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Proteome-wide association studies identify
biochemical modules associated with a wing-size
phenotype in Drosophila melanogaster
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The manner by which genetic diversity within a population generates individual phenotypes is

a fundamental question of biology. To advance the understanding of the genotype–phenotype

relationships towards the level of biochemical processes, we perform a proteome-wide

association study (PWAS) of a complex quantitative phenotype. We quantify the variation of

wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using

SWATH mass spectrometry. In spite of the very large genetic variation (1/36 bp) between the

lines, proteome variability is surprisingly small, indicating strong molecular resilience of

protein expression patterns. Proteins associated with adult wing size form tight co-variation

clusters that are enriched in fundamental biochemical processes. Wing size correlates with

some basic metabolic functions, positively with glucose metabolism but negatively with

mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power

of PWAS to filter functional variants from the large genetic variability in natural populations.
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S
ingle gene analyses by traditional forward and reverse
genetics approaches in model organisms revealed evolutio-
narily conserved signalling pathways that control

growth1–6. Yet, it is presently unknown whether these same
pathways are also the major determinants of growth and size
variation of individuals in natural populations. Previous studies
did not provide insights into intra-species variability.
Furthermore, previous studies neglected the fact that natural
selection acts on phenotypes that, for the most part, are the
product of complex interactions between genomes and the
environment over time, and not the product of single genes.
Genome-wide association studies (GWAS) correlate markers
spread over entire genomes with phenotypes and have mapped
many quantitative trait loci (QTLs) that affect natural variation in
phenotypic traits7,8. The inbred lines of the Drosophila genetic
reference panel (DGRP) provide a good model system for such
association studies, as the inter-strain genetic diversity reflects
that of a wild population9. Remarkably, the genomes of inbred
lines generated from individuals of a single population exhibit
B25-fold higher single-nucleotide polymorphism (SNP) diversity
than is observed in a human population9–11. Furthermore,
experiments with Drosophila can be performed under
controlled environmental conditions, whereas it is difficult to
account for environmental factors in human GWAS studies12–14.
The mechanistic interpretation of GWAS results has been
hampered by the fact that genomes contain coding, non-coding,
functional and non-functional genetic variants that have
accumulated over evolutionary time, and that are difficult to
distinguish in association studies. In contrast, genetically deter-
mined variability in protein sequence or abundance has been
shown to provide a more direct link between biochemical
mechanisms and phenotypes15,16. We would therefore expect
that variation at the level of proteins is more tightly associated
with phenotypic variation than genomic variation.

Results
Tight control of protein abundance in wing discs. Here we used
the complex phenotype ‘wing size’ in Drosophila melanogaster to
test whether functionally relevant variation is more readily
detected at the proteome than the genome level. We chose the
wing-size phenotype, because extensive single-gene analyses have
been conducted, environmental influences can be controlled and
because it can be precisely measured morphometrically. We used
sequential, windowed acquisition of all theoretical masses
(SWATH) mass spectrometry (SWATH-MS), a massively parallel
and highly reproducible protein quantification technique16–18 to
quantify 1,610 protein entries extracted from wing imaginal discs,
the precursor tissue of the adult wing. To maximize the between-
line size variation, we selected 30 lines with extreme wing-size
phenotypes (15 with big wings and 15 with small wings) from the
DGRP line collection (Fig. 1a). To account for the sex-dimorphic
nature of wing size in Drosophila, we dissected and collected wing
discs from third instar larvae separately for each sex. Biological
duplicates were prepared for each line/sex, resulting in a
total of 120 disc samples that were analysed by SWATH-MS.
Computational analysis of the resulting data sets with the
OpenSWATH software tool19 allowed us to identify and
quantify 6,755 unique peptides in 119 samples. All alleles
basically occur in the homozygous state within an inbred line
and therefore a peptide containing polymorphic protein coding
variation is either fully detected in samples with the reference
sequence or completely undetected in samples in case of a coding
variant. In the latter case, the protein level is determined based on
the other constituent peptides that are not coding variants. Thus,
our data do not contain measurements that might be inaccurate

