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Abstract
Periplasmic binding proteins (PBPs) in association with ABC transporters select and import

a wide variety of ligands into bacterial cytoplasm. They can also take up toxic molecules, as

observed in the case of the phytopathogen Agrobacterium tumefaciens strain C58. This

organism contains a PBP called AccA that mediates the import of the antibiotic agrocin 84,

as well as the opine agrocinopine A that acts as both a nutrient and a signalling molecule for

the dissemination of virulence genes through quorum-sensing. Here, we characterized the

binding mode of AccA using purified agrocin 84 and synthetic agrocinopine A by X-ray crys-

tallography at very high resolution and performed affinity measurements. Structural and

affinity analyses revealed that AccA recognizes an uncommon and specific motif, a

pyranose-2-phosphate moiety which is present in both imported molecules via the L-

arabinopyranose moiety in agrocinopine A and the D-glucopyranose moiety in agrocin 84.

We hypothesized that AccA is a gateway allowing the import of any compound possessing

a pyranose-2-phosphate motif at one end. This was structurally and functionally confirmed

by experiments using four synthetic compounds: agrocinopine 3’-O-benzoate, L-arabinose-
2-isopropylphosphate, L-arabinose-2-phosphate and D-glucose-2-phosphate. By combin-

ing affinity measurements and in vivo assays, we demonstrated that both L-arabinose-2-

phosphate and D-glucose-2-phosphate, which are the AccF mediated degradation products
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of agrocinopine A and agrocin 84 respectively, interact with the master transcriptional regu-

lator AccR and activate the quorum-sensing signal synthesis and Ti plasmid transfer in A.
tumefaciens C58. Our findings shed light on the role of agrocinopine and antibiotic agrocin

84 on quorum-sensing regulation in A. tumefaciens and reveal how the PBP AccA acts as

vehicle for the importation of both molecules by means of a key-recognition motif. It also

opens future possibilities for the rational design of antibiotic and anti-virulence compounds

against A. tumefaciens or other pathogens possessing similar PBPs.

Author Summary

We succeeded in understanding how the periplasmic protein AccA from the pathogen A.
tumefaciens can bind both the plant compound agrocinopine and the antibiotic agrocin
84. Whereas agrocinopine acts as a nutrient and regulatory signal in A. tumefaciens, agro-
cin 84 is lethal once degraded by the enzyme AccF into a toxic moiety. We identified the
pyranose-2-phosphate-like moiety shared by these two ligands as the key recognition tem-
plate for AccA. We hypothesized that agrocin 84 would kill all agrobacteria possessing
AccA and AccF and that AccA would be a gateway allowing the importation of any com-
pound possessing a pyranose-2-phosphate motif. We experimentally confirmed this, using
synthetic derivative compounds of agrocinopine. Furthermore, using affinity and in vivo
assays, we showed that arabinose-2-phosphate, resulting from the cleavage of agrocino-
pine by AccF, is the effector of the transcriptional repressor AccR, that controls quorum-
sensing and virulence plasmid propagation. Therefore, we have identified an original and
specific key molecular motif (pyranose-2-phosphate) allowing a selective passage of active
compounds into the pathogen cells and acting as signals once the active compounds are
cleaved into this key motif. Our work opens up new opportunities to rationally design
novel antibiotics.

Introduction
In bacteria, periplasmic binding proteins (PBPs) are involved in the import into the cell of a
wide variety of extracellular compounds. PBPs recognize and bind chemical compounds in
order to bring them to ABC transporters which transport them into cells [1]. PBPs are also
potential vehicles that facilitate the penetration of antibiotics into bacterial pathogens. To our
knowledge, the best known system that exemplifies this paradigm is the antibiotic agrocin 84,
which penetrates into the cytoplasm of the bacterial pathogen Agrobacterium tumefaciens
strain C58 by hijacking the PBP called AccA and its cognate transporter [2,3]. The antibiotic
agrocin 84 is produced by the non-pathogenic bacterial strain Agrobacterium radiobacter strain
K84 [2,3]. Since the 1970’s, A. radiobacter K84 has been used as a biocontrol agent in several
countries to prevent outbreaks of the crown gall disease caused by the pathogen A. tumefaciens
in a wide range of plants [4]. Agrocin 84, having gained access to the A. tumefaciens C58 cyto-
plasm, is maturated into a toxic moiety (TM84) that inhibits agrobacterial growth [5,6]. TM84
acts as a tRNA-dependent inhibitor of leucyl-tRNA synthetase that traps the enzyme in a ter-
nary inhibition complex [7] thus preventing tRNALeu aminoacylation and thereby halting
protein synthesis.

AccA also plays a key-role in the importation of the characteristic plant tumour-derived
compounds such as the opines agrocinopines A and B discovered in 1981 in crown gall tumour
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tissue [8]. Agrocinopine A is composed of a sucrose linked to a L-arabinose via a phosphodie-
ster bond. Agrocinopine B results from the cleavage of the sucrose moiety of agrocinopine A.
Hence agrocinopine B is composed of a fructose linked to a L-arabinose via a phosphodiester
bond. The agrocinopines A and B were purified from tumours induced by A. tumefaciens strain
C58. Upon infection, A. tumefaciens genetically engineers the plant host by transferring a piece
of DNA (the T-DNA) from its tumour inducing (Ti) plasmid to the nuclear genome of plants.
Proliferation of the transformed plant cells results in the formation of tumours colonized by
the bacteria. In plant tumours, T-DNA genes expression redirects the metabolism towards the
production of several opines which are used by the pathogen as nutrients (C, N and P sources)
and signals to control the quorum-sensing signal expression [9–11]. Indeed, agrocinopines A
and B play a crucial role in the A. tumefaciens C58 infection process by inducing the synthesis
of the quorum-sensing signal 3-oxo-octanoylhomoserine lactone (OC8HSL) which increases
aggressiveness of agrobacterium and activates the dissemination of the Ti plasmid by horizon-
tal transfer (by conjugation) [12,13] (Fig 1). Binding of agrocinopine to the transcriptional
repressor AccR, which belongs to the DeoR transcriptional factors family, is proposed to
inhibit its repression [14], releasing the expression of a second transcriptional factor TraR,
which binds the quorum-sensing signal OC8HSL. In turn, the complex TraR-OC8HSL acti-
vates the expression of quorum-sensing regulated genes such as the tra and trb operons, encod-
ing for horizontal transfer of the Ti plasmid by conjugation and the rep operon which controls
the replication of the Ti plasmid. In addition to quorum-sensing, AccR also regulates the tran-
scription of acc (agrocinopine catabolism) genes [15]. These genes encode an agrocinopine
ABC transporter system including the PBP AccA and two putative enzymes required for catab-
olism of agrocinopine, the phosphodiesterase AccF and the phosphatase AccG.

