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Abstract: A novel perylene diimide (PDI) based acceptor P-PDI was synthesized by attaching a
phenyl bridge to two octyloxy side chains. With two large volume side chains, the planarity of
P-PDI was significantly reduced, leading to weak nano-aggregation of the PDI groups between the
different acceptor molecules. Differential scanning calorimetry (DSC) experiments also revealed that
P-PDI was amorphous, and demonstrating the aggregation of P-PDI was successfully suppressed.
When blended with PTB7-Th to fabricate a polymer solar cell, a power conversation efficiency (PCE)
of 2.21% was achieved, demonstrating that a conjugated bridge with a big volume side chain could
significantly reduce the nano-scale aggregation of PDI based acceptor materials, which provides a
new strategy to synthesize high efficiency acceptors based on PDI.

Keywords: perylene diimide (PDI); nano-scale aggregation; non-fullerene; polymer solar cells; large
volume side chains

1. Introduction

Due to its merits of being flexible, light weight, and having low toxicity, polymer solar cells (PSCs)
have attracted attention in the last two decades [1–4]. PSCs usually adopt conjugated polymers as
the donor and fullerene derivates such as PC61BM or PC71BM as the acceptor. Due to the synthesis
of novel donor materials and the developing of device fabrication technology, the power conversion
efficiency (PCE) has been boosted for single junction PSCs [5]. Although the prospect of PSCs was
fascinating, the PCE of PSCs still lagged behind that of inorganic solar cells, which limited their
commercial application [6,7]. There are many factors that hamper the increase of PCE in PSCs—one is
the weak and narrow absorption of fullerene derivates in the ultraviolet–visible spectroscopy (UV-vis)
range, and another one is the difficulty in modifying fullerene based acceptors [8–10]. Aside from this,
non fullerene organic acceptors have attracted extensive attention. Organic acceptors not only have
wide adsorption in the UV-vis range, but they can supply an easy tuning energy level to reduce the
energy loss between the donor and acceptor [11,12]. Recently, a PCE of 16% for non fullerene acceptor
based PSCs was achieved, demonstrating their potential to break through the limitation of fullerene
based acceptors [13].

Among the widely investigated non fullerene acceptors, perylene diimide (PDI) based small
molecules or polymers have attracted abundant attention because of the merits of high electron
mobility [14–16]. Although PDI based small molecules as acceptors were intriguing, the strong
aggregation caused by the large planar chemical structure of the PDI units usually affects the exciton
separation in the blend films [17]. The general way to solve this problem is to introduce a twisty bridge
to create a non planar structure, however the over-twisty structure of PDI based small molecules would
also induce inferior electron mobility when blended with donor materials [14].
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In this contribution, a new polymer acceptor based on PDI (P-PDI) was synthesized by the Suzuki
reaction of 2,2′-(2,5-Bis(octyloxy)-1,4-phenylene)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) and
5,12-dibromo-2,9-bis(2-ethylhexyl)anthra[2,1,9-def:6,5,10-d′e′f′]diisoquinoline-1,3,8,10(2H,9H)-tetraone
(Appendix A.4). By introducing two side chains with a large volume in the phenyl unit, the planarity
of the polymer backbones could be reduced and the nano-scale aggregation of PDI between intra
molecules was also suppressed because of the big side chains, leading to a more uniform morphology
when blended with PTB7-Th. As a result, a PCE of 2.21% with a voltage of 0.82 V was achieved,
demonstrating that a conjugated bridge with a big volume side chain could significantly reduce the
nano-scale aggregation of PDI based acceptor materials.

2. Results and Discussion

2.1. Materials Synthesis and Characterization

As shown in Scheme 1, P-PDI was synthesized by one step of the Suzuki coupling reaction of
compound 1 and 2 using tetrahydrofuran (THF) as the solvent, NaHCO3 as the base, and Pd(PPh3)4

as the catalyst procedure. PTB7-Th was also synthesized by the Stille reaction according to the
literature [18]. P-PDI can dissolve in common organic solvents such as chloroform (CHCl3) and
dichlorobenzene (DCB) at room temperature, whereas PTB7-Th could only dissolve in dichlorobenzene
(DCB) at an elevated temperature. Measured by gel permeation chromatography (GPC) at a temperature
of 150 ◦C with 1,2,4-trichlorobenzene (TCB) as the eluent, the average molecular weight (Mn) of PTB7-Th
and P-PDI was determined to be 47.1 and 66.8 kg/mol, respectively. The chemical structure of polymer
donor PTB7-Th, acceptors P-PDI and PDI was shown in Scheme 2.
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2.2. Optical Properties

