stepwise in a spliceosome. Spliceosomal Uridine-rich small nuclear ribonucle-
oproteins (U snRNPs) are indicated with their names. The name of each spliceosome intermediate complex is shown in
the middle.

There is another type of intron which is called a minor intron or ATAC intron, since
AT and AC are often found at 5′ and 3′ splice sites in genome DNA, respectively (Figure 2).
There are about 800 minor introns, which corresponds to 0.4% of total introns in hu-
mans [3,4]. Although it is thought that splicing efficiency of minor introns is less than that
of major introns, minor introns remain residing in the genome of higher eukaryotes. It is



Int. J. Mol. Sci. 2021, 22, 7789 4 of 15

possible that regulation of gene expression through regulation of minor intron splicing
is important for those organisms. For this minor intron spliceosome formation, there is a
different set of U snRNPs (U11, U12, U5, U4atac, and U6atac, Figure 2) [3,4]. The 5′ splice
site and the branch point sequence is recognized by a heterodimer that consists of U11
snRNP and U12 snRNP, respectively. Instead of U4 and U6 snRNPs, U4atac and U6atac
snRNPs are recruited to a minor spliceosome. Interestingly, U5 snRNP is a common snRNP
for both major and minor introns (Figure 2). For both major and minor spliceosomes,
formation of the spliceosome takes place with stepwise assembly of complexes designated
as H, E, A, B, and C (Figure 2). The spliceosome is dissociated into two complexes, the
mRNP complex and the intron complex, by an RNA helicase RHX34/HRH1 [5]. The mRNP
complex, which contains Exon Junction Complexes on mRNA [6,7], will be exported to
the cytoplasm, and mRNAs will serve as templates for translation. On the other hand, the
intron complex is supposed to be retained and degraded in the nucleus after the removal
of U snRNPs and other splicing factors. Post-splicing intron complexes are degraded via
the Intron Large (IL) and Intron Small (IS) complexes [8]. The IL complex contains U2,
U5, and U6 snRNPs, whereas those U snRNPs are barely detected in the IS complex [8].
The IL complex also contains hPrp19 complex factors whose homologs in budding yeast
are involved in both mRNA splicing and the DNA repair process [8]. Those findings
suggest an interplay between mRNA splicing and transcription-coupled DNA repair (TCR).
Removal of U snRNPs from the IL complex is mediated by the hPrp43/TFIP11 complex in
humans [8]. After dissociation of splicing factors, introns in the IS complex are susceptible
to RNA lariat debranching enzyme 1 (Dbr1) protein that linearizes introns via dissolving
2′–5′ phosphodiester bond [8,9]. Interestingly, hDbr1 can shuttle between the nucleus and
the cytoplasm [10], suggesting that it is involved in the RNA quality control process by
linearizing intron-lariat containing RNAs accidentally exported from the nucleus.

1.3. Alternative Splicing

The splicing described above is termed constitutive splicing, which utilizes all exons in
the pre-mRNA molecule. In contrast, another type of splicing, alternative splicing, employs
several alternative exons for both inclusion and exclusion [11,12]. There are several types of
alternative splicing, such as alternative 5′ or 3′ splice sites, exon-skipping/-inclusion, intron
retention, and mutually exclusive exons (Figure 3). Alternative splicing produces many
variants of mRNAs that are translated into proteins with different structures and functions.
Therefore, this step likely contributes to generating diversity of the expressed proteins in
higher eukaryotes from the limited number of genes [13]. The Human Genome Project also
revealed that over 95% of human genes undergo alternative splicing [14,15]. Abnormalities
of both constitutive and alternative splicing in humans may cause dysfunctions or absence
of the encoded functional proteins, often resulting in hereditary diseases [16].