Agrocin 84 differs from agrocinopine A [16,17,18]. It is composed of a D-glucose-
phosphoramidate linked to TM84. The phospho-glucose moiety of agrocin 84 is required for
its import into pathogenic A. tumefaciens cells [6]. Agrobacterium phosphodiesterase AccF
should cleave the antibiotic agrocin 84 into a D-glucose-phosphate and TM84, whereas the
same enzyme cleaves agrocinopine A into L-arabinose-2-phosphate and sucrose. Using X-ray
crystallography, we investigated at the atomic level the binding mode of AccA with the antibi-
otic agrocin 84 and the virulence signal agrocinopine A, which are chemically different and
exhibit antagonist functions. Agrocin 84 was purified from an agrobacterial strain containing a
derivative of the plasmid pAgK84 that allows agrocin 84 overproduction from cells [18], while
agrocinopine A was synthetized through a multistep protocol. Based on the structural analysis
of AccA structures in complex with agrocinopine A or agrocin 84, we then focussed on three
additional potential ligands which are analogues of agrocinopine A: agrocinopine 3’-O-
benzoate, L-arabinose-2-phosphate and L-arabinose-2-isopropylphosphate. To address the
structural basis for AccA specificity, the carbohydrate fragment of agrocin 84, namely D-glu-
cose-2-phosphate was also synthetized. To understand the regulation mode of the AccR tran-
scriptional repressor activity and the role of the opine agrocinopine A and its AccF-mediated
degradation product arabinose-2-phosphate, we combined affinity measurements and a plas-
mid conjugation assay using the wild-type strain and a defective strain mutant accF of A. tume-
faciens C58. We found that agrocinopine A is not the effector of AccR as previously described
[14], in contrast to L-arabinose-2-phosphate and D-glucose-2-phosphate which both activate
the quorum-sensing signal synthesis and the plasmid Ti conjugation. Because L-arabinose-
2-phosphate (from agrocinopine A) and D-glucose-2-phosphate (from agrocin 84) are com-
pounds which are unique among the natural products described so far, this work reveals that
A. tumefaciens evolves a pyranose-2-phosphate motif which is the key-recognition pattern by
the PBP AccA for bacterial importation and by the master transcriptional regulator AccR for
quorum-sensing activation and acc operon expression.
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Results

Synthesis of agrocinopine A, its derivatives and D-glucose-2-phosphate
The synthesis strategy for the production of agrocinopine A (Fig 2) allowed us to produce
derivatives, which are L-arabinose-2-phosphate, L-arabinose-2-isopropylphosphate and

Fig 1. A simplified schematic representing the agrocinopine A and agrocin 84 roles in A. tumefaciensC58. Upon infection, virulent agrobacteria
transfer a small DNA fragment (T-DNA) from its virulence Ti plasmid to the nuclear genome of the plant cells leading to genetically modified plant cells and
plant-tumor formation. In plant tumor cells, the bacterial T-DNA encodes the production of opines including agrocinopine A used as nutrients and regulatory
signals by agrobacteria which colonize the plant tumour tissues. Agrocinopine A is imported into the bacterial cytoplasm via the periplasmic binding protein
AccA associated to a unique ABC-transporter (AccBCDE). Once in the cytoplasm, agrocinopine A is cleaved by the enzyme AccF into sucrose and L-
arabinose-2-phosphate. However, Agrocin 84 produced by the non-pathogenic strain A. radiobacter K84 (which colonizes the same plant environment as the
A. tumefaciens C58 pathogen) uses the same import system AccA and AccBCDE for penetrating into the cytoplasm of A. tumefaciensC58. AccF cleaves
agrocin 84 into D-glucose-2-phosphate and the toxic moiety named TM84 which kills pathogen cells. In A. tumefaciens C58, agrocinopine A is proposed to
interact with the transcriptional repressor AccR (dashed double lines), hence releasing acc and traR genes expression. Then, the transcriptional activator
TraR interacts with quorum-sensing signals and promotes the expression of the tra, trb and rep genes which stimulate the biosynthesis of the quorum-
sensing signals (traI), and amplification of copy number and conjugation of the Ti plasmid (regulation steps are indicated by double lines). In our work, we
investigated the interactions between AccA and its ligands, as well as those between AccR and L-arabinose-2-phosphate and D-glucose-2-phosphate and
their consequence on quorum-sensing and Ti plasmid transfer.

doi:10.1371/journal.ppat.1005071.g001
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Fig 2. Synthesis scheme. (A) agrocinopine A and its derivatives. Reagents and conditions: (a) 1H-tetrazole,
diisopropylamine, CH2Cl2, 2 h, 79% (b) 1H-tetrazole, CH2Cl2, 2 h, 64% (c) tBuOOH, octane, CH2Cl2, 2 h,
92%; (d) 60% aqueous acetic acid, 50°C, 30 min, 53% (e) H2, Pd/C,1 atm, 24 h, 83%(f) 1M methanolic
MeONa, methanol, 30 min, 9+10 (g) K2CO3, methanol, 2h, 9, 34–68% (h) BnOH, 1H-tetrazole, CH2Cl2, 30
min, 84% (i) tBuOOH, octane, CH2Cl2, 30 min, 93%; (i) 60% aqueous acetic acid, 50°C, 30 min, 69% (k) H2,
Pd/C, 1 atm, 24 h, quant. (l) isopropanol, 1H-tetrazole, CH3CN, 1 h, 50% (m) tBuOOH, octane, CH2Cl2, 30
min, quant. (n). 60% aqueous acetic acid, 50°C, 30 min, 64% (o) H2, Pd/C, 1 atm, 24 h, quant. (B) D-glucose-
2-phosphate. Reagents and conditions: (a) BnOH, sulfamic acid, 80°C, neat, 10h, 22% (α/β = 5:2); (b) BnBr,
NaH, DMF, rt, 18h, 86%; (c) TIBAL, toluene, 50°C, 60h, 26% (100% α); (d) 1H-tetrazole, (BnO)2-P-N(iPr)2,
CH2Cl2, 2h, then m-CPBA, 0°C to rt, 2h, 84%; (e) H2, Pd/C, methanol, 18h, 87%.

doi:10.1371/journal.ppat.1005071.g002
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agrocinopine-3’-O-benzoate (S1 Fig). A D-glucose-2-phosphate was also synthetized (Fig 2
and S1 Fig).

