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Purpose: To identify the mutation in the fibrillin-1 gene (FBN1) in a Chinese family with ectopia lentis (EL) and to predict
the structural and functional consequences of the mutation.
Methods: Patients and family members were given complete physical, ophthalmic, and cardiovascular examinations.
Genomic DNA was extracted from leukocytes of venous blood of three affected and three unaffected individuals in the
family, and 100 healthy controls. All 65 coding exons and their flanking intronic boundaries of FBN1 were amplified in
the proband by polymerase chain reaction, followed by direct sequencing. The mutation identified in the proband was
screened for in other family members and 100 healthy controls by direct sequencing. Protein conservation analysis was
performed in seven species using an online ClustalW tool. Protein structure was modeled based on the Protein data bank
and mutated in PyMOL 1.1r1 to predict the structural and functional consequences of the mutation.
Results: A heterozygous c.2262A>G change in exon 18 of FBN1 was detected in the proband, which resulted in the
substitution of tyrosine by cysteine at codon 754 (p.Y754C). This mutation was also present in the affected family
members, but absent in other unaffected family members and 100 healthy controls. The mutant residue, located in the
calcium binding epidermal growth factor-like7 domain, was highly conserved among mammalian species. The mutation
could probably affect the disulfide bond formation of the domain and calcium binding of the adjacent domain, which
would induce a critical functional change of the domain itself and neighboring domains.
Conclusions: We indentified a p.Y754C mutation in FBN1, which is the causative mutation for EL in this family. This
missense mutation introduced an additional cysteine residue by substitution of a highly conserved tyrosine residue within
the cbEGF-like7 module.

Ectopia lentis (EL; OMIM 129600) is an inherited
connective disorder characterized by lens dislocation
connected with stretched or discontinuous zonular filaments
[1]. It often occurs as one of the symptoms of Marfan
syndrome (MFS; OMIM 154700), an autosomal dominant
disorder that is characterized by manifestations mainly
involving the cardiovascular, skeletal, and ocular systems
[2]. The diagnosis of MFS is made according to the Ghent
nosology [3]. Isolated EL or predominant EL with relatively
mild skeletal features belongs to Marfan-related disorders as
it does not satisfy the Ghent criteria.

Mutations in the gene of human fibrillin-1 (FBN1),
fibrillin-2 (FBN2), transforming growth factor-β receptor-1
(TGFBR-1), and transforming growth factor-β receptor-2
(TGFBR-2) cause MFS [4-7]. Isolated or predominant EL is
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mainly caused by mutations in FBN1 on chromosome 15q21.1
[4]. Human FBN1, a 350 kDa modular glycoprotein, is a major
component of the 10–12 nm extra-cellular matrix (ECM)
microfibrils [8]. The structure of fibrillin-1 reveals a highly
repetitive protein that contains three repeated modules: 47
epidermal growth factor (EGF)-like modules (43 calcium
binding (or cb) EGF-like modules and 4 non-cb EGF-like
modules), seven transforming growth factor-binding (or TB)
protein like modules (8 Cys/TB), and two hybrid modules
[9]. To date, over 600 FBN1 mutations spread over the entire
gene have been registered in the Universal Mutation Database
(UMD)-FBN1 database for MFS and its related diseases
[10]. Missense mutations account for a major proportion
(more than 60%) of the pathogenic mutations, and the
majority of these mutations are localized in cbEGF domains
(including those which result in substitution of calcium-
binding residues or cysteine residues involved in the
formation of disulphide bonds) [11,12].

Presently, no genotype/phenotype correlations have been
identified except for neonatal MFS [13]. Besides, some recent
studies showed strong correlations between isolated or
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predominant EL and cysteine substitutions, regardless of its
location within the protein [14]. As a result, long-term study
on genotype/phenotype correlations for MFS and its related
diseases is vital, and molecular analysis of FBN1 is becoming
important for the possibility of prenatal diagnosis and
detecting at-risk individuals at an early stage for awaking of
serious output of the disease.

In the present study, we investigated a two-generation
family affected with EL and found a missense mutation in the
cbEGF-like7 domain of FBN1. The mutation found in
affected individuals was not observed in any of the healthy
ones. We predicted here the structural and functional
consequences of the mutation and demonstrated the crucial
role for tyrosine at this position in cbEGF-like domains.