To shed light on the light absorption properties of P-PDI, the UV-vis absorption spectra of P-PDI
were measured in DCB solutions and as films. As shown in Figure 1a, P-PDI exhibited a broad
absorption spectrum in the range from 350 nm to 650 nm in solutions, which might be propitious to
generate more photocurrent when blended with PTB7-Th. Upon changing from solutions to films,
the absorption peaks were red-shifted, demonstrating that the aggregation in the films was not fully
suppressed. The onset adsorption of P-PDI as films is 651 nm, corresponding to the optical band gap
(Eg,opt) value of 1.90 eV using the equation: Eg,opt = 1240/λonset.
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2.3. Electrochemical Properties

To study the electrochemical properties of P-PDI, the cyclic voltammetry (CV) curves of P-PDI
films on a glassy carbon working electrode were measured in a CH3CN solution (0.1 mol/L Bu4NPF6).
As shown in Figure 1b, the onset oxidation potential of P-PDI was determined to be 1.24 V,
and the HOMO energy level of P-PDI was therefore estimated to be −5.95 eV by the equation
of EHOMO = −e (Eox + 4.71 V). Similarly, the reduction potential of P-PDI was measured to be −1.01 V,
and the LUMO energy level of P-PDI was therefore estimated to be −3.70 eV according to the same
equation. The electrochemical band gap (Eg) was then calculated to be 2.25 eV according to the equation
Eg = ELUMO − EHOMO, which is similar to the value of Eg,opt. As shown in Figure 1d, the LUMO level
of P-PDI was slightly higher than that of PC71BM, which might lead to higher Voc when used as
acceptor materials [19,20].

2.4. Photovoltaic Properties

To investigate the photovoltaic performance of P-PDI as the acceptor in devices, conventional
devices with a configuration of ITO/PEDOT:PSS/PTB7-Th:P-PDI/LiF/Al were fabricated, as shown in
Figure 1c. DCB was adopted as the solvent to fully dissolve PTB7-Th and P-PDI at 90 ◦C. The weight
ratio of PTB7-Th:P-PDI and the thickness of the blend films was adjusted to optimize the performance
of the devices. After optimization, the highest PCE was achieved with a donor/acceptor ratio of 1:2
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and a film thickness of 102 nm. The current density voltage (J-V) curve of the optimized devices is
displayed in Figure 3a and detail parameters are summarized in Table 1. As shown in Figure 2a and
Table 1, a PCE of 2.21% was achieved with a Voc of 0.82 V, a Jsc of 7.92 mA/cm2, and an fill factor
(FF) of 0.34, revealing the potential of P-PDI to be used as acceptor materials. The Voc of P-PDI was
slightly higher than that based on PC71BM, demonstrating that the energy loss between PTB7-Th and
acceptors was reduced [19]. The FF of the devices was still not very high, which might be attributed
to the unbalanced hole and electron mobilities and the resulting recombination loss in the devices
(vide infra) [21]. Besides, the inherent defect of the active layer might also induce some non-geminate
recombination like excimers [22], bulk-traps, and surface-traps and may lead to reduced photovoltaic
performance [23].
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Table 1. Summary of the photovoltaic properties of PTB7-Th:P-PDI based devices.

Active Layer Voc (V) Jsc (mA·cm−2) FF Power Conversation Efficiency
(PCE) (%) Best/Ave a Film Thickness (nm)

PTB7-Th:P-PDI 0.82 7.92 0.34 2.21/2.10 102
a The average PCE of the devices was achieved from 10 devices.

External quantum efficiency (EQE) experiments of PTB7-Th:P-PDI based optimized devices
were also carried out to verify the Jsc of J-V test. As shown in Figure 2b, PTB7-Th:P-PDI display a
broad response peak in the range from 300 nm to 800 nm with a maximum value of 0.37 at 640 nm,
generating more photocurrent in the UV-vis range. The Jsc value integrated from the EQE curves
(7.78 mA cm−2) agree well with the Jsc value from the J-V experiments, demonstrating that the J-V text
results were reliable.