AccA fold is a PBP from Class C
The mature AccA expression plasmid was obtained by cloning the accA gene lacking the first
twenty-nine signal sequence residues that serve for localization to bacterial periplasm. Because
AccA shares low sequence identity (around 20%) compared to PBPs with known three dimen-
sional structures, we first solved the structure of seleniated AccA in complex with agrocinopine
A at 2.65 Å resolution by single-wavelength anomalous dispersion method. A better resolution
structure of this complex at 1.9 Å resolution in a different space group using the native protein
was determined. The two agrocinopine-complexed structures are very similar, displaying an
average root mean square deviation (rmsd) of 0.35 Å over 489 Cα atoms. By the molecular
replacement method, we then solved the structure of AccA in complex with agrocin 84 at 2.15 Å
resolution (Table 1). The mature AccA structure is a monomer of 493 residues composed of two
lobes, each formed by a central β-sheet flanked by α-helices. The biggest lobe (lobe 1) consists of
residues 29–280 and 494–521 and the smallest (lobe 2) comprises the residues 285–489. The two
lobes are connected by a very short hinge region of 8 residues defining two short segments (Fig
3). AccA fold belongs to the cluster C within the PBP structural classification [1]. Overall, the
ligand bound structures are very similar (average rmsd value of 0.33 Å over 490 Cα atoms)
adopting a closed conformation. The major difference concerns the region comprising the resi-
dues 403–408, which can move up to 1.7 Å to accommodate the ligand in the binding site.

The unliganded AccA structure solved at 1.7 Å resolution adopts an open conformation.
Indeed, superposition with the liganded structures results in an average rmsd of 1.5 Å for all
Cα atoms and structural comparisons show that upon ligand binding, a 12° rotation around an
axis defined by the two hinge residues, Met292 and Tyr493, leads to a similar closed form of
the protein.

AccA binds a part of agrocinopine A and agrocin 84 ligands
Both ligands are bound between the two closed lobes of AccA. While Agrocinopine A is fully
defined in the electron density maps, the leucine-like moiety of agrocin 84 is mobile (S1 Fig).
Notably, the electron density maps of agrocin 84 show a D-glucopyranose connected via its C2
carbon to the N6-phosphoramidated TM84 moiety and not a D-glucofuranose connected via a
C1-linkage as previously suggested using analytical chemistry approaches that were available at
the end of the 1970’s [2,3,19]. Later, a possible D-glucopyranose-C2 structure for the uptake
moiety of agrocin 84 has been proposed [20,21].

Both bound ligands, agrocinopine A and agrocin 84, share a deeply buried pyranose (L-
arabinose or D-glucose)-2-phosphate-like moiety which superimposes very well in the AccA
binding site, and makes numerous and very similar protein contacts (Fig 4). The pyranose-
2-phosphate moiety lies on residues 418–421 from the strand β16 of lobe 2 and is surrounded
by the N-terminal loop region 52–54 and the side chains of Tyr145, Trp178, Glu504 and
Glu510 from lobe 1, that of Asn284 from the hinge region and those of Met372, Tyr375,
Tyr376, Thr430, Glu434 from lobe 2. It makes extensive protein hydrogen bonds: 8 for L-arabi-
nose and 10 for D-glucose (Fig 4A and 4B). Remarkably, the OH1 group of the pyranose is
anchored by 4 hydrogen bonds involving Asn54 and Glu510 from lobe 1, Asn284 from the
hinge region and Ser419 from lobe 2. These four side chains form a rigid template, which also
maintains the lobe closure by interacting together two-by-two (S2a Fig). Moreover, in addition
to their pyranose interactions, two of these major residues Asn54 and Ser419 also tightly inter-
act with the phosphate/phosphoramidate groups. Two more hydrogen bonds involving the

Agrocin 84, Opine and Derivatives Bound to AccA

PLOS Pathogens | DOI:10.1371/journal.ppat.1005071 August 5, 2015 6 / 24



T
ab

le
1.

C
ry
st
al
lo
g
ra
p
h
ic

d
at
a
an

d
re
fi
n
em

en
tp

ar
am

et
er
s.

A
cc

A
P
D
B
co

d
e

4Z
E
8

4Z
E
9

4Z
E
B

4Z
E
D

4Z
E
C

4Z
E
I

4Z
E
K

4R
A
1

L
ig
an

d
N
o

A
g
ro
ci
n
o
p
in
e-

S
eM

et
-

A
g
ro
ci
n
o
p
in
e-

A
g
ro
ci
n
o
p
in
e

b
en

zo
at
e

A
g
ro
ci
n

84
L
-A

ra
b
in
o
se

-
2-
p
h
o
sp

h
at
e

L
-A

ra
b
in
o
se

-
2-
is
o
p
ro
p
yl
p
h
o
sp

h
at
e

D
-G

lu
co

se
-

2-
p
h
o
sp

h
at
e

C
ry
st
al
liz

at
io
n

co
n
d
iti
o
n
s

A
:
25

%
P
8K

,
0.
1M

S
A
,5

%
g
ly
ce

ro
l,

ac
et
at
e
N
a
p
H

4.
5

B
:
20

%
P
4K

,0
.2
M

ac
et
at
e
N
H
4,

0.
1M

ci
tr
at
e
N
a
p
H
5.
6

C
:
15

%
P
20

K
,

0.
1M

M
E
S
p
H
6.
5

B
B

B
B

B

D
at
a
co

lle
ct
io
n
a

S
pa

ce
gr
ou

p
P
2 1

C
22

2 1
C
2

C
22

2 1
C
22

2 1
C
22

2 1
C
22

2 1
C
22

2 1
a/
b/
c
(Å
)

72
.9
/1
79

.3
/8
1.
6

77
.7
/1
14

.7
/1
09

.1
17

7.
2/
51

.2
/1
20

77
.6
/1
14

.9
/

11
3.
9

77
.2
/

11
4.
2/

11
1.
7

78
/1
14

.9
/1
09

.8
77

.2
/1
14

.1
/1
12

.5
77

.2
/1
13

.8
/

11
3.
5

α
/β
/γ

(°
)

90
/9
3.
5/
90

90
/9
0/
90

90
/1
14

.3
/9
0

90
/9
0/
90

90
/9
0/
90

90
/9
0/
90

90
/9
0/
90

90
/9
0/
90

m
ol
/U
A

4
1

2
1

1
1

1
1

R
es

ol
ut
io
n
(Å
)

45
–
1.
71

41
.5
9–

2.
65

50
–
1.
9

50
–
1.
75

45
–
2.
15

50
–
2.
3

42
.2
–
2.
10

50
–
1.
75

(1
.8
2–

1.
71

)
(2
.8
1–

2.
65

)
(2
.0
1–

1.
89

)
(1
.8
5–

1.
75

)
(2
.2
8–

2.
15

)
(2
.4
4–

2.
3)

(2
.2
2–

2.
10

)
(1
.8
5–

1.
75

)