METHODS
Subjects: The family history revealed three affected members
with EL. All the patients (II:3, III:2, and III:3) and three non-
carrier members, including a spouse (II:5, III:1, and II:4), of
the family were given complete physical, ophthalmic, and
cardiovascular examinations after obtaining informed consent
(Figure 1). One hundred control subjects without features of
EL or MFS were also recruited. The study was approved by
Harbin Medical University Ethics Committee (Harbin,
China).
Genomic DNA preparation: Whole blood from six available
members of the family (II:3, II:4, II:5, III:1, III:2, and III:3)
and one hundred unrelated controls were collected in tubes
containing EDTA as an anticoagulant. Genomic DNA was
extracted using the TIANamp Blood DNA Kit (Tiangen
Biltech Co. Ltd, Beijing, China) according to the
manufacturer’s protocol.
Mutation analysis of FBN1: All 65 coding exons and flanking
intronic regions including splice sites of FBN1 were amplified
by polymerase chain reaction (PCR) using a set of primers
listed in Appendix 1. The PCR products were subsequently
purified with a TIANgel Midi Purification Kit (Tiangen
Biltech Co. Ltd) and sequenced with an ABI 3130XL Genetic

Analyzer (Applied Biosystems, Foster City, CA). Sequencing
results were assembled and analyzed using the Chromas 2.22
software (Technelysium Pty. Ltd., QLD, Australia) with
reference sequence (NG_008805) on the NCBI website. The
mutation was confirmed by bidirectional sequencing.
Protein structure analysis: Orthologs of FBN1 were identified
with the UMD and NCBI websites, and sequences were
aligned using an online ClustalW tool. Schematic of the
cbEGF-like domain of human fibrillin-1 was used to assess
the possible impact of the mutation at the secondary structure
level [15]. A homology 3D model of the cbEGF-like7 domain
was created based on the Protein data bank (PDB) template
1EMN (47% sequence identity), which demonstrated the
solution structure of a pair of cbEGF-like domains of human
fibrillin-1 [12]. PyMOL 1.1r1 was used to display the structure
file and to predict the potential consequence of the mutation.

RESULTS
Clinical features: All affected family members (II:3, III:2, and
III:3) showed similar clinical symptoms: bilateral EL (Figure
2) was discovered in the three patients, and none of them
displayed skeletal or cardiovascular abnormalities. The
unaffected family members, including a spouse (II:5, III:1,
and II:4), appeared normal.

Mutation analysis: Direct sequencing of FBN1 revealed a
heterozygous mutation, c.2262A>G in exon 18, which
resulted in the substitution of tyrosine by cysteine (p.Y754C;
Figure 3A). The mutation identified in the proband was also
found in II:3 and III:3 (Figure 3B,C). No mutation was
detected in the healthy family members (II:5, III:1, and II:4;
Figure 3D-F) or any of the 100 unrelated control subjects
(Figure 3G).

Potential consequences of the mutation: This missense
mutation c.2262A>G resulted in the substitution of tyrosine
by cysteine at codon 754 in the cbEGF-like7 domain. The
tyrosine754 residue, which was present in 18/43 (42%) cbEGF-
like modules in fibrillin-1, was localized in a β-sheet between

Figure 1. The pedigree of the family.
Squares and circles indicate males and
females, respectively, and the darkened
symbols represent the affected
members. Symbols with a question
mark in the center indicate that the
member is not diagnosed clearly. The
asterisks indicate the subjects
participating in this study. The patient
above the arrow is the proband.
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obligatory cysteine residues at the C5 and C6 positions.
Protein conservation analysis showed that the tyrosine754 was
highly conserved among seven mammalian species (Figure
3H). Secondary structure analysis of the cbEGF-like7 domain
revealed that the mutant residue was located at the region
between cysteine750 and cysteine763 (Figure 4A). Prediction by
PyMOL 1.1r1 showed a loss of benzene ring due to the Y754C
mutation and an additional disulfide bond formation between
cysteine750 and cysteine754, which simultaneously disrupted
the conserved disulfide bond between cysteine750 and
cysteine763. These led to a critical structure change: the β-sheet

between obligatory glycine753 and aspartic765 transformed to a
loop-region. domain change of this nature could probably alter
the volume of the calcium binding pocket of the posterior
cbEGF-like domain because the distance between
cysteine754 and the residues that formed β-turn of the pocket
become farther than in the wild type (Figure 4B −4G). In
addition, the protein surface area of the mutant region was
smaller than that of the wild type (Figure 4H,I). In summary,
the conformation and function of the mutant domain were
likely to be strongly altered by the presence of this mutation,
extending to neighboring domains as well.