2.5. Transport Properties

To shed light on the carrier transport in the devices, a hole only device with a
structure of ITO/PEDOT:PSS/PTB7-Th:P-PDI/Au and an electron only device with a structure of
FTO/PTB7-Th:P-PDI/Al were constructed. The hole mobility (µh) of PTB7-Th and electron mobility of
P-PDI in the devices was therefore determined, respectively, from the dark J-V curves of these two
devices using the space-charge limited current (SCLC) method. The dark J-V curves of these devices
were then fitted via the Mott-Guney equation: J = 9εoεrµV2/8L3, where εr is the permittivity of the
active layer, εo is vacuum permittivity, µ is the hole mobility or electron mobility, and L is the active
layer thickness. As shown in Figure 3, the µh value of the devices with a donor acceptor ratio of 1:2
was calculated to be 4.01 × 10−5 cm2 V−1 s−1, whereas the µe value of the devices with a donor acceptor
ratio of 1:2 was determined to be 6.41 × 10−6 cm2 V−1 s−1, which was two orders of magnitude lower
than that of µh, resulting in inferior FF. Although the hole mobility and the electron mobility of the
devices was not very balanced, the µe of P-PDI was higher than many acceptors [24,25], which could
be ascribed to the reduced nano-aggregation of P-PDI.
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2.6. Film Morphology

The main obstacle for PDI based accepters was their strong aggregation as films. When blended
with polymer donors, large domains usually formed, leading to inferior exciton separation and low
PCE in devices [17,26]. After conjugating PDI with a linker with a large volume side chain, P-PDI
displayed no obvious glass transition peak in the range from 60 ◦C to 240 ◦C in DSC traces (Figure 4a),
revealing that P-PDI was amorphous. To shed light on the film morphology of PTB7-Th:P-PDI blend
films, atomic force microscopy (AFM) was used in the tapping mode. As shown in Figure 4a, the blend
film displays a pretty smooth film with a root mean square (RMS) roughness of 1.21 nm, demonstrating
that no significant aggregates of P-PDI were formed in the blend films [27]. To further investigate
the inside film morphology of the active layer, scanning electron microscope (SEM) and transmission
electron microscopy (TEM) were also adopted. As shown in Figure 4c–f, the domain size in the
PTB7-Th:P-PDI active layer was significantly smaller than PTB7-Th:PDI, revealing that the aggregation
of P-PDI was significantly reduced by introducing a bridge with large side groups, and a higher PCE
was therefore acquired [28].
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In conclusion, a novel PDI based acceptor P-PDI was designed and synthesized. A phenyl unit 
with two side octyloxy groups was introduced to the polymer backbones to reduce the nano-scale 
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Appendix: Experiment Part 

Appendix A.1. Materials 

All chemicals were purchased from commercial sources and used without further purification. 
Solvents were purified by the standard techniques. 
2,2'-(2,5-Bis(octyloxy)-1,4-phenylene)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (1) and 
5,12-dibromo-2,9-bis(2-ethylhexyl)anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone 
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Appendix A.2. Polymer Solar Cells Fabrication and Characterization 
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Figure 4. (a) DSC curves of P-PDI; (b) atomic force microscopy (AFM) height images of PTB7-Th:P-PDI
blend films; (c) scanning electron microscope (SEM) images of PTB7-Th:PDI blend films (Scale bar:
500 nm); (d) SEM images of PTB7-Th:P-PDI blend films (Scale bar: 500 nm); (e) transmission
electron microscopy (TEM) images of PTB7-Th:PDI blend films (Scale bar: 5 µm) (f) TEM images of
PTB7-Th:P-PDI blend films (Scale bar: 200 nm).

3. Conclusions

In conclusion, a novel PDI based acceptor P-PDI was designed and synthesized. A phenyl unit
with two side octyloxy groups was introduced to the polymer backbones to reduce the nano-scale
aggregation of the PDI unit. DSC experiments revealed that P-PDI was amorphous, demonstrating
that the aggregation of the PDI unit in the acceptors was significantly suppressed. When blended with
PTB7-Th to fabricate a non fullerene PSCs, a PCE of 2.21% with a Voc of 0.82 V, a Jsc of 7.92 mA/cm2,
and an FF of 0.34 was acquired. AFM and TEM of the blend films also displayed rather smooth film
morphology, revealing that conjugating a bridge with a large volume could effectively reduce the
nano-aggregation of PDI based acceptors. Our results also indicated that P-PDI is a potential acceptor
for non fullerene PSCs.
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Appendix A. Experiment Part

Appendix A.1. Materials

All chemicals were purchased from commercial sources and used without further purification.
Solvents were purified by the standard techniques. 2,2′-(2,5-Bis(octyloxy)-1,4-phenylene)bis(4,4,5,5-
tetramethyl-1,3,2-dioxaborolane) (1) and 5,12-dibromo-2,9-bis(2-ethylhexyl)anthra[2,1,9-def:6,5,10-
d′e′f′]diisoquinoline-1,3,8,10(2H,9H)-tetraone (2) were synthesized according to the previous literature.
Polymer donor PTB7-Th was also achieved by the literature reported [18].