when a coding variation exists in the heterozygous state. Pairwise
Spearman’s rank correlation coefficients of peptide levels between
biological replicates showed nearly perfect reproducibility
(median 0.99) of quantification, whereas coefficients between
non-replicates showed a left-shifted, distinct distribution (median
0.97), indicating larger variability between than within genotypes
(Fig. 1b and Supplementary Fig. 1). We determined the levels of
1,610 protein entries as the mean of the constituent peptides that
were fit for each line and sex using a linear model (see Methods
and Supplementary Data 1). A fraction of the proteins had
multiple entries (238 entries for 101 proteins), because they were
identified as differently annotated sequence variants, and we
therefore designated them using entry numbers (see Methods and
Supplementary Data 2). We observed that 87% of the protein
entries showed significant variation between lines or sexes
(Supplementary Fig. 2) but, surprisingly, the median standard
deviation (s.d.) in protein levels was only 17% (in fold change) in
spite of the extensive genetic variability among lines (Fig. 1c).
More abundant proteins tended to show slightly smaller
variation, suggesting that more abundant proteins are less
affected by genetic variation among lines (Fig. 1d). To obtain
an overview over the entire data structure, we applied hierarchical
clustering to proteins and samples (lines/sex) based on
Spearman’s rank correlations (Fig. 1e). Both big and small wing
samples spread across the clusters, indicating similar overall
structures of the proteomes between big and small wing discs.
Overall, these data indicate that wing disc proteomes have an
unexpectedly small variability in spite of the large inter-line
genomic variability, suggesting a strong buffering capacity at the
protein level.

Proteome-wide association study. To establish an association
between proteome abundance variation and phenotypic variation,
we next performed a proteome-wide association study (PWAS).
Specifically, we evaluated an association between the abundance
distribution of each quantified protein and the phenotype wing
size. We first defined the wing-size phenotype using centroid
size (CS) that is a standard measure of the ‘size’ of a shape in
geometric morphometrics. We considered two wing CSs: absolute
CS that is principally proportional to wing area and suitable to
analyse sex-dependent difference of wing size (Supplementary
Fig. 3), and relative CS that is adjusted for body size using
interocular distance (IOD) (see Methods and Supplementary
Data 3). Relative CS classified our samples into 15 big and 13
small wing lines for each sex (Fig. 2a) (it is noteworthy that
2 small wing lines were removed for all following data analyses
due to the unavailability of genotype information). For PWAS,
the two variables absolute and relative CS were regressed on
protein levels (see Methods). After multiple testing correction by
the Benjamini–Hochberg method, 46 and 304 protein entries
were identified to be associated with relative and absolute CSs,
respectively, at a false discovery rate (FDR) of 5% (Fig. 2b,c and
Supplementary Data 4). To visualize the wing-size-associated
proteins in the whole proteome data set, we performed two
different dimension-reduction methodologies: principal compo-
nent analysis (PCA) and partial least squares (PLS). Although
PCA better explained variation in the proteome, PLS was superior
to PCA in capturing wing-size variation (Supplementary Fig. 4).
For both wing-size measures, the first two PLS components
explained 470% of variation in size. We therefore plotted our
samples against the two PLS components derived to explain
absolute CS (Fig. 2d). Both components aligned the samples in an
increasing order of wing size, confirming that they describe the
wing-size variation well. Plotting of the correlation between
proteins and the two PLS components revealed that the proteins
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associated with relative and absolute CS were mostly overlapping
and mapped in the top-right region (for positive correlation to
wing size) and the bottom-left region (for negative correlation) of
the plot (Fig. 2e). These data indicate that B20% of the quantified
proteins are associated with wing size and about one half corre-
lates positively and the other half negatively.

Wing-size-associated protein modules. To estimate functional
connectivity of the variant proteins, we applied hierarchical
clustering to the wing-size-associated proteins using Spearman
correlation (r) as a similarity measure. We identified high-
correlation modules by cutting off connections at |r|¼ 0.4, which
is equivalent to a P-value of 0.001. The protein modules were
combined with protein interactions from the STRING10 database
at the highest confidence criteria (Score¼ 0.9), which led to the
construction of a large wing-size-associated protein network
(303 nodes connected with 1,560 edges) that consisted of most of
the associated proteins (Fig. 2f and Supplementary Data 5). To
identify functionalities embedded in the network, we performed
Gene Ontology enrichment analysis. The functionalities enriched
include glycolysis (p¼ 1.4� e� 14), proteasome (p¼ 2.1� e� 12),
nucleosome/histones (p¼ 3.0� e� 13) and mitochondrial
respiratory chain complex I (p¼ 7.3� e� 7). Strikingly, the

proteins implicated in the cellular processes were mostly found
enriched in specific modules, suggesting that the proteins in the
same processes co-vary across lines.