Int. J. Mol. Sci. 2021, 22, 7789 5 of 15

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 16 
 

 

1.3. Alternative Splicing 

The splicing described above is termed constitutive splicing, which utilizes all exons 

in the pre-mRNA molecule. In contrast, another type of splicing, alternative splicing, em-

ploys several alternative exons for both inclusion and exclusion [11,12]. There are several 

types of alternative splicing, such as alternative 5′ or 3′ splice sites, exon-skipping/-inclu-

sion, intron retention, and mutually exclusive exons (Figure 3). Alternative splicing pro-

duces many variants of mRNAs that are translated into proteins with different structures 

and functions. Therefore, this step likely contributes to generating diversity of the ex-

pressed proteins in higher eukaryotes from the limited number of genes [13]. The Human 

Genome Project also revealed that over 95% of human genes undergo alternative splicing 

[14,15]. Abnormalities of both constitutive and alternative splicing in humans may cause 

dysfunctions or absence of the encoded functional proteins, often resulting in hereditary 

diseases [16]. 

 

Figure 3. Major patterns of alternative splicing. Schemes of five major alternative splicing patterns in higher eukaryotes. 

In intron retention alternative splicing, the intron shown in a thick line is recognized as an alternative exon. 

1.4. Cis-Regulatory Elements and Trans-Acting Factors in Splicing 

In vertebrates, intron length is much longer than that in lower eukaryotes. Thus, it is 

assumed that exon recognition, rather than intron recognition, is a major mechanism for 

splicing [11,17]. For exon recognition, both upstream and downstream intronic regions of 

the corresponding exon play important roles. The upstream intronic region includes the 

branch point (BP), polypyrimidine stretch, and 3′ splice site AG dinucleotide, while the 

downstream intron region has a 5′ splice site sequence. BP is recognized by U2 snRNP in 

accordance with the SF3B complex [1,18,19]. Polypyrimidine stretch and AG dinucleotide 

are bound to U2AF2 and U2AF1, respectively, which form a heterodimer [1,18,19]. The 5′ 

splice site downstream of exon is associated with U1 snRNP. In addition to those intronic 

elements, some exons contain exonic regulatory elements that are called exonic splicing 

enhancer (ESE). ESE is often bound to Serine-Arginine-rich splicing factor (SRSF) family 
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intron retention alternative splicing, the intron shown in a thick line is recognized as an alternative exon.

1.4. Cis-Regulatory Elements and Trans-Acting Factors in Splicing

In vertebrates, intron length is much longer than that in lower eukaryotes. Thus, it is
assumed that exon recognition, rather than intron recognition, is a major mechanism for
splicing [11,17]. For exon recognition, both upstream and downstream intronic regions of
the corresponding exon play important roles. The upstream intronic region includes the
branch point (BP), polypyrimidine stretch, and 3′ splice site AG dinucleotide, while the
downstream intron region has a 5′ splice site sequence. BP is recognized by U2 snRNP in
accordance with the SF3B complex [1,18,19]. Polypyrimidine stretch and AG dinucleotide
are bound to U2AF2 and U2AF1, respectively, which form a heterodimer [1,18,19]. The 5′

splice site downstream of exon is associated with U1 snRNP. In addition to those intronic
elements, some exons contain exonic regulatory elements that are called exonic splicing
enhancer (ESE). ESE is often bound to Serine-Arginine-rich splicing factor (SRSF) family
proteins to promote exon recognition [18,20,21]. To date, twelve SR proteins have been
found in humans [21]. SRSF family proteins share a common feature, one or two RNA
binding domains (RBDs) at amino-terminus and Arginine-Serine-rich (RS) domain at car-
boxy terminus [18,20,21]. RS domain is a protein-protein interaction domain among RS
domain-containing proteins [18,20,21]. U2AF1/U2AF35, U2AF2/U2AF65, and U170K, a
component of U1 snRNP, also harbor the RS domain. SRSF proteins bind to ESE by its
RBD and interact with both U2AF and U170K through the RS domain, which bridges the
3′ splice site and 5′ splice site over the exon (Figure 4). This crosstalk between 3′ and 5′

