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ABSTRACT The halophilic archaeon Haloterrigena salifodinae BOL5-1 was isolated from a
Bolivian salt mine and sequenced using single-molecule real-time sequencing. The GC-rich
genome was 5.1Mbp, with a 4.2-Mbp chromosome and 5 plasmids ranging from 96 to
281kbp. The genome annotation was incorporated into HaloWeb (https://halo.umbc.edu),
and the methylation patterns were incorporated into REBASE (http://tools.neb.com/
genomes/view.php?seq_id=99167&list=1).

H alophilic microbes capable of surviving extreme conditions are of interest for bio-
technology and astrobiology (1–12). Our recent focus has been on high elevation

and subsurface hypersaline environments which yield polyextremophilic varieties. In
this announcement, isolation of an extremely halophilic archaeon, Haloterrigena salifo-
dinae BOL5-1, is reported, together with the first complete genome sequence for this
species.

Pink salt was sampled from a remote salt mine in the Department of Tarija,
O’Connor Province, Bolivia (21°24919.730S, 64°07951.520W), at 1,230m elevation, where
temperatures range from 210 to 37°C. The salt samples were dissolved in CM1 me-
dium and grown with shaking at 220 rpm at 37°C as previously described (13, 14).
Enrichment cultures were plated onto CM1 agar plates, and a pigmented isolate, H. sal-
ifodinae BOL5-1, was purified by three rounds of streaking.

Nucleic acids were extracted using standard methods (14), and sequencing was per-
formed using the Sequel platform (PacBio, Menlo Park, CA). A SMRTbell library was pre-
pared from 5mg unsheared BOL5-1 genomic DNA, size selected on the BluePippin sys-
tem (Sage Science, Beverly, MA) with a lower limit of 15 kb, purified for three rounds
with AMPure beads (Pacific Biosciences) at 0.45�, and sequenced on one single-mole-
cule real-time (SMRT) cell with the Sequel binding kit version 3.0 with 20-h collection
and 2-h preextension times. The sequencing subreads were filtered and assembled de
novo using the microbial assembly pipeline under SMRTLink version 9.0.0.92188 with
default parameters. The 121,750 mapped subreads (mean length, 14,289 bp; coverage,
340�) resolved into six polished, circular contigs.

The assembled H. salifodinae BOL5-1 genome sequence comprised 5,087,240bp (GC
content, 63.4%) and included a circular chromosome (4,180,318bp; GC content, 64.7%)
and the plasmids pHTS280.6 (280,619bp; GC content, 61.9%), pHTS220 (220,397bp; GC
content, 62.2%), pHTS171 (171,484bp; GC content, 64.2%), pHTS138 (138,030bp; GC
content, 55.7%), and pHTS96 (96,392bp; GC content, 58.4%). The genes were predicted
first using GeneMark HMM (15), analyzed further with HaloWeb version r1613245396

Citation DasSarma P, Anton BP, DasSarma SL,
von Ehrenheim HAL, Martinez FL, Guzmán D,
Roberts RJ, DasSarma S. 2021. Genome
sequence and methylation pattern of
Haloterrigena salifodinae BOL5-1, an extremely
halophilic archaeon from a Bolivian salt mine.
Microbiol Resour Announc 10:e00275-21.
https://doi.org/10.1128/MRA.00275-21.

Editor Kenneth M. Stedman, Portland State
University

Copyright © 2021 DasSarma et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Shiladitya
DasSarma, sdassarma@som.umaryland.edu.

Received 12 March 2021
Accepted 9 April 2021
Published 6 May 2021

Volume 10 Issue 18 e00275-21 mra.asm.org 1

GENOME SEQUENCES

https://orcid.org/0000-0003-4162-2810
https://halo.umbc.edu
http://tools.neb.com/genomes/view.php?seq_id=99167&amp;list=1
http://tools.neb.com/genomes/view.php?seq_id=99167&amp;list=1
https://doi.org/10.1128/MRA.00275-21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://mra.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.00275-21&domain=pdf&date_stamp=2021-5-6


(16) and EMBOSS version 6.6.0.0 (17), and finally deposited in NCBI, where the genome
was reannotated using NCBI’s Prokaryotic Genome Annotation Pipeline (PGAP) build
3190 (18). DTU Health Tech Feature Extract version 1.2 (19) was used to converge the
GeneMark and GenBank annotations, and the genome sequence and annotation were
made publicly available on HaloWeb (https://halo.umbc.edu).

The BOL5-1 genome contained 4,729 protein genes, plus 4 rRNA operons and 54
tRNA genes. The 16S RNA sequence and average nucleotide identity were used for tax-
onomic analysis at GenBank. The proteome was highly acidic (2), with a calculated
mean pI value of 4.64, and nearly all of the core haloarchaeal orthologous groups
(cHOGs) were present (20–22). The BOL5-1 genome contained expanded gene families,
e.g., Orc/Cdc6, TATA-binding, and TFB protein genes (23), and a gene cluster for gas
vesicle nanoparticles (24, 25) on the chromosome. The genome also encoded transpo-
sase genes, suggesting the presence of ISH elements (26).

Methylated DNA motifs and the methyltransferases (MTases) were identified using
the Pacific Biosciences base modification analysis protocol under SMRTLink version
9.0.0.92188 using default parameters and were deposited in REBASE (Table 1) (27).

Data availability. The H. salifodinae BOL5-1 genome sequence has been deposited
in GenBank under the accession numbers CP069188 through CP069193. The raw data
are available under the BioSample accession number SAMN17385152.
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TABLE 1Motifs containing the methylated bases m6A and m4C

Motifa
Modification
type

No. of sites in
genome

%
detected

Mean IPD
ratiob

No. of predicted
ORFsc
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a Locations of methylated bases are in bold for the top strand and underlined for the bottom strand.
b IPD, interpulse duration.
cORFs, open reading frames.
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