Appendix A.2. Polymer Solar Cells Fabrication and Characterization

PSCs were fabricated with the device configuration of ITO/PEDOT:PSS (35 nm)/ PTB7-Th:P-PDI/LiF
(0.7 nm)/Al (100 nm). The conductivity of ITO is 15 Ω. PEDOT:PSS (Baytron Al 4083 from H.C. Starck)
and was filtered with a 0.45 mm polyvinylidenedifluoride (PVDF) film before use. A PEDOT:PSS thin
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layer was spin-coated on top of the cleaned ITO substrate at 3000 rpm/s for 50 s and was dried at 130 ◦C
for 20 min on a hotplate. A mixture of PTB7-Th and P-PDI in 1,2-dichlorobenzene (DCB) was stirred
at 90 ◦C overnight to ensure sufficient dissolution, and the blend solution was spin-coated onto the
substrates with a temperature of 90 ◦C to form the active layer. The weight concentrations of the blend
of PTB7-Th and P-PDI were 25 mg/mL. A top electrode of 0.7 nm LiF and 100 nm of aluminium were
thermally evaporated at a pressure of 10−4 Pa through a shadow mask. On one substrate, five cells
with an effective area of 0.04 cm2 each were fabricated. Current-voltage (I-V) and external quantum
efficiency (EQE) measurements were conducted in air without encapsulation. The I-V characteristics
were recorded at room temperature using an Agilent B2902A Source Meter under the illumination of
an AM1.5G AAA class solar simulator (model XES-301S, SAN-EI) with an intensity of 100 mW cm−2,
and the white light intensity was calibrated with a standard single-crystal Si solar cell.

Appendix A.3. Space-Charge Limited Current Measurement

Hole-only devices with a structure of ITO/PEDOT:PSS (35 nm)/PTB7-Th:P-PDI/Au (100 nm)
and electron-only devices with a configuration of FTO/ PTB7-Th:P-PDI/Al (100 nm) were fabricated.
The blend solution of PTB7-Th and P-PDI in DCB was spin-coated onto the PEDOT:PSS layer to form
the active layer, like PSC devices, and 100 nm of Au was thermally evaporated at a pressure of 10−4 Pa
through a shadow mask. For the electron-only devices, the blend solution of PTB7-Th and P-PDI in
DCB was spin-coated on the clean FTO substrates to form an active layer. Al electrodes (100 nm)
were vacuum-deposited on the polymer thin films. Dark J–V curves of the hole-only devices and
electron-only devices were measured by the space-charge limited current (SCLC) method.

Appendix A.4. The Synthesis Route of P-PDI

A mixture of compound 1 (234 mg, 0.40 mmol), compound 2 (309 mg, 0.40 mmol), NaHCO3 (0.84 g,
10.0 mmol), THF (10 mL), and H2O (2.5 mL) was carefully degassed with N2 before and after 5.8 mg
Pd(PPh3)4 was added. The mixture was heated to 90 ◦C and stirred for 2 days under N2 protection.
After the reaction, 15.0 mg phenylboronic acid and 0.30 mL bromobenzene were added successively
to end cap the end groups. Then, the mixture was poured into 100 mL acetone and collected by
filtration. The precipitates were subsequently washed on Soxhlet apparatus by methanol, petroleum
ether, and CHCl3, respectively.The component dissolved in CHCl3 was finally precipitated in methanol
and dried under vacuum to afford P-PDI as a dark blue solid (246 mg, 64%). 1H NMR (400 MHz,
1,2-dichlorobenzene-d4): δ (ppm) 8.93 (m, 2H), 8.78 (m, 2H), 8.36 (m, 2H), 7.98 (m, 2H), 4.30 (m, 4H),
0.85–2.24 (m, 70H). GPC (PS standards): Mw = 93.1 kg mol−1, Mn = 66.8 kg mol−1, and PDI = 1.39.
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