To investigate on inter-module relationship, we applied
hierarchical clustering to the protein modules. The similarity
between the modules was defined as the Spearman correlation
between the principal components of the individual modules. The
higher-order clustering revealed five big module clusters. Distinct
cellular functionalities were attributed to four of these clusters
(Fig. 3a). To investigate module-level association with size traits,
correlations between modules and size traits were analysed
(Supplementary Data 6). Module correlation with wing size
(absolute CS) showed a linear relationship with that with IOD
(Fig. 3b). This indicates that the size of different body parts
correlates in a similar way with biochemical processes, suggesting
a similar mechanism of size control in the whole body.
Interestingly, lower correlations were seen with the green- and
blue-coloured module clusters that were enriched with proteins
implicated in glucose metabolism. Absolute CS correlated well
with all the modules but relative CS showed an uneven
distribution of correlation with modules (Fig. 3c). High correla-
tion with relative CS was prominently observed with the green-
and blue-coloured module clusters. This suggests that the purple
(RNA splicing, cell junction assembly)/orange (chromatin
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Figure 1 | Experimental scheme and variation of wing disc proteins. (a) Flow of the experiments. Wing discs from wing-size-extreme Drosophila inbred

lines were dissected and collected. SWATH-MS quantified wing disc proteomes for each line/sex, which were analysed to identify/characterize wing-size-

associated proteins. (b) Reproducibility of the experiment. Pairwise Spearman’s rank correlation coefficients between peptide levels showed higher

correlations among biological replicates than among non-replicates. (c) Variation of protein levels; s.d. is plotted in an increasing manner. (d) Relationship

between protein variation and protein abundance. Less abundant proteins show larger variations. (e) Cluster analysis of the proteome data matrix. Proteins

(1,610 entries) and samples (30 lines� 2 sexes) are hierarchically clustered based on Spearman’s correlations.
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assembly)/red (protein folding and translation, proteosome, cell
cycle and cytoskeletal organization) module clusters correlate
with the body size in general and the green/blue (glucose
metabolic process) module clusters exhibit a relatively specific
correlation with wing size.

Discrete correlations of metabolic processes with wing size. To
draw mechanistic insights from the process-level associations
identified by PWAS, we examined the variation of all glycolytic
proteins in the proteome. Glycolysis comprises ten enzymatic
steps through which glucose is decomposed into pyruvate with
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Figure 2 | Protein network of wing-size-associated proteins. (a) CS of wings at adult age. Absolute CS and relative CS (adjusted for body size) were used

as explanatory variables in PWAS. (b,c) Association of proteins with relative and absolute CSs, respectively. P-values are plotted against the slope of the

fitted line. The horizontal line indicates 5% FDR threshold. (d) Score plot against the first two PLS components. Samples sorted by wing size into four

groups are aligned along the components in an increasing manner. (e) Correlation loadings plot. Correlation between proteins and the PLS components are

plotted. The wing-size-associated proteins are marked as indicated. (f) Protein network and functionality of the wing-size-associated proteins. Protein

covariation modules were identified based on absolute Spearman’s correlation (|r|40.4, equivalent to P-value o0.001). Strength of connection is

indicated by the tone of purple colour. Protein interactions (cyan edges) based on STRING database at the highest confidence (Score¼0.9) were combined

to construct a large wing-size-associated protein network. Enriched functionalities identified by David are indicated by node colours as indicated.
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the generation of ATP and NADH. SWATH-MS identified
ten enzymes from glycolysis and two enzymes responsible for
glycogen breakdown and lactate fermentation (Fig. 4a). Surpris-
ingly, the protein levels of all these enzymes showed positive
correlation to wing size in both sexes (Fig. 4b). This observation
was confirmed statistically, as eight enzymes associated with
absolute or relative CS at 5% FDR and one enzyme at a nominal
P-value o0.05. In addition, phosphofructokinase, the key enzyme
in the control of glycolytic flux, exhibited one of the strongest
associations with wing size. Three out of four subunits of the
pyruvate dehydrogenase complex, including the rate-limiting E1
subunits that convert pyruvate to acetyl-CoA, were also positively
correlated with size (Fig. 4c). These observations support an
association between larger wing size and an increased use of
glycolysis.

Following up on this observation, we further investigated
downstream processes of glucose metabolism with respect to a
correlation with size: the enzymes responsible for the tricar-
boxylic acid cycle that oxidizes acetyl-CoA to CO2, to produce
NADH, FADH2 and ATP mostly did not pass the significance
threshold (Supplementary Fig. 5a,b) but showed a weak positive
correlation to wing size (Supplementary Fig. 5c). SWATH-MS
detected 53 proteins from mitochondrial respiratory chain
complexes that use NADH/FADH2 to produce ATP (Supple-
mentary Table 1). Surprisingly, these proteins contrastingly
showed a strong negative correlation at the systemic level
(Fig. 5a). Individual inspection of the wing-size-associated
respiratory chain complex proteins confirmed their negative
correlation to wing size in both sexes (Fig. 5b). This systematic
negative correlation is specific to respiratory chain complex