Figure 2. Slit lamp photographs of the right eye of the affected family members (III:2, II:3, and III:3 from left to right) after the pupils were
dilated, showing ectopia lentis (superonasally).

Figure 3. A FBN1 mutation in exon 18. A-C: A heterozygous A>G transition (indicated by the arrow) resulted in the substitution of tyrosine
by cysteine (Y754C) in the proband, patient II:3 and III:3 respectively. D-F: The corresponding normal sequence in the unaffected family
member II:5, III:1, and spouse II:4, respectively. G: The corresponding normal sequence in a healthy control. H: The sequence alignment of
FBN1 orthologs surrounding mutated site using ClustalW. The tyrosine754 of human FBN1 protein is highly conserved in several species.
These sequences were selected from the NCBI database.
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DISCUSSION
In this study, we identified a heterozygous FBN1 mutation (c.
2262A>G) in a Northeast Chinese family affected with EL.
This missense mutation introduced an additional cysteine
residue by substitution of a highly conserved tyrosine residue
within the cbEGF-like7 module.

This mutation, p.Y754C, has been previously reported in
three other families: a large family of European and Australian

Aboriginal origin, and two Central Chinese families [16-18].
All three families met the criteria for a diagnosis of MFS and,
interestingly, the overwhelming majority of members from
each family had lens subluxation, with or without
cardiovascular and skeletal abnormalities. In our study, the
only manifestation in the family was lens subluxation. These
data demonstrate a complete correlation between p.Y754C
mutation and lens subluxation. Nevertheless, more studies

Figure 4. Structure analyses of the missense mutation in the calcium binding (cb) epidermal growth factor (EGF)-like7 domain. A: The
consensus secondary structure of a prototypical cbEGF-like domain. Calcium binding in the NH2-terminal region of the wild-type domain is
mediated by the consensus sequence (D/N) -X- (D/N) (E/Q) Xm (D/N) Xn (Y/F; m and n are variables), and highly conserved amino acids
are identified by their single-letter amino acid code. The letter C in the schematic represents the highly conserved cysteine of cbEGF-like
domain, and the lines between cysteine represent disulfide bridges. The mutation p.Y754C located at the region between the last two cysteines
of the domain, which could probably interfere with the disulfide bond formation between the two cysteines. B: The 3D structure of the wild
cbEGF-like7–8 domains, which are created based on the Protein Data Bank (PDB) template 1EMN (47% sequence identity) by PyMOL 1.1r1.
The blue represents the unaffected tyrosine. C: The potential conformation change of the mutation. The red represents the substitute cysteine,
where the double β-sheet transformed to a loop-region. D and E: The 3D structure of domains in B and C, respectively. The yellow lines
represent disulfide bonds, and the blue represents the unaffected tyrosine. The purple displays the residues within the distance of 4Å with
tyrosine754, and double β-sheet between obligatory glycine753 and aspartic765. The red represents the substitute cysteine, which absents the
benzene ring. The yellow dashed line represents the potential disulfide bond formation between the introduced cysteine754 and cysteine750,
which would probably disrupt the disulfide bond between cysteine750 and cysteine763. The white displays the residues within the distance of
4Å with cysteine754; compared with the purple wild type, β-turn, which forms the calcium binding pocket of cbEGF-like8, is farther in distance
with cysteine754. F and G: A zoom-in change of D and E, respectively. H and I: The surface of the wild and mutant cbEGF-like7–8 domains,
respectively. The colors correspond to that of figure D and E. The surface area of the mutant region is smaller than that of the wild. In summary,
the conformation of the mutant domain is likely to be strongly altered, to include neighboring domain as well.
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should be done to confirm this conclusion. To date, eight novel
mutations have been published in the UMD database in the
cbEGF-like7 domain, and seven of them are mutations
creating or substituting cysteine residues [19-23]. A striking
result of a recent study involving over a thousand probands
with MFS and FBN1 mutations is the strong correlation found
between EL and the presence of a mutation affecting a
cysteine residue [14], which also confirms earlier conclusions
on a smaller sample [16,24-27]. These findings suggest that
cysteine residues may have a critical function in suspensory
ligaments of the eyes and led to the speculation that the
pathophysiology of ectopia lentis is related to a disruption of
the structural function of fibrillin-1 in the 10–12 nm
extracellular microfibrils in the ciliary zonule [14,27].