splice sites promotes the recognition of the exons that have ESEs [11,17]. In contrast, there
is another regulatory sequence that reduces exon recognition. This regulatory element is
called exonic splicing silencer (ESS). ESSs are bound to another class of splicing regulators,
heterogeneous nuclear ribonucleoproteins (hnRNPs). The hnRNP protein family consists
of 20 proteins, named from A1 to U, which have many different RNA binding domains [22].
hnRNPs are nuclear abundant proteins that have many cellular functions, such as tran-
scription, splicing, RNA transport/localization, translation, and RNA stability [22]. It was
demonstrated that one of the hnRNP family proteins, hnRNP A1, mediates silencing by
binding initially to a high-affinity binding site in the exon, which then promotes further
hnRNP A1 association with the upstream and downstream regions of the exon [23]. Thus,
this results in inhibition of ESE binding of SR proteins (Figure 4). The elements described
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above are also found in introns, which, in turn, are called Intronic Splicing Enhancer (ISE)
and Intronic Splicing Silencer (ISS) [11]. Those regulatory elements and regulatory factors
are involved not only in constitutive splicing, but also in tissue- and stage-specific alterna-
tive splicing [11]. Both SR proteins and hnRNP proteins are involved in alternative splicing.
SR proteins tend to promote exon inclusion by binding to ESE and ISE, whereas hnRNP
proteins, especially hnRNP A/B proteins, have a tendency to enhance exon skipping via
binding to ESS and ISS [11]. The ratio between SR protein and hnRNP A/B protein levels
varies among tissues [24], which likely contributes to tissue-specific alternative splicing.
Several tissue-specific splicing regulators are also reported. For example, Nova, KSRP, and
RbFox1 proteins are neuron-specific RNA binding proteins that mediate neuron-specific
alternative splicing [11]. RNA binding motif protein 24 (Rbm24) and Rbm38 are required
for muscle differentiation through splicing modulation [11]. Epithelial cells also express
epithelial-specific splicing regulators, ESRP1 and 2, to pursue epithelial-specific alternative
splicing [11]. It is likely that the combination of expression levels of SR proteins, hnRNP
proteins, and tissue-specific splicing regulators determines which alternative splicing
pattern is selected in each tissue.
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Figure 4. Models for promotion or inhibition of exon recognition by SR proteins or hnRNP A/B proteins, respectively.
(A) SR proteins bind to exonic splicing enhancer (ESE) through their RNA binding domain (RBD). They interact with U2AF1
and U1 70K proteins via interactions between their Arginine-Serine-rich (RS) domains, which promotes exon recognition.
U1, U2: U1, U1 small nuclear ribonucleoprotein, U2 small nuclear ribonucleoprotein. U2AF1, U2AF2: U2 snRNP auxiliary
factor 1, 2. (B) hnRNP A/B proteins bind to the exonic splicing silencer (ESS) via their RBD and can spread on pre-mRNA
in both 5′ and 3′ directions. This results in covering the exon and other regions on pre-mRNA and prevents association of
splicing factors. Consequently, this exon tends to be excluded. RGG: Arginine-Glycine-Glycine repeat-rich domain.

1.5. Human Diseases Caused by RNA Processing Defects

Mutations in those cis-regulatory elements and trans-acting splicing regulators cause
aberrant splicing patterns that often result in diseases in humans. These diseases that
have defects in RNA metabolism steps have recently been called ‘RNA diseases’, and it
is estimated that up to 15% of all point mutations that result in human genetic disease
cause an RNA splicing defect [16]. Ten years ago, it was demonstrated that splicing factors
are frequently mutated in myelodysplastic syndrome (MDS). MDS is a heterogeneous
group of chronic myeloid neoplasms characterized by many symptoms, such as ineffective
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hematopoiesis, peripheral blood cytopenia, and a high risk of progression to acute myeloid
leukemia [25]. Next-generation sequencing of the patients’ genome DNA revealed that
SF3B1, U2AF1, SRSF2, and ZRSR2 are the most frequently mutated splicing factors [26–28].
Since SF3B1, U2AF1, and SRSF2 have the particular amino-acid residues mutated in many
patients, those mutations are supposed to cause ‘gain-of function’ mutations in those genes.
In contrast, many different mutations were found in ZRSR2 genes, suggesting that those
mutations result in ‘loss-of-function’ of the ZRSR2 gene product. Therefore, it was assumed
that aberrant splicing caused by splicing factor mutations results in onset of MDS. Several
lines of evidence have been accumulated to demonstrate how MDS onsets are caused by
mutations in certain splicing factors.