proteins in mitochondria, as other mitochondrial proteins such as
the enzymes of the tricarboxylic acid cycle (Supplementary
Fig. 5c) and ribosomal proteins (Supplementary Fig. 6) did not
show negative correlation. The target-of-rapamycin (TOR)
signalling pathway positively controls cellular and organismal
growth1,4,20. Cytosolic ribosomal proteins that are targets of the
TOR signalling did not show a bias to wing size (Supplementary
Fig. 7). Previous studies reported that TOR signalling regulated
expression of most of the genes both in glycolysis21 and in
mitochondrial oxidation22, a finding that is inconsistent with our
results. The activity of upstream regulators of growth is in many
cases mediated by posttranslational modifications of pathway
components (such as phosphorylation), which we did not detect
in the current study, and therefore association studies of
posttranslational modification together with the study of
protein abundance is desirable to determine whether the
activity of TOR signalling is related to these systemic
associations. Together, these results implicate that larger wing
tissues use more glucose metabolism and less mitochondrial
respiratory metabolism, which resembles the characteristics of
highly proliferative cancer cells (Warburg effect) on a smaller
scale.

Furthermore, we detected a systemic association between
histone protein levels and wing size (Fig. 2f and Supplementary
Fig. 8), whereas other nuclear proteins such as nuclear pore
complexes and spliceosomes showed no such trend
(Supplementary Fig. 9). Cellular histone protein levels are
thought to be constant as long as the cells have the same length
of genomic DNA23. We therefore investigated whether this
applies to our case. We first measured cell sizes in the adult wing
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Figure 3 | Protein module connectivity and correlation with size traits. (a) Higher-order clustering of protein modules. The modules were hierarchically
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among the lines of the smallest and biggest wings (Supplementary
Fig. 10). Interestingly, cell size was different between sexes but
invariant within each sex, except for the two smallest wing lines.
These results indicate that wing-size variation within each sex is
mainly determined by cell number (Supplementary Fig. 11).
Assuming that cell size in the adult wing is proportional to cell
size in the wing disc, we estimated relative histone protein
abundance per cell in the extreme samples (see Methods). The
approximate histone levels per cell do not exhibit systemic
correlation with wing size (Supplementary Fig. 12), suggesting
that the negative correlation of histone levels observed in our
proteome mostly reflects the cell size variation among the
samples. Thus, these analyses suggest that our data are in line
with the ‘constant’ cellular histone protein levels.

Genetic association of wing-size-associated proteins. Despite
the high genetic variation in Drosophila9–11, we observed a strong
buffering capacity at the protein level, indicating a remarkable
robustness of cellular and biochemical processes against genomic
variation. Such molecular resilience may have evolved to allow for
genetic variation to accumulate, which may then be beneficial
under changing environmental conditions. To investigate genetic

association to wing-size-associated proteins, we performed
protein QTL (pQTL) mapping. To identify potential
cis-regulatory variants, we tested association of protein levels to
SNPs located within ±10 kb of the gene region with minor allele
frequency410%. We applied mapping using the Kruskal–Wallis
test in each sex separately, as protein levels were significantly
different between sexes for many proteins (Supplementary
Fig. 2a). Multiple testing correction was performed through
permutation, as previously described10,24,25. At a corrected
P-value threshold of 0.01 (0.05), we detected 11 (39) proteins
with at least one pQTL significant in either sex (Fig. 6a,b and
Supplementary Data 7). Owing to the limited sample size, the
number of pQTLs identified in the study is relatively small. Most
of the pQTLs were found to be sex specific, which is consistent
with a previous study of expression QTL mapping in
Drosophila10. We found that all pQTLs have large effect sizes
(40.8 in Cohen’s criteria) for both sexes (Fig. 6c and
Supplementary Data 8), indicating that the protein levels are
clearly distinct between SNP variants (Supplementary Figs 13
and 14). The majority of pQTLs in one sex also showed large
effect sizes in the opposite sex (4 0.8) (Fig. 6d), suggesting that the
pQTLs basically exert their effect on both sexes. As the proteins for
which we mapped pQTLs are associated with wing size, we
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investigated the effect of the pQTLs on wing size (Fig. 6e). The
effect sizes for wing size were, however, significantly smaller than
those for proteins, indicating that the effect of pQTLs attenuates
from protein levels towards the downstream phenotypic level.

Discussion
Studies of the molecular intermediates between genotype and
phenotype have been thought critical to advance the mechanistic
understanding of the genotype–phenotype relationships26.
Previous reports indicate that protein levels weakly correlate
with messenger RNA levels27–30 such that studies of the two
molecular levels would provide distinct structures for the
association map. Recent advances in proteomics technologies,
specifically the ability of SWATH-MS to accurately quantify
consistent sets consisting of hundreds to thousands of proteins
across extended sample cohorts now make PWAS technically
feasible. We have performed, to our knowledge, the first PWAS
on a complex quantitative trait, which revealed that basic
biochemical processes are associated with wing-size variation.
Our results indicate that protein levels in the biochemical
processes tightly associate with phenotypes, probably because
phenotypic traits are formed through the biochemical processes
that are performed by proteins. We found that biochemical
processes are enriched in specific protein co-variation clusters.

