
Three Gd-based magnetic
refrigerant materials with high
magnetic entropy: From
di-nuclearity to hexa-nuclearity
to octa-nuclearity

Minmin Wang1†, Chengyuan Sun1†, Yujia Gao1, Hong Xue1,
Ling Huang1, Yutian Xie1, Jin Wang1*, Yuanyuan Peng2* and
Yanfeng Tang1*
1School of Chemistry and Chemical Engineering, Nantong University, Nantong, China, 2Department of
Chemistry, Southern University of Science and Technology, Shenzhen, China

Magnetocaloric effect (MCE) is one of the most promising features of molecular-

based magnetic materials. We reported three Gd-based magnetic refrigerant

materials, namely, Gd2(L)(NO3)(H2O)·CH3CN·H2O (1, H2L = (Z)-N-[(1E)-(2-

hydroxy-3-methphenyl)methylidene]pyrazine-2-carbohydrazonic acid),

{Gd6(L)6(CO3)2(CH3OH)2(H2O)3Cl}Cl·4CH3CN (2), and Gd8(L)8(CO3)4(H2O)8·2H2O

(3). Complex 1 contains two GdIII ions linked by two η2:η1:η1:η1:μ2-L
2- ligands, which

are seven-coordinated in a capped trigonal prism, andcomplex2possesses sixGdIII

ions, contributing to a triangular prism configuration. For complex 3, eight GdIII ions

form a distorted cube arrangement. Moreover, the large values of magnetic

entropy in the three complexes prove to be excellent candidates as cryogenic

magnetic coolants.
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Introduction

Ln-based complexes play a critical role in molecular-based materials not only due to

the charming geometrical structures but also because of the extensive applications such as

luminescence, catalysis, especially for magnetic materials including magnetocaloric effect

(MCE) (Wu D et al., 2020; Shang et al., 2021; Wei et al., 2021), and single-molecule

magnets (SMMs) (Liu et al., 2014; Liu et al., 2016; Zhang and Cheng, 2016; Reis, 2020). As

a member of the Ln elements, the Gd ion is a perfect candidate in the synthesis of

molecular-based magnetic refrigeration materials because of the large magnetothermal

effects (Evangelisti et al., 2011; Chen et al., 2013; Chen et al., 2014; Wang et al., 2020a; Li

et al., 2021; Lin et al., 2021; Wu T et al., 2021; Zhou et al., 2021). Some of the reported

magnetic materials even possess a large cryogenicMCE, which is comparable to that of the

commercial coolant {Gd3Ga5O12} (Pecharsky and Gschneidner, 1997; Zhang S. et al.,

2015; Zhang S.,-W. et al., 2015).
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It is worth mentioning that in the pure 4f system,

improving magnetic density is the ideal method to gain

MCE performance (Zhang et al., 2016; Reis, 2020).

Therefore, organic ligands play an important role in the

building units of the complexes. In previous studies, various

organic ligands (e. g. Schiff-based ligands (Aronica et al., 2006;

Boulon et al., 2013; Mannini et al., 2014; Burgess et al., 2015;

Nava et al., 2015; Wang et al., 2015; Lakma et al., 2019; Li et al.,

2019; Wang et al., 2020b; Wang J. et al., 2021; Wang M. et al.,

2021), carboxylates (Milios et al., 2007; Dermitzaki et al., 2015;

Yin et al., 2015; Botezat et al., 2017; Feltham et al., 2017; Li

et al., 2019; Zheng et al., 2020; Han et al., 2021; Zhou et al.,

2021), diketones (Zhu et al., 2014; Yao et al., 2018; Wang et al.,

2019a; Wang et al., 2019b; Shi et al., 2021), and diamines

(Neves et al., 1992; Zhang et al., 2013; Cornia et al., 2014;

Oyarzabal et al., 2014; Feltham et al., 2015; Luan et al., 2015; Lu

et al., 2019) etc.) have been successfully utilized in the

synthesis of MCE materials. Among them, Schiff-based

ligands comprise rich O and N sites, which are widely used

in the synthesis of many Ln complexes because of the simple

synthesis and structural diversity.

In this work, three Gd-based magnetic refrigerant materials

based on Schiff-based ligands (Z)-N-[(1E)-(2-hydroxy-3-

methphenyl) methylidene]pyrazine-2-carbohydrazonic acid

(H2L) were synthesized, namely, Gd2(L) (NO3) (H2O)·
CH3CN·H2O (1), {Gd6(L)6(CO3)2(CH3OH)2(H2O)3Cl}

Cl·4CH3CN (2), and Gd8(L)8(CO3)4(H2O)8·2H2O (3).