In this review article, we mainly introduce four of the most frequently mutated
splicing factor genes (SF3B1, U2AF1, SRSF2, and ZRSR2) in MDS with the aberrant splicing
mechanism caused by those mutations and an outline of MDS from a splicing point of view.

2. Splicing Factors Mutated in Myelodysplastic Syndrome
2.1. SF3B1

SF3B1 is one of the components of the SF3B complex that stabilizes U2 snRNP binding
to the branch point sequence during pre-mRNA splicing (Figure 5) [2,29]. SF3B1 gene is
located on chromosome 2q33.1. Approximately 20–28% of MDS patients harbor SF3B1
mutations [27,30–32]. Surprisingly, SF3B1 mutations are responsible for the ring sideroblast
(RS) phenotype in ∼98% of cases [31]. In a study with NOD scid gamma (NSG) mouse,
mice transplanted with hematopoietic stem cells (HSCs) from SF3B1 mutant MDS-RS
patients develop the characteristic ring sideroblasts phenotype [33]. Most recently, the
International Working Group for the Prognosis of Myelodysplastic Syndromes (IWG-
PM) provided supporting evidence that shows the recognition of SF3B1-mutant MDS
as a distinct diagnostic entity [34]. The dataset they used includes 3479 patients with
known SF3B1 mutation status that represents the largest MDS data set with genetic data
reported to date. Their validation strongly supports the correlation of SF3B1 mutations
with clinical phenotype in MDS. SF3B1 mutations in MDS patients have a cluster as a ‘hot
spot’ at 700th residue of Lysine changed to Glutamine, which resides in HEAT domain
repeats [32,35]. Other hotspots (R625, H662, and K666) are also assumed to have a similar
functional impact due to their close spatial proximity in HEAT repeats [32,36]. Many
studies have demonstrated that SF3B1 mutations cause aberrant splicing via cryptic 3′

splice site usage [37–41]. Since the SF3B complex is involved in recognition of a branch point
sequence, this mutation is highly likely to cause cryptic branch point sequence recognition
and usage of 3′ splice site. The aberrant splicing caused by cryptic 3′ splice site usage often
creates premature termination codons in the mRNA, resulting in transcript degradation by
nonsense-mediated decay (NMD) [42,43]. In SF3B1 mutant samples, reduction of intron-
retaining isoforms was consistently reported [44,45]. These results suggest that reduced
intron retention is due to the ability of SF3B1 mutants to select an upstream aberrant 3′ splice
site [44]. Decreased intron retention was more prominent in the cytoplasm of SF3B1 mutant
cells, suggesting that nuclear export of intron-retaining transcripts was impaired [45]. By
using RNA-sequencing, many dysregulated gene isoforms and aberrantly spliced target
genes in SF3B1 mutant MDS have been identified [37,39,40,46–50]. It becomes of great
interest to identify and functionally characterize specific target genes of mutant SF3B1 in
order to discover drug targets. As for drug candidates, it has been suggested that SF3B1
inhibitors have potential in treating the preleukemic state and related myeloid disorders.
Since SF3B1 is essential for splicing, it was expected that SF3B1 inhibitors completely
block the splicing reaction for all introns. However, inhibition of splicing by spliceostatin
A (SSA) is partial in cultured cells and produces shorter transcripts that are translated
into truncated proteins in tumor cells [51,52]. Another compound, pladienolide B, is an
antitumor macrolide, and it was also found to interact with SF3b to inhibit splicing [53].
E7107, a derivative of pladienolide D, displayed strong antitumor activity [53]. It turned
out that E7107 blocks spliceosome assembly by preventing tight binding of U2 snRNP to
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pre-mRNA [52]. It is worthy to design small chemical compounds that strongly associate
and inhibit SF3B1 as drug candidates for MDS and other cancers such as breast cancer and
lung adenocarcinoma.
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Figure 5. A scheme for early splicing step with splicing factors mutated in MDS on pre-mRNA. The names of four splicing
factors whose mutations were frequently observed in Myelodysplastic syndrome (MDS) are shown in black bold. letters.
Interestingly, these splicing factors are involved in 3′ splice site and exon recognition during splicing reaction. Arrows
indicate protein-protein interaction through an Arginine-Serine-rich (RS) domain. ESE: exonic splicing enhancer, U1, U2: U1
small nuclear ribonucleoprotein, U2 small nuclear ribonucleoprotein.