T
ot
al

re
fl
ec

tio
ns

72
96

22
(7
93

36
)

15
43

73
(2
07

43
)

53
84

20
(8
26

54
)

59
07

16
(8
66

90
)

16
34

37
(2
27

78
)

97
60

7
(1
52

67
)

16
85

70
(2
56

85
)

32
99

35
(4
71

60
)

U
ni
qu

e
re
fl
ec

tio
ns

21
44

18
(2
96

51
)

14
55

1
(2
28

1)
78

05
9
(9
19

5)
51

49
9
(7
82

8)
26

75
5

(4
19

1)
22

25
4
(3
48

9)
29

35
5
(4
55

2)
50

79
4
(7
95

4)

R
ed

un
da

nc
y

3.
4

10
.6

6.
9

11
.5

6
4.
4

5.
7

6.
5

C
om

pl
et
en

es
s

(%
)

96
.7

(8
2.
7)

99
.8

(9
8.
9)

98
.8

(9
5.
8)

99
.2

(9
6.
9)

98
.0

(9
6.
7)

99
.6

(9
8.
5)

99
.4

(9
6.
6)

99
.6

(9
7.
7)

I/σ
i(
I)

8.
9
(1
.7
)

11
.7
8
(2
.2
3)

7.
87

(1
.2
6)

12
.2
5
(1
.8
1)

8.
25

(1
.2
7)

8.
48

(1
.2
0)

7.
88

(1
.3
6)

12
.2
9
(1
.7
1)

C
C
1
/2
b

99
.6

(7
9.
4)

99
.6

(7
3.
7)

99
.4

(5
4.
2)

99
.2

(6
7.
3)

99
.8

(7
1.
2)

99
.4

(5
9.
0)

99
.4

(5
9.
6)

99
.8

(8
1.
8)

R
sy
m

(%
)

9.
4
(5
4.
3)

11
.9

(6
4.
2)

11
.1

(9
2.
6)

9.
2
(8
4.
4)

21
.2

(1
04

)
14

.6
(1
17

.9
)

18
.2

(1
30

.4
)

8.
9
(1
02

.0
)

R
efi

n
em

en
t

R
fa
ct
or
/R

fr
ee

(%
)

16
.6
/1

9.
7

17
.1
/2
3.
2

17
.2
/2
0

17
.4
/1
9

19
.8
/2
3.
2

20
/2
4.
9

18
.7
/2
3.
7

17
.6
/2
0.
2

R
m
sd

bo
nd

(Å
)
/

an
gl
e°

0.
01

/1
.0
3

0.
00

8/
1.
05

0.
01

/1
.0
6

0.
00

9/
1.
01

0.
00

8/
1.
13

0.
00

9/
1.
11

0.
00

9/
1.
09

0.
01

0/
1.
03

M
ea

n
B
fa
ct
or

(Å
2)

pr
ot
ei
n

23
.3

43
.7

36
.5

28
.9

36
.3

50
.6

39
.9

33
.4
4

so
lv
en

t
33

.8
42

39
.8

35
.3

40
.7

52
.2
8

39
.1

39
.0
2

lig
an

d
39

.6
35

.6
5

34
.9

50
.8

42
.4
0

35
.8

23
.2
6

a
)
V
al
ue

s
in

pa
re
nt
he

si
s
ar
e
th
os

e
fo
r
th
e
la
st

sh
el
l.

b
)
C
C
1
/2
=
pe

rc
en

ta
ge

of
co

rr
el
at
io
n
be

tw
ee

n
in
te
ns

iti
es

fr
om

ra
nd

om
ha

lf‐
da

ta
se

t(
P
.A

.K
ar
pl
us

,K
.D

ie
de

ric
hs

,S
ci
en

ce
20

12
,3

36
,1

03
0–

10
33

).

do
i:1
0.
13
71
/jo
ur
na
l.p
pa
t.1
00
50
71
.t0
01

Agrocin 84, Opine and Derivatives Bound to AccA

PLOS Pathogens | DOI:10.1371/journal.ppat.1005071 August 5, 2015 7 / 24



side chains of two tyrosines 375 and 376 retain the phosphate/phosphoramidate oxygens. In
contrast, the sucrose moiety of agrocinopine A and the TM84 part of agrocin 84 make only 3
and 2 polar interactions with AccA, respectively. The sucrose moiety and TM84 occupy a dif-
ferent position in the binding site.

AccA recognizes the pyranose-2-phosphate-like motif
We determined the structures of AccA in complex with several synthetic derivatives of agroci-
nopine A and agrocin 84: L-arabinose-2-isopropylphosphate, L-arabinose-2-phosphate and D-
glucose-2-phosphate at 2.1, 2.3 and 1.75 Å resolution respectively (Table 1). L-arabinose rela-
tives and D-glucose-2-phosphate are well defined in the electron density maps (S1 Fig). The L-
arabinose-2-isopropylphosphate and L-arabinose-2-phosphate alone or within agrocinopine A

Fig 3. Ribbon representation of AccA in complex with agrocinopine A shown in its annealing Fo-Fc
omit map contoured at 4δ. Agrocinopine A is located in the cleft between the lobe 1 (residues 29–280 and
494–521) in slate and the lobe 2 (residues 285–489) in pink and is represented as yellow stick. The short
hinge region is shown in red.

doi:10.1371/journal.ppat.1005071.g003
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Fig 4. Ligand-binding site of AccA. Ligands and protein residues involved in the ligand binding are shown as stick. Hydrogen bonds are shown as dashed
lines in black (for distances below 3.2 Å) and magenta (for distances between 3.2 and 3.4 Å). (A) agrocinopine A. (B) agrocin 84. (C) L-arabinose-
2-phosphate. (D) D-glucose-2-phosphate. (E) Superimposition of the four ligands bound in the ligand binding site of AccA, agrocinopine A (yellow), agrocin
84 (orange), L-arabinose-2-phosphate (green) and D-glucose-2-phosphate (cyan) are shown as stick.

doi:10.1371/journal.ppat.1005071.g004
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make the same protein interactions and superimpose well (Fig 4C and 4E). A similar observa-
tion can be made for the bound D-glucose-2-phosphate (Fig 4D and 4E). To summarize, AccA
binds the pyranose-2-phosphate/phosphoramidate key-template through numerous polar
interactions and its selectivity for this motif was validated by the structures of AccA in complex
with L-arabinopyranose-2-phosphate and D-glucopyranose-2-phosphate.