Magnetic studies indicate that all complexes exhibit

antiferromagnetic interactions between the spin centers and

display large magnetic entropies.

Materials and methods

Materials

All reactions and manipulations were performed in the

ambient atmosphere. The Schiff-based H2L ligand was

prepared by condensation with o-vanillin and hydrazine-2-

carbohydrazide in methanol according to the literature

(Chandrasekhar et al., 2013; Chen et al., 2016). Metal salts

and other reagents were commercially available and used

without further purification.

Synthesis

Synthesis of Gd2(L)2(NO3)2(H2O)2·CH3CN·H2O (1): a

mixture of H2L (0.1 mmol, 27.2 mg) and Gd(NO3)3·6H2O

(0.1 mmol, 45.7 mg) was dissolved in CH3CN (5 ml) and

CH3OH (2.5 ml). After stirring for 5 min, pyridine

(0.04 ml) was added and stirred for another 10 min. The

solution was filtered and left to slowly evaporate. Well-

shaped orange crystals were obtained after 1 week. Yield:

20 mg, 36% based on Gd. Elemental analysis (EA) calc. (%)

for Gd2C30H30N12O16, C: 31.91, H: 2.68, N: 14.89; found (%),

C: 32.03, H: 2.61, N: 14.93.

{Gd6(L)6(CO3)2(CH3OH)2(H2O)3Cl}Cl·4CH3CN (2): a

mixture of H2L (0.2 mmol, 54.4 mg) and GdCl3.6H2O

(0.2 mmol, 74.3 mg) was dissolved in CH3CN (10 ml) and

CH3OH (5 ml). After stirring for 5 min, NaHCO3 (0.2 mmol,

33.6 mg) was added and stirred for another 3 h. Well-shaped

orange crystals were obtained after 1 week. Yield: 32 mg, 32%

based on Gd. Elemental analysis (EA) calc. (%) for

Gd6C90H92N28O29Cl2, C: 35.51, H: 3.05, N: 12.88; found (%),

C: 35.72, H: 2.99, N: 12.92.

Gd8(L)8(CO3)4(H2O)8·2H2O (3): a mixture of H2L

(0.2 mmol, 13.6 mg) and GdCl3.6H2O (0.2 mmol, 18.6 mg)

was dissolved in CH3CN (5 ml) and CH3OH (2.5 ml). After

stirring for 5 min, NaCO3 (0.2 mmol, 10.6 mg) was added and

stirred for another 2 h. Well-shaped orange crystals were

obtained after 1 week. Yield: 28 mg, 29% based on Gd.

Elemental analysis (EA) calc. (%) for Gd8C108H100N32O46, C:

33.78, H: 2.62, N: 11.67; found (%), C: 33.83, H: 2.51, N: 11.84.

Physical measurements

The C, H, and N elemental analyses were performed using an

Elementar Vario-EL CHNS elemental analyzer. The Fourier

transform-infrared (FT-IR) spectra were carried out from KBr

pellets in the range 4,000–400 cm−1 using an EQUINOX

55 spectrometer. Powder X-ray diffraction (PXRD) patterns

were performed using the Bruker D8 Advance diffractometer

(Cu–Kα, λ = 1.54056 Å). Magnetic susceptibility measurements

were measured with a Quantum Design MPMS-XL7 SQUID.

Polycrystalline samples were embedded in vaseline to prevent

torquing. Data were corrected for the diamagnetic contribution

calculated from Pascal constants.

Crystallographic study

Suitable single crystals for 1–3 were selected for single-

crystal X-ray diffraction analysis. Data were collected using a

Rigaku Oxford diffractometer with a Mo–Kα radiation (λ =

0.71073 Å) at 120 K. The structures were solved by direct

methods and refined by least-squares on F2 utilizing the

SHELXTL program suite and Olex2 (Dolomanov et al.,

2009; Sheldrick, 2015a,b). The hydrogen atoms were set in

calculated positions and refined as riding atoms with common

fixed isotropic thermal parameters. EA was used to detect the

content of C, H, and N atoms. Detailed information about the

crystal data and structure refinements is summarized in

Table 1. Selected bond lengths and angles of complexes

1–3 are listed in Supplementary Table S1–S3.
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Results and discussion

Description of the structures of 1–3

Complexes 1–3 are synthesized by the evolutionmethod with

H2L and gadolinium salt in the solution of CH3CN/CH3OH (V1:

V2 = 2:1) under the existence of alkali. The alkali is added to be

conducive to protonate the ligand H2L, which is beneficial to

incorporate GdIII ions. The H2L ligand in all complexes is

completely dehydrogenated adopting the μ2:η
2:η1:η1:η1-mode

(Scheme 1A), which is similar to the reported literature

(Chandrasekhar et al., 2013; Chen et al., 2016; Zhang et al.,

2017; Zhang et al., 2016; Jiang et al., 2016).