2.2. SRSF2

SRSF2, originally called SC35 [54], is a member of the SR protein family that is
involved in both constitutive and alternative splicing [11,21]. The SRSF2 gene is located
on chromosome 17q25.2. SRSF2 mutations have been found in about 14% of patients with
MDS [55]. SRSF2 contains an RBD for RNA binding and an RS domain for interaction with
other proteins. SRSF2 promotes exon recognition by binding to ESE in pre-mRNA through
its RBD (Figure 5). Through its RS domain, SRSF2 interacts with U2AF heterodimer and
U170K, which results in promotion of the association of those factors to the upstream
3′ splice site and the downstream 5′ splice site, respectively [11,18,56]. In MDS patients,
the mutations in SRSF2 are clustered in the 95th Proline residue as a ‘hot spot’ [28,57].
Like SF3B1 and U2AF mutations in MDS, it was assumed that these hot spot mutations
cause gain-of function of the mutant proteins. Since this Proline residue resides slightly
outside of the RNA Binding Domain of SRSF2, it was assumed that the mutations in
MDS do not affect RNA binding activity of SRSF2. However, splicing pattern changes
with SRSF2 mutations were reported in culture cells, mouse models, and primary human
samples [57–59]. Analyses and comparison of binding sequence motifs for wild type and
mutant SRSF2 proteins revealed that mutant SRSF2 proteins have higher binding affinity
to GGNG and CCNG motifs (C as Cytosine, G as Guanosine, N as any nucleotides) in
addition to the Purine-rich motif, which wild type binds efficiently [57–60]. This affinity
change results in differential splicing of many genes, including EZH2, a gene implicated in
the pathogenesis of MDS [61]. EZH2 is a SET-domain containing histone methyltransferase
that is a component of the Polycome Repressive Complex 2 (PRC2). PRC2 catalyzes
tri-methylation of histone H3 at Lys 27 (H3K27me3) to regulate gene expression. Since
aberrant splicing of EZH2 under mutant SRSF2 includes exon 9.5 that contains the stop
codon, protein level of EZH2 is likely reduced in MDS patient cells [45,57,62,63]. Another
epigenetic factor mutation implicated a pathogenic crosstalk between altered states of
epigenome and splicing in a subset of leukemias. Yoshimi et al. demonstrated that aberrant
splicing of INTS3 contributed to leukemogenesis in concert with mutant IDH2 and was
dependent on mutant SRSF2 binding to cis-regulatory elements in INTS3 pre-mRNA and
increased DNA methylation of INTS3 [64].

It has also been demonstrated that MDS-responsible mutations in SRSF2 and U2AF1
cause expansion of R loop [65,66]. Expansion of R loop formation results in activation of
the DNA damage response pathway [66]. Efficient formation of R loop may take place by
slowing down rearrangement of mRNA-protein complexes during/after splicing. It is of
great interest how splicing factors take part in R loop formation and/or resolution.
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2.3. U2AF1

U2AF1 is originally identified as a component of the U2 snRNP auxiliary factor com-
plex (U2AF) that facilitates association of U2 snRNP to the branch point sequences [67,68].
U2AF1 is a small subunit of the U2AF heterodimer that is responsible for the recognition of
AG dinucleotide in pre-mRNA 3′ splice sites (Figure 5) [1,11,18]. Another subunit, U2AF2,
recognizes a pyrimidine stretch residing between the branch point sequence and the 3′