Binding and assimilation of a synthetic bulky ligand containing the
minimal pyranose-2-phosphate motif
The synthesis process of agrocinopine A allows obtaining bulky agrocinopine A derivatives
such as agrocinopine 3’-O-benzoate. We used this compound to test whether AccA could bind
a synthetic ligand exhibiting the minimal pyranose-2-phosphate motif. We therefore co-crys-
tallized AccA with this compound. The structure at high resolution shows a very well defined
bound agrocinopine 3’-O-benzoate (S1 Fig). Interestingly, while the L-arabinose-2-phosphate
between bound agrocinopine 3’-O-benzoate and agrocinopine A superimpose, their sucrose
moieties do not occupy the same position. Whereas the benzoate group of the agrocinopine 3’-
O-benzoate adopts the position of the sucrose in agrocinopine, its sucrose moiety follows that
of the TM84 (S2b Fig).

When present as the sole carbon source for A. tumefaciens C58, agrocinopine 3’-O-benzoate
is used as nutrient by the bacteria as indicated by bacterial growth (S3 Fig). A similar behaviour
is observed with L-arabinose-2-phosphate used as a sole carbon source meaning that agrocino-
pine 3’-O-benzoate is degraded in the bacterial cytoplasm once imported by AccA and its ABC
transporter. This experiment confirmed that the transporter can uptake bulky synthetic mole-
cules such as agrocinopine 3’-O-benzoate into the cell as observed for the toxin agrocin 84,
which is also a relatively large molecule.

AccA exhibits a high affinity for the pyranose-2-phosphate-like motif
Ligand binding to the protein AccA was investigated using tryptophan fluorescence spectros-
copy, a method exploiting significant conformational changes accompanying the binding. The
autofluorescence intensity enhancement correlated with the ligand concentrations between 0.3
and 20 μM and saturated above 50 μM. Titration experiments yielded apparent KD values of
1.3 ± 0.17 μM, 5.88 ± 1.6 μM, 2.93 ± 0.66 μM, 4.79 ± 0.6 μM and 2.5 ± 0.5 μMwith agrocinopine
A, agrocinopine 3’-O-benzoate, L-arabinose-2-phosphate, L-arabinose-2-isopropylphosphate
and D-glucose-2-phosphate, respectively (S4 Fig and S1 Table). No fluorescence intensity change
was detected by incubating AccA with L-arabinose, D-glucose or phosphate alone. As expected
frommodels based on the X-ray liganded AccA structures, no autofluorescence signal changes
were measured by incubating AccA with glucose-1-phosphate or glucose-6-phosphate, which
both are common metabolites in all living organisms. Unexpectedly, no signal was measured
with agrocin 84, likely due to the presence of the adenosine moiety of agrocin 84 which provokes
a quenching signal. Therefore, we used isothermal titration microcalorimetry to assess the bind-
ing of agrocin 84 to AccA, which yielded a mean KD of 1.5 ± 0.41 μM. The mean KD values were
0.3 ± 0.03 μM, 7.5 ± 2.2 μM, 1.33 ± 0.12 μM, 2.2 ± 0.58 μM and 1.16 ± 0.22 μM for agrocinopine
A, agrocinopine 3’-O-benzoate, L-arabinose-2-phosphate, L-arabinose-2-isopropylphosphate
and D-glucose-2-phosphate respectively, consistent with the values obtained from fluorescence
spectroscopy. The isothermal titration microcalorimetry data also confirmed the 1:1 binding
stoichiometry and demonstrate a negative enthalpy change upon each ligand binding (S5 Fig
and S2 Table), suggesting that the binding is enthalpy driven. The similar binding isotherms for
all ligands suggest a same binding mechanism involving polar interactions, in agreement with
what is observed in the complexed structures (Fig 5). Nevertheless, the benzoate group of the
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agrocinopine 3’-O-benzoate molecule appears to be responsible for an entropic effect leading to a
25-fold lower affinity of this ligand with AccA in comparison with agrocinopine A. We could
not detect any binding of L-arabinose, D-glucose, nor adenosine monophosphate in line with the
results obtained by fluorimetry.

Structural comparison between AccA and other PBPs
A structural comparison of AccA with all PDB entries using SSM-EBI (http://www.ebi.ac.uk/
msd-srv/ssm) [22] indicates that the most similar overall structures are PBPs from the same
cluster: the structure of Staphylococcus aureus NikA in complex with nickel and histidine
(PDB: 4XKN) [23], Bacillus subtilis AppA with a bound nanopeptide (PDB: 1XOC) [24],
Escherichia coli OppA with different bound tripeptides (PDB: 1JET, 3TCG, 1B46, 3TCF) [25–
27], Escherichia coli NikA with a bound nickel and histidines (PDB: 4I8C) [28], Thermatoga
maritima CBP (tmCBP) with bound cellobiose and cellopentaose (PDB: 2O7I and 3IO5) [29]
and Escherichia coliDPP with a bound dipeptide (PDB: 1DPP) [30]. The values of rmsd range
from 1.9 Å to 2.7 Å over 413 to 434 residues. Superposition with other PDB-entries results in
an rmsd of over 2.7 Å for less than 410 Cα atoms. Therefore, the most similar PBPs bind either
oligopeptides or nickel ions or oligosaccharides. The ligand binding site of these PBPs lies on a
conserved β-strand (β14 in AccA) except that of tmCBP. A particularity of AccA which is not
shared by these related PBPs is the presence of the flexible loop 402–414 located between the β-
strands β15 and β16 which can accommodate agrocinopine A. This loop corresponds to a con-
served rigid helix in all similar PBPs and models superposition shows that an equivalent helix
in our structure would clash with the last glucose of agrocinopine A (S6a Fig). Therefore the
flexible loop 402–414 in AccA seems so far unique among PBPs from cluster C.

Fig 5. Comparison of microcalorimetry derived enthalpy (ΔH, deep grey), entropic contribution (TΔS, grey) and free binding enthalpy (ΔG, light
grey) at 293°K for agrocinopine A, agrocin 84, agrocinopine 3’-O-benzoate, L-arabinose-2-isopropylphosphate, L-arabinose-2-phosphate and D-
glucose-2-phosphate.

doi:10.1371/journal.ppat.1005071.g005
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The comparison with the oligopeptide binding proteins reveals that AccA resembles the E.
coli DPP, which can bind short oligopeptides (dipeptides) only due to the presence of a loop
(residues 344–350) which creates a steric hindrance and reduces the size of the ligand binding
site on one side. The position of the dipeptide ligand in DPP closely matches the position of the
L-arabinose-phosphate group in AccA despite the large differences in their binding mode.
Interestingly, two tryptophan side chains (W178 andW423) from each AccA lobe, which
occupy equivalent positions of Met152 and Asp408 in DPP form a gate that closes the ligand
binding site preventing the binding of longer substrates linked beyond the pyranose moiety on
the O6 or O5 atoms (S6b Fig).