Complex 1 is crystalized in the triclinic P-1 space group. As

shown in Figure 1, the crystallography independent unit of

1 contains half of the molecule, including one GdIII ion, one

L2
- ligand, one NO3

− anion, and half of CH3CN and H2O

molecules. The metallic GdIII ions (Gd1 and Gd1A) are

surrounded by two L2
- ligands using the aforementioned

TABLE 1 Crystallographic data and structural refinement parameters for complexes 1–3.

Complex 1 2 3

Formula Gd2(L)2(NO3)2(H2O)2·CH3CN·H2O {Gd6(L)6(CO3)2(CH3OH)2(H2O)3Cl}Cl·4CH3CN Gd8(L)8(CO3)4(H2O)8·2H2O

Mr [g·mol−1] 1127.17 3044.31 3840.19

T [K] 120 (2) 120 (2) 120 (2)

Crystal system Triclinic Triclinic Triclinic

Space group P-1 P-1 P-1

a [Å] 8.8137 (8) 13.5408 (9) 17.84766 (16)

b [Å] 9.4123 (9) 18.8679 (15) 18.2321 (2)

c [Å] 13.3026 (12) 23.2844 (16) 28.0616 (3)

α [°] 95.912 (3) 90.424 (3) 73.0978 (10)

β [°] 109.101 (3) 92.888 (2) 77.7530 (8)

γ [°] 107.900 (3) 106.296 (2) 61.2890 (11)

V [Å3] 966.55 (16) 5701.2 (7) 7634.03 (16)

Z 1 2 2

ρcalcd [g·cm−3] 1.936 1.773 1.671

μ [mm−1] 3.487 3.569 3.506

F (000) 550.7 2956.0 3704.0

Refl.collected/unique 8376/3895 70871/25093 124216/39110

GOF on F2 1.0385 1.030 1.033

R1/wR2 [I > 2σ(I), squeeze] a 0.0379/0.0963 0.0393/0.0943 0.0378/0.0887

R1/wR2 (all data, squeeze) 0.0424/0.1001 0.0454/0.0995 0.0512/0.0946

CCDC No. 2174539 2174540 2174541

aR1 = ∑||Fo| − |Fc||/∑|Fo|. wR2 = [∑w (Fo2–Fc2)2/∑w (Fo2)2]1/2.

SCHEME 1
Coordination modes of L2- ligand (A) and CO3

2- (B,C).

FIGURE 1
Crystal structure of complex 1. The hydrogen atoms are
omitted for clarity. Color codes: Gd, purple; O, pink; N, blue; andC,
grey. Symmetric code: A, 1-x, 1-year, and 1-z.
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mode, two NO3
− anions and two H2O molecules located above

and below the plane, respectively. The average bond lengths of

Gd-O and Gd-N are 2.379 (5) Å and 2.460 (5) Å (Supplementary

Table S1), respectively, which are in accordance with those of the

reported Gd-based complexes (Chen et al., 1995; Zhao et al.,

2017; Mayans and Escuer, 2021; Ren et al., 2021). In complex 1,

the Gd ion is seven-coordinated to form a capped trigonal prism,

which is confirmed by CShM calculations (Alvarez et al., 2005;

Casanova et al., 2005) (Supplementary Figure S1, Supplementary

Table S4).

Complex 2 crystalizes in the same space group as complex 1,

and the asymmetric unit comprises the whole molecule with six

crystallographically independent GdIII ions (Figure 2A). The six

Gd ions are held together to form a {Gd6} triangular prism

metallic skeleton (Figure 2B). Therein, three Gd ions in the plane

(Gd1, Gd2, and Gd3 or Gd4, Gd5, and Gd6) contribute a

triangular configuration, which are bridged by one CO3
2-

anion in μ3-η
2:η2:η2-mode (Scheme 1B). The two triangular

metallic skeletons are then linked together by six μ2-O bridges

from ligands.