splice site [67,68]. Since U2AF1 and 2 contain the RS domain, they can interact with the
U170K protein that also has an RS domain to get an interaction between 3′ splice site and
downstream 5′ splice site over the exon. The U2AF1 gene is located on 21q22.3, and its
mutations occur in approximately 7–11% of MDS patients [28,30,32,69]. U2AF1 mutations
also have ‘hot spots’ at S34 and Q157 that are located in conserved zinc finger domains,
Zn1 and Zn2 [26,30,32,70,71]. Both S34 and Q157 mutations in U2AF1 have been shown to
affect splicing through RNA binding activity, but they have different effects on 3′ splice site
recognition. It was demonstrated that U2AF1 S34 mutants tend to promote aberrant exon
inclusion when the 3′ splice site sequence is CAG or AAG [71–77]. In contrast, Q157 mu-
tants affect recognition at one nucleotide downstream of the 3′ splice site AG dinucleotide,
promoting exon inclusion when a Guanine is at this position [73]. Recently, it was found
that U2AF1 S34 mutant induces inclusion of exon 4 in alternative splicing of interleukin-1
receptor-associated kinase 4 (IRAK4). This isoform encodes IRAK4-L protein that causes
innate immune activation [78]. IRAK4 activates NF-κB and MAPK pathways via mediating
signaling downstream of the Toll-like receptor (TLR) superfamily [78]. IRAK4 is divided
into two spliced isoforms dependent on exon 4 being contained or excluded: IRAK4-L and
IRAK4-S [78]. IRAK4-S could control the innate immune response in normal hematopoi-
etic cells, while IRAK4-L mediates NF-κB maximal activation, resulting an uncontrolled
innate immune response in malignant hematopoietic cells [78]. IRAK4-L is also expressed
highly in breast and colon cancer cell, indicating its association with oncogenicity [78].
Furthermore, mutant U2AF1(S34F) AML cells acquire a dependency on IRAK4-L and are
sensitive to IRAK4 inhibitors, which suggests a therapeutic strategy [78]. Most recently,
crystal structure analysis of yeast U2AF1 revealed that the 3′ splice site AG dinucleotide is
strongly recognized by the two Zn finger domains and how aberrant alternative splicing
occurs with MDS mutations [79]. By using Förster resonance energy transfer (FRET), the
influence of both wild-type or S34F mutant U2AF1 on the conformational dynamics of
U2AF2 and RNA complexes was also determined. Warnasooriya et al. demonstrated that
the U2AF heterodimer (U2AF1 + U2AF2) binds weak pyrimidine tracts as a mixture of
closed and open U2AF2 conformations, and the S34F mutation of U2AF1 modulates shifts
between open and closed U2AF2 [80]. It may help to design chemical compounds targeting
mutated Zn finger domains to inhibit or modify their RNA binding activity as therapeutic
approaches to MDS.

2.4. ZRSR2

The ZRSR2 gene is located on chromosome Xp22.2 and mutated in about 5% of MDS
patients, predominantly males [28]. Relatively little is known about this protein’s function
in mRNA splicing. This protein is another member of the SR-rich family of splicing factor,
and it was shown to be responsible for the recognition of the 3′ splice acceptor site for
both a major and a minor intron in vitro (Figure 5) [81]. Since the mutations of ZRSR2 in
MDS patients were found all over the coding region as out-of-frame insertions, deletions,
nonsense, and missense, the nature of the mutations is likely loss-of-function [82]. The
ZRSR2 mutations cause abnormal splicing via intron retention of U12-depedent minor
introns [82]. Humans have a limited number (about 800, 0.4% of total numbers of introns)
of minor introns [3,4]. Among them, several genes including some E2F transcription factors
and several genes in the MAPK/ERK pathway show aberrant splicing in ZRSR2 mutant
MDS samples [82].

Most recently, it was demonstrated that impaired minor intron excision by knock-out
of ZRSR2 protein enhances hematopoietic stem cell self-renewal, and mutations in minor



Int. J. Mol. Sci. 2021, 22, 7789 10 of 15

introns are suggested to be potential cancer drivers [83]. However, the precise molecular
mechanism how ZRSR2 mutations affect minor intron splicing remains to be elucidated.
Elucidation of the molecular mechanism for ZRSR2 involvement in minor intron splicing
may provide useful information for both basic knowledge for minor intron splicing and
identification of targets for MDS with ZRSR2 mutations.