Structural comparison between AccA and NikA binding sites shows that the two bound his-
tidines in NikA overlap the L-arabinose-2-phosphate moiety in AccA with the nickel ion over-
lapping the oxygen atom linking the arabinose to the phosphate. However, the loop region 51–
55 in AccA prevents the interaction of a histidine in the binding site of AccA. An equivalent
loop in tmCBP would restrain its ligand binding site preventing the binding of long oligosac-
charides. TmCBP binds oligosaccharides ranging from two rings (cellobiose) to five (cellopen-
taose) in a deep groove at the domain interface. The minimal cellobiose binding site is found at
one extreme of this groove and provides extensive network of hydrogen bonds for the di-sac-
charide. In contrast, the cellopentaose binding site spans the entire interface in a large cavity
lacking aromatic and polar residues for the last three sugars. Therefore, tmCBP exhibits speci-
ficity only for the cellobiose moiety of the cellopentaose. Although the position and conforma-
tion of the binding site between tmCBP and AccA differ (S7 Fig), both PBPs select a molecule
class rather than single species.

L-arabinose-2-phosphate and D-glucose-2-phosphate are effectors of
AccR
In the A. tumefaciens C58 cytoplasm, the enzyme AccF releases the L-arabinose-2-phosphate
and D-glucose-2-phosphate from agrocinopine A and agrocin 84. The question arose about
their biological role in A. tumefaciens, especially in relation to regulation of the AccR/quorum-
sensing pathway that controls dissemination of the Ti plasmid. We first measured the affinity
of the synthetic agrocinopine A towards purified recombinant AccR by isothermal titration
microcalorimetry. An unexpected outcome was that no affinity was detected. In contrast, the
isothermal titration microcalorimetry data show that AccR displays affinity to L-arabinose-
2-phosphate and D-glucose-2-phosphate in two steps with KD values for L-arabinose-2-phos-
phate of KD1 = 0.11 ± 0.06 (n1 = 0.4) μM for the first step and KD2 = 1.64 ± 0.8 (n2 = 0.9) μM
for the second step and for D-glucose-2-phosphate KD1� = 0.43 ± 0.1 (n1� = 0.5) μM and
KD2� = 1.64 ± 0.8 μM (n2� = 0.9) (Fig 6A). The binding stoichiometries of 2:1 (protein:ligand)
in the first step and 1:1 in the second step are in line with the fact that AccR forms a dimer in
solution as observed by native gel electrophoresis, suggesting that the binding of the effector to
AccR may be described as following: first, a ligand binds to one molecule within the dimer
before another binds to the second molecule. These results suggest L-arabinose-2-phosphate
and D-glucose-2-phosphate are the effector molecules that regulate AccR and thus they should
activate quorum-sensing synthesis in A. tumefaciens cells.

L-arabinose-2-phosphate and D-glucose-2-phosphate activate the
quorum-sensing and plasmid Ti transfer in A. tumefaciens C58
In vivo, the functions of agrocinopine A, L-arabinose-2-phosphate and D-glucose-2-phosphate
as quorum-sensing effectors were examined by measuring the production of quorum-sensing
molecules and efficiency of Ti plasmid transfer in conjugation between A. tumefaciens donors
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and the recipient A. tumefaciens C58.00 which is cured of plasmids (Fig 6B). Results indicated
that all cell cultures supplemented with agrocinopine A, L-arabinose-2-phosphate and D-glu-
cose-2-phosphate accumulate high concentrations of quorum-sensing molecules (between 50
and 100 nM) compared with mock cultures (less than 1 nM). Consistently, Ti plasmid trans-
conjugants could also be detected in the supplemented cultures, demonstrating that agrocino-
pine A, L-arabinose-2-phosphate and D-glucose-2-phosphate are activators of the quorum-
sensing pathway of A. tumefaciens C58.

Finally, because the purified AccR exhibited affinity for L-arabinose-2-phosphate and not
for agrocinopine A in vitro and because L-arabinose-2-phosphate activated quorum-sensing
and plasmid Ti conjugation in vivo, we tested the hypothesis of the key-role of AccF in the mat-
uration of agrocinopine A into L-arabinose-2-phosphate as the efficient activator of quorum-
sensing signal. We used an accF defective mutant [14]. Remarkably, both accumulation of quo-
rum-sensing molecules and Ti plasmid conjugation were abolished in the accFmutant supple-
mented with agrocinopine A, but restored by genetic complementation of accF demonstrating
the key role of AccF in quorum-sensing signaling (Fig 6B). Moreover, quorum-sensing signals
were still observed in the presence of L-arabinose-2-phosphate in both wild type and accF
mutant (Fig 6B). Altogether, our findings prove that agrocinopine A needs to be degraded into
L-arabinose-2-phosphate, whose interaction with the master regulator AccR induces the
quorum-sensing regulation of the conjugative transfer of the Ti plasmid in A. tumefaciens C58

Fig 6. (A) AccRmicrocalorimetry measurements. The top panels show heat differences upon injection of ligand (L-arabinose-2-phosphate on the left and D-
glucose-2-phosphate on the right) and lower panels show integrated heats of injection and the best fit (solid line) using Microcal Origin. Fitting values are
indicated below. (B) Quantification of OC8HSL production and Ti plasmid conjugation induced by agrocinopine A, L-arabinose-2-phosphate and D-glucose-
2-phosphate. Different A. tumefaciens C58 backgrounds were used as donor cells: C58 control, accFmutant, accFmutant complemented with p6000: accF
wild type and accFmutant complemented with empty p6000). Results were obtained after 72 h of culture. SDs correspond to physical replicates.
Experiments independently repeated between two and four times produce similar results.

doi:10.1371/journal.ppat.1005071.g006
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cells. The pyranose-2-phosphate motif with L-arabinose-2-phosphate and D-glucose-2-phos-
phate are the effectors of AccR.