Similar observations were reported in previous human and mouse
studies15,25. The process-level detection of association in our
study stems from this co-variation feature of the proteins within
the same processes.

We have observed molecular resilience at the protein level that
buffers a very large genetic variability in Drosophila towards
stable phenotypes on which selective pressure acts. This buffering
capacity may indicate that variation in protein abundance is more
functionally relevant than genetic variation and proteins provide
a functional filter on genomic variation. Even though our study
shows a striking co-variation of components of different
biochemical pathways involved in growth, it also highlights
present limitations of the technique. Our previous shotgun MS
study of whole fly bodies identified B9,000 proteins using a
combination of diversified samples, multi-dimensional biochem-
ical fractionation and the repeated experimental loops and the
data from hundreds of liquid chromatography–tandem MS
(LC–MS/MS) analyses were cumulated31. In contrast, in the
present study proteins were extracted from a highly specialized
tissue at a specific developmental time point and analysed in a
single injection without extensive proteome fractionation. In
addition, we were only able to use a limited amount of samples
for each fly line due to the time-consuming dissection process.
More than 8,500 wing discs were dissected for 120 MS samples
resulting in about 38 mg of protein extract per sample on average.
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Therefore, the number of proteins identified was limited. Our
protein detection is still largely focusing on relatively abundant
proteins and we miss the information on many proteins with
regulatory roles usually expressed at lower levels. In general, for
any analytical method including SWATH-MS, the uncertainty of
measurement for signals close to the limit of detection is larger
than for signals with a high signal-to-noise ratio. To address this
issue, in our study only peptides that were reliably quantified
in more than 96 samples were used for further analyses
(see Methods for more detail). The protein levels for 95% of
the wing-size-associated proteins are more than eight times
higher than the minimum abundance among the proteins
quantified in the study. This focus on signals with robust
signal-to-noise ratios increased the accuracy of quantification for
the wing-size-associated proteins, thus assuring the robustness of
our findings on the wing-size-based association map and protein
network.

Our study highlights the discrete association of metabolic
processes with size. The findings implicate the higher use of
glycolysis in bigger tissues, which seems natural when tissues
are to grow more. It is, however, striking that oxidative
phosphorylation negatively correlates with wing size and
ribosome biogenesis shows no systemic difference between big
and small wing lines. We recently performed a GWAS study on
size traits using 143 DGRP lines32. The QTL mapping on wing

size identified 111 QTLs spread throughout the fly genome that
are located near/in 130 gene regions. The genes identified in the
GWAS are mostly not canonical growth genes and RNA
interference knockdown tests confirmed 33 genes to be novel
growth regulators of wings. Out of the 130 genes, we detected 10
at the protein level in the current study and 3 proteins (CG3011,
CG6084 and Gdi) were found to be associated with wing size at
5% FDR (Supplementary Table 9). CG3011 and CG6084 are
both metabolic enzymes and were confirmed to modulate
wing size.

This study has revealed systemic associations among genome,
proteome and size traits in the Drosophila wing; however, the
causal relationships of the associations remain to be determined.
We demonstrate advantages and limitations of PWAS to uncover
biochemical processes that correlate with a complex phenotype
and thus advance the understanding of the black box lying
between genotype and phenotype.

Methods
Drosophila culture and wing disc dissection. Flies were cultured at 25 �C under
non-crowding conditions with food that contained 100 g of fresh yeast, 55 g of
cornmeal, 10 g of wheat flour, 75 g of sugar and 8 g of bacto agar per litre medium.
Third instar larvae wandering on the wall of the culture vial were transferred in ice-
cold Hank’s balanced salt solution, where wing discs were dissected under the
microscope and collected separately for each sex in tubes containing ice-cold
Hank’s balanced salt solution buffer and kept at � 80 �C until use. This process
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was repeated at different dates and cultures so that the total number of wing discs
per line/sex/replicate became more than 60 (up to 110).

Morphometrics of adult wings. Size measurements of adult wings were
performed in our previous study32. The raw data of the size measurements are
provided32. Briefly, 143 DGRP lines were set up in duplicate vials on the same day.
After three generation of inbred crossing, F3 L1 larvae were distributed into three
replicate vials, each containing 40 larvae. Owing to the different developmental
timing among lines, the food for F3 larvae was prepared at different times among
lines, which categorized lines into four groups by the food batches. The
adult F3 flies were pooled from the three vials 1–2 days after eclosion and kept
at � 20 �C. Wings were taken and photographed under a VHX-1000 digital light
microscope (KEYENCE). Morphometric measurements were extracted using
WINGMACHINE33 and MATLAB (MATLAB version R2010b, The MathWorks
Inc., Natick, MA) and the raw CS was calculated as the square root of the summed
squared distances of 14 landmarks from the centre of the wing. IOD was measured
as the distance from eye edge to eye edge.