It is clear that EGF-like domains play a major role in the
pathogenesis of fibrillinopathies [28]. Each cbEGF-like
domain of fibrillin-1 contains six highly conserved cysteine
residues that form three intra-domain disulphide bonds
generating an anti-parallel β-pleated sheet conformation and
a consensus sequence for calcium binding in the NH2-terminal
region [12,29]. In the cbEGF-like7 domain, the intra-domain
disulphide bonds are formed between cysteine727 and
cysteine739, cysteine734 and cysteine748, and cysteine 750 and
cysteine 763, respectively, according to the UMD database. The
mutation found in our study, located at the region between
cysteine 750 and cysteine 763, introduced an extra cysteine. A
detailed study performed by PyMOl showed that the extra
cysteine could probably disrupt the third conserved disulfide
bond and introduce an additional one, which would break the
β-sheet between obligatory cysteine 750 and aspartic765. It is
evident that three disulfide bonds are required to maintain the
cbEGF-like module-fold. The loss or addition of cysteine
residues would result in module misfolding, which in turn may
have deleterious effects on the global structure of fibrillin-1
and delay intracellular processing and/or secretion from the
cell that lead to severe reduction of matrix deposition
[30-32]. Prediction by PyMOL also indicated that such a
change of the domain could probably influence the packing
interaction of the cbEGF-like7 and cbEGF-like8 domain and
alter the volume of the calcium-binding pocket of the adjacent
cbEGF-like8 domain, which may affect calcium binding
affinity of the cbEGF-like8 and expose the loop between the
cysteines at the C3 and C4 positions to proteases. This would
cause unexpected endoplasmic reticulum retention of the
protein, consistent with a protein folding defect, and increase
the susceptibility of fibrillin peptides to proteolysis [15]. In
support of our speculation, a recent study by Vollbrandt et al.
[33] demonstrated that a C750G substitution of FBN1 that
disrupt the cysteine750-cysteine763 disulfide bond of cbEGF-
like7 caused increased proteolytic susceptibility of cbEGF-
like8. On the protein level, the misfolded domain of the mutant
protein may be degraded by intracellular mechanisms or
retained within the cell, or escape from quality control
surveillance in the cell. For the latter, on encountering the

extracellular space, mutant proteins may be rapidly degraded
by proteases in the surrounding environment or may
subsequently disrupt a specific protein–protein interaction
required for the assembly of fibrillin-1 or interactions of
microfibrils with other cell-matrix components [34]. This
theory can also be proved by immunohistochemical staining
of fibrillin in fibroblast cultures of patients from the Australia
family carrying the same p.Y754C mutation: in normal
fibroblasts, most of the fibrillin was located in the
extracellular area, and the fibers were long, smooth, and fine
in appearance; in mutant fibroblasts, most of the fibrillin was
found within the cells, and the limited amount of fibrillin in
the extracellular matrix was disorganized and appeared
clumped rather than fibrous [16].

Collectively, evidences from our study and published
data supported that the p.Y754C mutation was the causative
mutation for EL in this family. Mutations involving cysteine
substitutions in cbEGF-like domains of FBN1 play a critical
role in the pathogenesis of EL. Our study offers the first
predictions on the structural and functional consequences of
this mutation in detail. The result expands the genotype-
phenotype spectrum of FBN1 and helps the study of the
molecular pathogenesis of EL and Marfan-related disorders.
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Appendix 1. Primers used for FBN1 amplification.

Summary of the primers used for the amplification of
FBN1 exons. Sequences are given in the 5'→3' direction. To
access the data, click or select the words “Appendix 1.” This

will initiate the download of a compressed (pdf) archive that
contains the file.
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