All Gd ions are eight coordinated, showing two kinds of

coordination geometry confirmed by CShM calculations

(Alvarez et al., 2005; Casanova et al., 2005) (Supplementary

Table S5). The Gd1, Gd2, Gd3, Gd5, and Gd6 ions are in

{O6N2} environment with six O atoms and two N atoms from

two chelated L2- ligands, one CO3
2- anion and one CH3OH/H2O

molecule, which display a biaugmented trigonal prism

configuration (Supplementary Figure S2). The average Gd-O

and Gd-N distances are 2.352 (4) Å and 2.475 (4) Å,

respectively (Supplementary Table S2), which are consistent

with those reported Gd-based complexes (Chen et al., 1995;

Zhao et al., 2017; Mayans and Escuer, 2021; Ren et al., 2021).

However, Gd4 has triangular dodecahedron coordination

geometry and is located in an {O5N2Cl} environment with five

O and two N atoms from two chelated L2- ligands and one Cl−

anion. The bond length of Gd4-Cl1 is 2.746 (1) Å, which is longer

than that of Gd-O and Gd-N.

For complex 3, the synthetic method is the same as complex

2; except NaHCO3 was used in place of Na2CO3. Surprisingly,

complex 3 possesses an octa-nuclearity structure, which

crystalizes in the triclinic P-1 space group. The asymmetric

unit consists of a completed molecule, and there are eight

crystallographically independent Gd atoms in the molecular

structure (Figure 3A). As shown in Figure 3B, the eight GdIII

ions contribute to a cubic trapezoid metallic core. Gd1, Gd4, Gd5,

and Gd8 ions lie in the four vertices of the plane below the cubic

trapezoid, while Gd2, Gd3, Gd6, and Gd7 ions situate in the

upper plane. The metallic core is held together by four CO3
2-

anions in μ3-η
2:η2:η1-mode (Scheme 1C). The periphery of the

metal core is ligated by eight L2- ligands, eight H2O molecules,

and two lattice H2O molecules.

There are two coordination numbers of GdIII ions in complex

3 (Supplementary Figure S3). Gd1, Gd3, Gd5, and Gd7 are eight-

coordinated ions in {O6N2} donor set from two L2- ligands, two

CO3
2- anions, and one H2O molecule, while Gd2, Gd4, Gd6, and

Gd8 ions are nine-coordinated in the {O7N2} donor set. The

difference between the two kinds of Gd ions is the diverse

coordination modes of the CO3
2- anion. There is only one

coordination bond of O atom in CO3
2- anion, which is

adopted in Gd1, Gd3, Gd5, and Gd7 ions. For Gd2, Gd4,

Gd6, and Gd8 ions, the bonding mode of the CO3
2- anion is

adopted in the bidentate mode. The eight metal ions exhibit three

coordination geometries: biaugmented trigonal prism (Gd1),

triangular dodecahedron (Gd3, Gd5, and Gd7), and muffin

FIGURE 2
Crystal structure (A) and metallic core (B) of complex 2. The hydrogen atoms are omitted for clarity. Color codes: Gd, purple; O, pink; N, blue;
and C, gray.

Frontiers in Chemistry frontiersin.org04

Wang et al. 10.3389/fchem.2022.963203

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.963203


(Gd2, Gd4, Gd6, and Gd8) (Supplementary Tables S5,6). The

average Gd-O distance is 2.361 (4) Å, which is shorter than that

of Gd-N (2.564 (4) Å) lengths. The O/N-Gd-O/N angles are in

the range of 60.99°–154.86°, which are in the normal range (Chen

et al., 1995; Zhao et al., 2017; Mayans and Escuer, 2021; Ren et al.,

2021).

It is worth mentioning that the use of different alkalis can

affect the number of formed metal nuclearity. For the organic

weak alkali triethylamine, which is used in complex 1, it only

facilitates protonation of the ligand H2L but is not involved in

the final formation of complex 1. However, for complexes

2 and 3, the inorganic alkalis not only deprotonate the ligand

but also participate in the construction of the molecules.

Compared to NaHCO3 in complex 2, the alkalinity of

Na2CO3 is relatively strong. Moreover, mainly due to the

degree of hydrolysis of carbonates being higher, there are

more carbonate triangle skeletons in complex 3, making it

easier to coordinate with Gd ions, thus forming an octa-

nuclearity complex.

IR spectra and PXRD studies

The FT-IR spectra of complexes 1–3 were acquired (v =

4,000–500 cm−1), which are shown in Supplementary Figure S4.