2.5. Other Splicing Factor Mutations in MDS

In addition to four splicing factors, rare mutations in several other splicing factors
were also identified. One of the mutated splicing factors is PRPF8. Studies from the yeast
Prp8 protein revealed that PRPF8 protein is an essential factor for splicing and interacts
with U5 snRNA to align 5′ and 3′ splice sites in the spliceosome [84]. PRPF8 mutation
causes missplicing [85], highly likely through alteration of splice sites selection. An analysis
for the precise mechanism of how PRPF8 mutations affect exon recognition remains to
be performed. Another factor is LUC7L2. LUC7L2 is an ortholog of splicing factor LUC7
which is involved in recruitment of splicing factors. The LUC7L2 protein is assumed to be
involved in the recognition of non-consensus splice donor sites in association with the U1
snRNP [86]. Interestingly, one RNA helicase protein, DDX41, was shown to be mutated
in MDS and AML [87]. Several RNA helicases are known to be involved in splicing steps
likely by causing spliceosome conformation change with their ATP-dependent helicase
activity. Indeed, the most common mutation is the R525H mutation, which is assumed to
affect adenosine triphosphate (ATP) binding [87]. Very rare mutations have also been found
in SF3A1, SF1, PRPF40B, and U2AF2 [88], which are mainly involved in recognition of the
branch point and the 3′ splice site. It is of great interest for RNA scientists to investigate
how these mutations affect splicing reaction. Those analyses will shed light not only on
MDS pathogenesis but also on understanding the basic splicing mechanism.

3. Conclusions and Future Perspectives

In this review, we introduced four major splicing factors mutated in MDS with aberrant
splicing caused by mutations. Interestingly, most of the proteins described in this review
are involved in 3′ splice site recognition (Figure 5). In addition, SRSF2 is involved in
exon recognition through ESE binding. Taken together, it is likely that a splicing mode
called exon recognition (Figure 6) [17] participates in aberrant splicing in MDS. In higher
eukaryotes, the average length of introns is much longer than that of lower eukaryotes.
In fact, the average length of human introns is 5849 nucleotides, while that of nematodes
is 335 nucleotides [89]. In contrast, the average length of internal exons, which is no
longer than 300 nucleotides, does not differ between vertebrates and lower eukaryotes.
Therefore, exon recognition is likely a major mode for splicing in vertebrates whose intron
size is large, while intron recognition is dominant in lower eukaryotes in which introns
are relatively short (Figure 6). The facts that 5′ splice site mutations result in skipping of
adjacent exons and cause human diseases also support the exon recognition model. For 5′

terminal exons, it is assumed that the cap structure serves as a substitute of the 3′ splice
site. The cap structure is recognized by a nuclear cap binding protein complex that consists
of NCBP1/2 proteins in the nucleus [90–92]. As NCBP1 was demonstrated to associate
with U2 snRNP [92], it is possible that NCBP1-U2 snRNP interacts with U1 snRNP at the 5′

splice site to define the first exon. As for 3′ terminal exons, poly(A) addition signal and
poly(A) addition machinery are assumed to serve as interactors with U2 snRNP on the
branch point in the last intron. As supporting evidence, mutation of the 3′ splice sites
inhibits the polyadenylation cleavage reaction in vitro [93]. In the exon recognition model,
definition of the 3′ splice site region highly likely takes place first, and this step is critical
for exon recognition. Although many excellent works have been performed and provide
information for the mechanism of vertebrate exon recognition, it remains unclear whether
different factors/mechanism are involved in different exons. It is expected that precise
analyses of the aberrant splicing mechanism in MDS with mutant splicing factors also
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contribute to uncovering the regulation of alternative splicing through exon recognition
in vertebrates.
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Although some aberrant splicing patterns in dysregulated genes have been identified
to be involved in MDS onset as described above, it is still under investigation how different
mutations in different splicing factors cause different MDS phenotypes. To date, there
seems to be no common gene(s) whose aberrant splicing is responsible for MDS onset
caused by mutations in four main splicing factors SF3B1, SRSF2, U2AF1, and ZRSR2. It is
assumed that hot spot mutations among them in SF3B1, SRSF2, and U2AF1 do not cause
reduction of the encoded proteins, whereas mutations in ZRSR2 reduce functional protein
amount. Splicing pattern analyses implicate that common pathways affected by mutations
of those factors are epigenetics and signal transduction pathways. These points have to
be addressed in future analyses. The approaches from mechanistic analyses of aberrant
splicing caused by mutated splicing factors should shed light on research for therapies of
MDS by identifying drug targets.
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