Absolute CS was derived using a regression model (CSraw¼ mþ Sþ FBþ
GIþ e, where S denotes sex, FB denotes foodbatch and GI denotes genomic
inversion). The distinct days of food preparation were reflected in the variable
‘foodbatch’, with four levels representing food prepared according to the same
recipe and procedure on four distinct days. The inversions In (2L)t and In (3R)Mo
were coded as (0,1,2), depending on whether no, one or two inversions was present
in the homozygous state. To make absolute CS to reflect the sex-dimorphic nature
of wing size, absolute CS was defined by subtracting effects of foodbatch and
inversion (but not sex) from the raw CS. Relative CS was defined as described32.
Briefly, the raw CS was regressed (CSraw¼ mþ IODþ Sþ FBþ e, where IOD
denotes the trait covariate) to define relative CS. IOD was used as a representative
measure for body size. Inversions were not modelled, because the residual CS did
not show correlation with any inversion. The residual e obtained by this model was
defined as relative CS. Analyses were performed in the R statistical environment
(version 3.1.2) (http://www.r-project.org).

MS sample preparation. The tubes containing wing discs were thawed and
centrifuged at 6,000 r.p.m. for 2 min on table-top centrifuges. The supernatant was
removed and the tissues were lysed by pipetting up and down in 100 ml of lysis
buffer (6 M urea, 0.2% RapiGest (Waters) and 50 mM ammonium bicarbonate).
The lysate was transferred into the next tube and wing discs were mixed and lysed.
This was continued until the last tube, to have more than 60 wing discs dissolved in
100ml lysis buffer. The combined lysate was sonicated for 10 min in water bath and
the protein content was measured using a bicinchoninic acid assay (Thermo
Scientific). The proteins were reduced with 10 mM dithiothreitol for 30 min at
60 �C in a shaker (750 r.p.m.) and, after cooling down, alkylated with 55 mM
iodoacetamide for 1 h at room temperature, while shaking at 700 r.p.m. in the dark.
The samples were diluted with 50 mM ammonium bicarbonate to be 1.5 M
concentration of urea. After checking pHB8.0, sequencing grade trypsin
(Promega) was added to a substrate:enzyme ratio of 40:1 and incubated at 37 �C
overnight on the shaker (550 r.p.m.). Although the samples were acidified (pHo3),
tC18 columns (Sep-Pak Vac 1cc (100 mg), Waters) were pre-wet by 100%
methanol and subsequently by 80% acetonitrile (ACN) and 0.1% trifluoroacetic
acid (TFA) and equilibrated with 0.1% TFA. The acidified samples were then
applied to the columns three times and the columns were washed with 0.1% TFA.
Peptides were eluted with 1 ml of 50% ACN and 0.1% TFA, and dried by cen-
trifugal evaporation. The peptides were resuspended in 0.1% formic acid and 5%
ACN to be 0.3 mg ml� 1 and kept at � 20 �C until use.

SWATH mass spectrometry. Relative peptide levels within each sample were
determined in SWATH-MS: first, we analysed various wing disc samples by
LC–MS/MS in shotgun mode and built a high-confidence reference spectral
library34. Each sample was then analysed in SWATH mode17,35. From the resulting
SWATH data set, which contains fragment ion spectra of all peptide ions in a user-
determined retention time versus peptide ion mass-to-charge ratio, individual peak
groups were extracted using OpenSWATH and the integrated area under the curve
per peak group was summed up to obtain an intensity per peptide19. Each peak
group consists of the chromatographic elution profile of a set of fragment ion
signals that, collectively, uniquely identify a particular peptide. The summed single
intensity (integrated peak area of the transition traces identifying a peptide) was
used as a quantitative indicator for relative quantitative comparisons of the peptide
in question across the samples. In more detail, SWATH-MS data were acquired
using an AB Sciex 5600 TripleTOF mass spectrometer interfaced to an Eksigent
NanoLC Ultra 2D Plus HPLC system. Samples were chromatographed using a
120-min gradient from 2 to 35% (buffer A 0.1% (v/v) formic acid, 2% (v/v) ACN,
buffer B 0.1% (v/v) formic acid and 90% (v/v) ACN) after direct injection onto a
20 cm PicoFrit emitter (New Objective) packed to 20 cm with Magic C18 AQ 3 mm
200 Å stationary phase. For SWATH-MS-based experiments, the mass
spectrometer was operated in SWATH mode using a precursor isolation width of
26 m/z covering the precursor mass range of 400–1,200 m/z. This m/z setting
effectively resulted in 32 isolation windows (400–425, 424–450, y 1,174–1,200)
SWATH MS2 ion traces were detected from 100–2,000 m/z. The collision energy

for each window was determined according to the calculation for a charge 2þ ion
centred on the window with a spread of 15 eV. An accumulation time of 100 ms
was used for all fragment-ion scans in high-sensitivity mode and for the survey
scans in high-resolution mode acquired at the beginning of each cycle, resulting in
a duty cycle of B3.4 s17,35.