Powder X-ray diffraction (PXRD) measurements for complexes

1–3 were performed for the crystalline crystals (Supplementary

Figure S5), and the experimental patterns are in good agreement

with the simulated ones from the crystallographic data. The

minor inconsistencies in the intensity and shape of the peaks

indicate the phase purity of complexes 1–3.

Magnetic studies

The direct current magnetic susceptibilities of complexes

1–3 were studied for polycrystalline samples in the

temperature range of 2–300 K at an external magnetic field of

1000 Oe (Figure 4A). At room temperature, the χMT values of

complexes 1–3 are 15.77, 47.16, and 62.81 cm3 K mol−1,

respectively, which is in good agreement with the expected

spin-only values (GdIII ion: 7.875 cm3 K mol−1, g = 2). Upon

cooling, the χMT values in all cases stay essentially unchanged

until approximately 25 K and then followed by an obvious

decrease to the minimum values of 13.29, 38.46, and

58.30 cm3 K mol−1, indicating antiferromagnetic interactions

(Kahn et al., 2000). Fitting the curve of χM
−1 vs. T with the

Curie–Weiss Law (Figure 4B) gives the resulting C and θ values,

which are listed in Supplementary Table S7. The negative θ values

imply the presence of weak antiferromagnetic interaction within

complexes 1–3.

The field dependence of the magnetization plots for

complexes 1–3 was performed in the field range of 1–7 T at

2–8 K (Supplementary Figure S6). Magnetizations in all

complexes are increased gradually at the entire field region,

reaching saturation values of 13.81, 41.75, and 55.83 NμB at

7 T and 2 K, respectively, close to the theoretical value (1:

14 NμB; 2: 42 NμB; 3: 56 NμB). The reduced magnetization

plots (M vs. HT−1) in all complexes are superposable due to

the isotropic system (Supplementary Figure S7).

Due to the complicated systems in complexes 2 and 3, only

complex 1 is attempted to analyze the magnetic interactions by

using a simplified spin Hamiltonian with the PHI program

(Eq. 1):

FIGURE 3
Crystal structure (A) andmetallic core (B) of 3. The hydrogen atoms are omitted for clarity. Color codes: Gd, purple; O, pink; N, blue; and C, gray.
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ĤGd−Gd � −2JGd−GdŜGd1ŜGd2. (1)

The best-fit parameters are J = -0.022 (2) cm−1 and g =

1.98 (Figure 4A; Supplementary Figure S8). The negative J

value confirms the antiferromagnetic interactions between

the GdIII ions, which is in accordance with the trend of the

χMT product with cooling and the result of the

Curie–Weiss Law.

The isothermal magnetization for complexes 1–3 was

measured from 2 to 8 K in an applied DC field up to 7 T

to calculate the magnetic entropy (-ΔSm) according to

the Maxwell equation (Pecharsky and Gschneidner, 1999)

FIGURE 4
χMT products measured under a 1000 OeDC applied field (A) and the plots of 1/χM vs. T (B) for complexes 1–3. The solid lines represent the best
fitting.

FIGURE 5
-ΔSm at various fields and temperatures, calculated from the magnetization data for 1(A), 2(B), and 3(C).
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(Eq. 2). It can be seen that the curves of -ΔSm of complexes

1–3 gradually increase with decreasing temperature and

increasing of magnetic field without saturation, the

maximum -ΔSm values are 25.05 J kg−1 K−1, 27.21 J kg−1

K−1, and 30.79 J kg−1 K−1 at 2 K, ΔH = 7 T, respectively

(Figure 5). These values are smaller than the theoretical

values of 34.57 J kg−1 K−1 for 1, 34.07 J kg−1 K−1 for 2, and

36.01 J kg−1 K−1 for 3, which are calculated using Eq 3, (n = 2,

6, and 8 for 1, 2, and 3, respectively; S = 7/2 and the R value is

8.314 J mol−1 K−1), owing to the existence of

antiferromagnetic coupling. The maximum -ΔSm of 1 in

di-nuclearity complex is among the highest observed to

date for 4f clusters appeared at low temperature (Table 2).

Although complexes 2 and 3 do not possess the highest -ΔSm
values, they are still comparable in the same nuclear

complexes.

ΔSm(T) � ∫H

0
[zM(T,H)/zT]HdH, (2)

ΔSm(T) � nR ln(2S + 1). (3)

Conclusion

In conclusion, three clusters 1-{Gd2}, 2-{Gd6}, and 3-{Gd8}

based on Schiff ligand H2L were synthesized. Complex 1 contains

two GdIII ions, and magnetic measurement indicates

antiferromagnetic interactions between the metal core, which is

also confirmed by PHI fitting. Complexes 2 and 3 are hexa-

nuclearity with a biaugmented trigonal prism configuration and

octa-nuclearity with a cubic trapezoid structure. Magnetic

investigations indicate the antiferromagnetic interactions

between GdIII ions are observed in complexes 2 and 3.