Discussion
Understanding the molecular mechanism whereby toxic or beneficial compounds are imported
into bacteria is a major issue, whether it aims at to understanding their biological and ecologi-
cal roles or to design antibiotics. In this work, we characterized the binding mode of agrocino-
pine A and agrocin 84 in the PBP AccA thanks to synthetic agrocinopine A and to agrocin 84
purified from an agrobacterial strain containing a derivative of the pAgK84 plasmid. Our struc-
tural work showed that the toxin agrocin 84, composed of a glucose moiety linked at its posi-
tion 2 to TM84, is recognized through a D-glucopyranose-moiety, whereas only a furanose
linked at position 1 form had been previously suggested for the structure of agrocin 84 [19].
Our structural analysis of AccA ligand binding site combined with spectrofluorescence and
microcalorimetry studies reveal that AccA recognizes, through numerous polar interactions,
only the pyranose-2-phosphate/phosphoramidate motif of agrocinopine A, agrocin 84 and
other relatives such as agrocinopine 3’-O-benzoate in which the sugar is either a D-glucopyra-
nose or a L-arabinopyranose. AccA cannot recognize a phosphate alone, nor a D-glucose, nor a
L-arabinose, nor a glucose linked to a phosphate via an oxygen atom other than its O2. The
selectivity of AccA for this ligand motif was validated by the structures of AccA in complex
with L-arabinose-2-phosphate and D-glucose-2-phosphate and their affinity measurement.
Indeed, the KD for L-arabinose-2-phosphate is very similar to those of longer/bulkier ligands
having this group, such as agrocinopine A, agrocinopine 3’-O-benzoate, and L-arabinose-
2-isopropyl phosphate. Hence, structural and affinity data on AccA with different ligands
revealed that AccA is sufficiently flexible to accommodate bulkier ligands as long as they pos-
sess the key motif on one end. Moreover, given that the extended ligand agrocin 84 is imported
into the pathogen [15,31] in addition to the bulky agrocinopine 3’-O-benzoate shown in this
study, and since Tate and Kerr [32] have shown that a derivative compound of agrocin 84 lack-
ing the leucine-like portion is transported into the bacteria cell, the transporter associated with
AccA does not restrict the size or length of the transported molecules. Thus, it should import
any natural or synthetic molecules at least as bulky as the agrocin 84 and agrocinopine 3’-O-
benzoate that could be identified or designed for improving control of the A. tumefaciens path-
ogen. The example of tmCBP [29], which also exhibits limited specificity for the first two sugar
rings from its carbohydrate ligand emphasizes that PBPs have promising properties that can be
exploited by both natural and synthetic antibiotics that employ a “Trojan Horse” strategy.

Arabinose-2-phosphate and glucose-2-phosphate are uncommon and original molecules in
the living world due to the unusual phosphate linkage on the C2 atom of the pyranose. No
atomic structure of these molecules has been reported so far and minimal literature described
the role of these molecules. The presence of a glucose-2-phosphate has recently been reported
in glycogen using NMR [33]. Phosphate incorporation (glucose C2 and C3 phosphomonoe-
sters) into glycogen results from a catalytic error of the glycogen synthase leading to insoluble
glycogen-like polymer in the Lafora disease. Another important biological role of the pyra-
nose-2-phosphate motif concerns the quorum-sensing signal synthesis and dissemination of
the Ti plasmid in agrobacteria which are under the control of the master transcriptional regula-
tor AccR [12]. Once imported by AccA-ABC transporter into agrobacteria, agrocinopine A is
degraded by the enzyme AccF into L-arabinose-2-phosphate and sucrose [15]. A single study
based on gel-shift assays with AccR has proposed a direct binding between agrocinopine A and
AccR [14] using a mixture of agrocinopines A and B purified from tomato tumours under
acidic conditions (pH 5.4). We hypothesize that the gel shift result can be accounted for by the
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presence of L-arabinose-2-phosphate in the mixture. Here, we worked with synthetic agrocino-
pine A, L-arabinose-2-phosphate and D-glucose-2-phosphate. We show that (1) AccR interacts
with L-arabinose-2-phosphate and D-glucose-2-phosphate and not with agrocinopine A; (2)
agrocinopine A, L-arabinose-2-phosphate and D-glucose-2-phosphate induce the quorum-
sensing signal synthesis and Ti plasmid transfer in wild-type A. tumefaciens; (3) the quorum-
sensing signal synthesis and Ti plasmid transfer are abolished in an accFmutant of pTiC58
in the presence of agrocinopine A; but are still activated in the presence of L-arabinose-
2-phosphate. Our work demonstrates the key-role of AccF in the maturation of L-arabinose-
2-phosphate which triggers the quorum-sensing signal and acc operon expression. In the
absence of L-arabinose-2-phosphate, the operon acc is not over-expressed leading to a weak
expression of AccA thus to a weak import of agrocinopine. This can explain why the accF
mutant failed to remove detectable amounts of a mixture of agrocinopines A and B from the
media [17]. However, the same publication also showed that the accFmutant still took up agro-
cin 84. Therefore, from these results and from our data, AccF is not directly required for agro-
cinopine A transport. Our work refreshes the knowledge on the regulatory cascade of the
quorum-sensing activation by the opine agrocinopine A in A. tumefaciens. It is important to
keep in mind that AccF is surely involved in the maturation of agrocin 84 into the toxic moiety
TM84 and D-glucose-2-phosphate. Altogether, our work supports the hypothesis that agrocin
84 hijacks the transport process of agrocinopine A via AccA and that D-glucose-2-phosphate
has the same role than L-arabinose-2-phosphate in the quorum-sensing pathway of A. tumefa-
ciens C58 pathogen and likely in the acc operon expression.

Agrocinopine A is the archetype of the agrocinopine family which encompasses the agroci-
nopines A, B, C and D [8]. Agrocinopine C is quite similar to agrocinopine A, as it is composed
of a sucrose linked to a D-glucose (instead of a L-arabinose in agrocinopine A) via a phospho-
diester bond. Agrocinopines B and D differ from A and C respectively, by lacking one sugar
from the sucrose moiety. Agrocinopines A and B were often extracted and purified at acidic
pH condition from tumours induced by A. tumefaciens strains such as C58 while the agrocino-
pines C and D from tumours induced by A. tumefaciens strains such as Bo542. One study has
shown that radioactive agrocinopine A was detected from C58 tumours without the presence
of agrocinopine B indicating that agrocinopine A is probably the sole agrocinopine secreted in
tumours [16]. Moreover, agrocinopines B and D seem to be degradation products of agrocino-
pines A and C respectively, especially considering the latter two opines can be easily degraded
either chemically by mild acid hydrolysis or enzymatically by α-glucosidase [8]. It is likely that
crown gall tumours synthesize and secrete only one agrocinopine either A or C depending
on its Ti-plasmid type C58 or Bo542. The AccF by-product of agrocinopines C and D is D-
glucose-2-phosphate as for agrocin 84. In A. tumefaciens C58 and Bo542, AccA and AccR pro-
teins are highly conserved with 75% and 83% sequence identity respectively, suggesting that
they present the same function with a similar action mechanism. Therefore, L-arabinose-
2-phosphate and D-glucose-2-phosphate must share a similar crucial role in all the agrocino-
pine pTi strains. In A. tumefaciens strain C58, we show that quorum-sensing and plasmid Ti
transfer is activated by either L-arabinose-2-phosphate or D-glucose-2-phosphate. Moreover, a
similar affinity of these compounds for AccR suggests that, although synthesis of agrocinopines
A and C are induced by different T-DNAs (from pTiC58 and pTiTiBo542 respectively), they
play a similar role in A. tumefaciens C58. Our work provides evidence of the functional redun-
dancy among opines of the agrocinopine family. A. radiobacter K84 employs a smart strategy
when it produces agrocin 84 taking advantage of the functional and structural similarity with
the opines utilized by the agrobacteria harboring the agrocinopine-family Ti plasmids. The D-
glucose-2-phosphate moiety of agrocin 84 acts as a ‘molecular passkey’, which is recognized by
a large variety of pathogenic agrobacteria expressing the PBP AccA and enzyme AccF. This
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feature may explain the success story of A. radiobacter K84 as a biocontrol agent against A.
tumefaciens pathogens [5,6].