Peptide quantification and reproducibility analysis. The reference library for
targeted extraction of ion traces from SWATH files was generated by acquiring a
representative peptide pool of all samples on the AB Sciex 5600 TripleTOF mass
spectrometer interfaced with an Eksigent NanoLC Ultra 2D Plus HPLC system in
data-dependent mode. LC settings were identical to SWATH-MS acquisition mode.
MS1 spectra were collected in the range 360–1,460 m/z and the 20 most intense
precursors with charge state 2–5 exceeding 250 counts per second were selected for
fragmentation. MS2 spectra were collected in the range 50–2,000 m/z for 100 ms
and, subsequently, the precursor ions were dynamically excluded from reselection
for 20 s.

The acquired vendor-specific data files were converted into mzXML format.
COMET and X!Tandem in silico search engines annotated peptide spectrum
matches against FlyBase r5.52 protein database using Carbamidomethyl (Cys) as
static modification and Oxidation (Met) as variable modification. Following the
initial searches, the peptides were evaluated by PeptideProphet36. At 1% FDR,
1,685 proteins were identified in the pool of wing disc proteome. Based on these
search results, the spectral library is generated for targeted SWATH extraction as
described by Schubert et al.34. With the spectral library in hand, SWATH files are
analysed using openSWATH19,37 implemented in the iPortal GUI38. Search results
are stored in OpenBIS file server system39. Exact parameters of the informatics
SWATH workflow are given in the Supplementary Note 1.

The peptide abundance was quantified using the area under the curves
summing up co-eluting transitions from the SWATH-MS ion chromatograms, so
that the abundance was considered to be a continuous variable. Therefore, the
measurement did not suffer from high sampling variances at low abundance, which
has been an issue when abundance is measured by count data such as spectral
counting. However, as for any analytical method including SWATH-MS, the
uncertainty of measurement for signals close to the limit of detection is larger than
for signals with a high signal-to-noise ratio. To limit this effect on the associations
determined in this study, peptides with small, unreliable signals close to the limit of
detection were treated to have missing values, thereby avoiding inaccurate
assertions of values to them. If a particular peptide was observed as missing values
in more than 20% of SWATH-MS maps among samples, it was removed from
further analyses. The net result of this filtering step was that we only considered
peptides that were reliably quantified in more than 96 samples, which resulted in a
set of 6,755 peptides that were used for the association studies.

The intensities for peptides were log2-transformed and the normalization from
sample to sample was performed by median centralization. To evaluate
reproducibility, Spearman’s rank correlation coefficients were calculated in a pair-
wise manner between samples. The distribution of the coefficients was compared
between within replicates and within non-replicates.

Protein annotation and quantification. In the study, 1,610 protein entries were
quantified, each of which are different due to their distinct constituent peptides.
The entries consist of 3 types as follows: (1) 1,248 entries uniquely represent
each 1,248 protein; (2) 238 entries represent 101 proteins according to multiple
entries for each protein. This happened, because each protein was
identified by distinct sets of peptides among its variants. Thus, these proteins have
multiple entries, which are designated with entry numbers. (3) The remaining
protein entries (124 entries) represent protein isoforms. The isoforms share the
same peptides and, therefore, are indistinguishable. They are designated by
combining the names of the isoforms.

Model-based quantification of protein levels was performed using a linear
model. For each protein entry, the MS intensities were regressed on MS features
(peptides) and biological features (30 lines� 2 sexes), and error variances were
estimated from biological replicates: MS peak intensity¼MS featureþ biological
featureþ e (by replicates). Ninety-four per cent of the protein entries showed
significant variation across biological features. Protein levels for each line/sex were
calculated as the mean of the constituent peptides fitted by the model. Significance
of protein variation for sexes and lines separately were evaluated by regressing
protein levels on sex and line. P-value 0.05 was used as the significance threshold
for each factor, revealing 762 protein entries significant for sex and 1,324 entries for
line, and in combination, 1,394 entries (87%) in total. As most of the proteins
exhibited significant variation, all the proteins quantified by MS were used in the
data analyses. The size of protein variation was estimated using the s.d. across the
samples.