Magnetocaloric studies for complexes 1–3 show that the

magnetic entropies of complexes 1–3 are smaller than the

theoretical values, which is mainly caused by antiferromagnetic

coupling. Furthermore, complex 1 exhibits a large magnetic

TABLE 2 Summary of -ΔSm in different ΔH at a given temperature for reported di-nuclearity, hexa-nuclearity, octa-nuclearity, and other multinuclear
Gd-based complexes.

Complex -ΔSm [J kg−1 K−1] ΔH [T], T [K] Ref

{Gd2(OAc)6(H2O)4}·4H2O 40.6 7, 1.8 Evangelisti et al. (2011)

Gd2(OAc)2(Ph2acac)4 (MeOH)2 23.7 7, 2.4 Guo et al. (2012)

Gd2 (hfac)4 (fpmoq)2 17.1 8, 3.0 Wang et al. (2015)

Gd2 (hfac)4 (btoq)2 16.9 8, 2.0 Shen et al. (2015)

Gd2 (L1) (dbm)5 17.69 8, 2.0 Wang et al. (2021a)

Gd2 (iba)6 (bipy)2 29.3 7, 2.0 Zhou et al. (2021)

Gd2 (nic)6(H2O)4 27.4 7, 2.0 Zhou et al. (2021)

Gd2(L)2(CH3OH)2 24.75 7, 2.0 Shi et al. (2020)

{Gd2(L)2 (dbm)2(H2O)2}·nCH3OH 23.2 7, 2.0 Shi et al. (2021)

Gd2 (dnba)6 (phen)2 16.8 7, 2.0 Zheng et al. (2020)

Gd2(Hnsa)2 (nsa)2 (phen)2(H2O)2 22.2 7, 2.0 Zheng et al. (2020)

1 25.05 7, 2.0 This work

{Gd6 (bobdz)2(HCO2)4 (μ3-OH)4 (DMF)6(H2O)2}Cl2·4H2O 33.5 7,3.0 Adhikary et al. (2014)

Gd6(L)2 (acac)6(OH)4(NO3)2(CH3OH)2 35.3 7, 2.0 Wang et al. (2020b)

{H2 [Gd6(OH)8(H2O)6 (p-BDC-F4)6]}·3 (2,2′-bpy)·6H2O 28.27 7, 2.0 Wei et al. (2019)

{H2 [Gd6(OH)8(H2O)6 (m-BDC-F4)6]}·3 (4,4′-bpy)·6H2O 29.20 7, 2.0 Wei et al. (2019)

2 27.21 7, 2.0 This work

{Gd8(IN)14 (μ3-OH)8 (μ2-OH)2(H2O)8}·11H2O 31.77 7, 2.0 Shi et al. (2020)

{Gd8 (μ3-O)4(L)8(CH3COO)4(CO3)2}·15H2O 32.49 7, 2.0 Li et al. (2019)

3 30.79 7, 2.0 This work

{Gd3 (dbm)5(HL)2}·4CH3OH·3CH2Cl2 20.60 7, 2.0 Wang et al. (2020c)

{Gd3(HL) (H2L) (NO3)4}·C2H5OH 30.22 7, 2.0 Wang et al. (2019c)

{Gd4(H3L)2(OAc)3(F6acac)3}·4MeOH·2.5H2O 21.88 5, 2.0 Liu and Hao, (2022)

{Gd4 (acac)4 (μ3-OH)2L6}·2CH3CN 14.57 7, 3.0 Hou et al. (2020)

{Gd4(HL)4(CH3O)4}·3CH3OH 30.42 7, 2.0 Li et al. (2020)

{Gd4(L)4 (m2-CH3O)4}·CH3OH 28.50 7, 2.0 Xu et al. (2021)

{Gd4 (acac)4(L)6 (μ3-OH)2}·CH3CN 24.46 7, 2.0 Wang et al. (2020d)
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entropy of 25.05 J kg−1 K−1 at 2.0 K in di-nuclearity magnetic

refrigerant materials, while complexes 2 and 3 belong to the

normal range in hexa-nuclearity and octa-nuclearity complexes,

respectively, demonstrating that they are promising molecular

magnetic coolants for low-temperature cooling applications.
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