Proteome-wide association study. To identify proteins that are associated with
wing size, we applied a linear model to each protein entry and evaluated the
significance level of association. The model used for relative CS was: relative
CS¼ sexþ protein level (in log2 scale)þ e. The interaction between sex and
protein was not significant for all proteins at 5% FDR. In the model for absolute
CS, a simple regression was performed to identify proteins associated with the
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sex-dimorphic nature of wing size: absolute CS¼ protein level (in log2 scale)þ e.
The correction for multiple testing was performed using Benjamini–Hochberg
method. The FDR was estimated by p.adjust() function in R.

Network and Gene Ontology enrichment analyses. PCA and PLS regression
analyses were performed using pls package40 in R, in which 1,342 protein entries
that contain no missing values were considered. To construct the wing-size-
associated protein network, the wing-size-associated proteins identified by PWAS
was hierarchically clustered using hclust() function in R with complete linkage,
where the protein co-variation similarity was defined as the absolute value of
Spearman’s correlation coefficients (r). To identify the high co-variation modules,
the connections were cut at |r| o0.4, equivalent to P-value 0.001. The protein
interactions among the wing-size-associated proteins identified by STRING
(version 10) (http://www.string-db.org) at the highest confidence level (Score¼ 0.9)
were then added to the co-variation modules. The network was visualized using the
open-source platform Cytoscape (version 3.1.1) (http://www.cytoscape.org). The
biological processes enriched for the wing-size-associated proteins were identified
by DAVID (https://david.ncifcrf.gov/) using the functional classification tool. The
higher-order module clusters were identified by performing another hierarchical
clustering against the modules with multiple protein components using hclust()
function in R with complete linkage. The module similarity was defined by the
absolute value of Spearman’s correlation coefficients (r) between the principal
components of individual modules. The principal components were calculated
using prcomp() function in R. Functionalities enriched for the higher-order
module clusters were identified using DAVID with the significance threshold 0.05
by Benjamin–Hochberg method. Correlation between the modules and size traits
was also defined by Spearman’s correlation coefficients (|r|).

Cell size measurement and histone protein levels per cell. To investigate cell
size variation in the wing among the lines of the five smallest wings and four
biggest wings, we first determined the cell number in the wing by counting the
trichomes in a fixed 100 mm� 100 mm square area of the third posterior cell region
in the ventral side of the wing. The cell number for each line/sex was defined as the
mean of 15–20 flies. The single cell area was calculated as the defined area
(104mm2) divided by the cell number in the square region. The total cell number in
the whole wing was estimated as the whole wing area divided by the single cell area.

It has been suggested that histone levels are determined only by DNA length. If
this were the case, histone levels are estimated lower in bigger cells, as protein levels
were normalized to the whole protein content (by median centralization). Assume
that there are two cells, a big cell (volume¼ 2X) and a small cell (volume¼ 1X),
and both cells have the same level of histone protein (amount¼Y). In this
situation, our normalized protein levels become Y/2 for big cell and Y for small cell.
We can convert the histone protein levels to relative protein levels per cell by
multiplying the current protein levels by cell volumes:

Big cell: Y/2� 2X–4 XY
Small cell: Y�X–4 XY
To apply this procedure, we need to estimate relative cell volumes of wing discs.

We assumed that cell areas in the wing determined above approximate the cell area
variation in wing discs. Cell volume was then calculated as (cell area)3/2. The
relative histone protein levels per cell were finally obtained by transforming the
current protein levels in log2 scale back to a linear scale and by multiplying them
by the cell volumes. Thus, we compared the relative protein levels per cell among
samples.

pQTL mapping. Genotypes of the 28 lines for pQTL mapping were obtained from
the DGRP Freeze 2 (http://dgrp2.gnets.ncsu.edu). The tests for association between
wing-size-associated proteins and cis-SNPs were performed in R using Kruskal–
Wallis test, applying for each sex separately. Only the cis-SNPs located within
±10 kb of the gene region with minor allele frequency410% among 28 lines were
considered. Multiple testing correction was performed through permutation as
previously described10,24,25. We repeated each test for 10,000 permutations of
protein expression in the whole proteome. For each permutation, the minimum
P-value was recorded among all SNPs for each protein entry. A corrected P-value
was calculated as the number of minimum P-values from the permutations that
were smaller than the original P-value divided by the number of permutation.
Effect size is defined as the mean difference between genotypes divided by the s.d.
The effect size was calculated in each sex.

Data availability. All the raw MS data including the spectral library of fly wing
proteome and the OpenSWATH outputs are stored at Center for Computational
Mass Spectrometry (http://proteomics.ucsd.edu) with MassIVE ID:
MSV000079202 and MSV000079208. The additional data that support the findings
of this study are available from the corresponding author upon request.
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