In conclusion, the pyranose-2-phosphate found in the L-arabinopyranose moiety in agroci-
nopine A (and other tested analogues and derivatives) and the D-glucopyranose moiety in
agrocin 84 and agrocinopine C, is a specific motif that possesses at least two functions (trans-
port and regulation) in agrobacteria. In addition to being the mature signal that triggers quo-
rum-sensing and further dissemination of virulence genes, it is the key-recognition motif of the
PBP AccA presumably allowing the importation of toxic or non-toxic molecules as long as
they possess it at one end.

Materials and Methods

Synthesis of agrocinopine A, agrocinopine 3’-O-benzoate, L-arabinose-
2-phosphate and L-arabinose-2-isopropylphosphate
Agrocinopine A (9) was prepared according to an adapted synthesis which was previously
reported by Lindberg and Norberg [34]. The synthesis sequence was modified by using a differ-
ent phosphoramidite for the coupling step, in order to keep the phosphate group protected as
an ester until the latest stage of the synthesis, easing the purification of the intermediate prod-
ucts by simple silica gel chromatography. Benzyl 3,4-O-isopropylidene-β-L-arabinoside 1 pre-
pared in two steps from L-arabinose [35] was phosphinylated using phosphoramidate 2
[36,37] giving the 2-substituted arabinose derivative 3 in 79% yield, which was coupled in the
presence of tetrazole to the partially protected sucrose derivative 4 having only its 4-OH unpro-
tected prepared from sucrose in 4 steps [38]. The coupling product 5 obtained in 64% yield was
oxidized with t-butylhydroperoxide forming the fully protected agrocinopine 6 in 92% yield.
Deprotection of the three isopropylidene groups in 60% aq. AcOH at 50°C afforded compound
7 in 53% yield. Compound 7 was further debenzylated at the anomeric position of the arabi-
nose and on the phosphate group by catalytic hydrogenation (Pd/C, H2) leading in 83% to
compound 8 having only esters as remaining protecting groups (two acetyl groups at position
3 of the glucose moiety and position 6 of the fructose moiety, and one benzoyl group at posi-
tion 3 of the fructose moiety). Final ester groups cleavage was performed using potassium car-
bonate in MeOH leading to agrocinopine (9) in 59% yield, for which all spectroscopic data
were consistent with reported ones [39]. When sodium methoxide was used and the reaction
stopped before total consumption of intermediate products, 3’-O-benzoylated agrocinopine
(10) could be obtained as a mixture with agrocinopine. The L-arabinose derivatives 14 and 18
substituted at position 2 with a phosphate or an isopropylphosphate, respectively, were pre-
pared from the same starting phosphinylated L-arabinose 3 following a similar sequence. Reac-
tion of 3 with benzyl alcohol or isopropanol followed by oxidation, hydrolysis of the
isopropylidene group and catalytic hydrogenation of the benzyl groups led to the desired L-
arabinose derivatives 14 and 18 respectively (Fig 2). Details on the procedures and spectro-
scopic data are given in S1 Text.

Synthesis of d-glucose-2-phosphate
The synthesis of glucose-2-phosphate was based on a strategy involving the selective deprotec-
tion in position 2 of perbenzylated glucose and then phosphorylation. This synthesis was
achieved starting from D-glucose in five steps. First, the benzyl glucoside 19 was obtained
using sulfamic acid in benzyl alcohol to get the α-isomer as the major one [40]. Compound 19
was then fully benzylated to obtain compound 20 which was selectively deprotected in position
2 using TIBAL. This method described by Sinaÿ et al. can only debenzylate the α-isomer of 20
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and led to compound 21 [41] which was then phosphorylated using the dibenzyl phosphorami-
dite and subsequently oxidized to compound 22. Glucose-2-phosphate was finally obtained by
deprotection of benzyl groups using palladium catalyzed hydrogenation, as a mixture of α/β
isomers, the α isomer being the major one. The structure of glucose-2-phosphate was ascer-
tained by mass spectrometry and 2D-NMR experiments; in particular, the position 2 of the
phosphate could be confirmed by 31P-1H correlations.

Purification of agrocin 84
A 3 L starter culture of A. tumefaciens NT1 (pAgK84::Tn5 A1-B5) agrocin over producing
strain was inoculated into 297 L of D-glucose minimal media (modified from Richaud et al.)
[18] containing kanamycin at 50 μg/mL and incubated in a large scale fermenter at 28°C for 24
h, at a low aeration rate and moderate agitation (~250 rpm). The final culture was centrifuged
at 9600 g and the supernatant containing agrocin 84 was retained. Activated Nuchar SN-20
charcoal (MeadeWestvaco Corporation) was added to the supernatant at 10 g per L and stirred
at 4°C for 15 min. The agrocin 84 bound charcoal was allowed to settle, the supernatant
removed and the charcoal slurry was vacuum filtered using a large Buchner Funnel and What-
man filter paper No. 3. 60 g portions of charcoal were then washed with 6 L of ddH2O at 4°C
for 15 minutes and then re-filtered. Agrocin 84 was then eluted from the charcoal using 600
mL of 70% ethanol (per 60 g of charcoal) or reagent alcohol and stirring the solution overnight
at 4°C. The agrocin 84 containing ethanol was vacuum, then filtered using Whatman paper
No. 3 and then Millipore White Nylon 0.20 μm filters and the filtrate collected. The presence of
agrocin 84 in samples was confirmed through use of an agrocin 84 bioassay [6]. Rotary evapo-
ration was then used to remove ethanol and H2O and to concentrate the sample to a smaller
volume. Methanol was added to each sample to a final concentration>70% and the resulting
precipitate (containing insoluble contaminants) was removed by centrifugation of samples for
10 min at 17000 g and decanting the agrocin 84 containing supernatant. Remaining alcohol
was removed by speed-vac or freeze dryer and samples stored at -80°C.Agrocin 84 was then
purified using Reverse phase HPLC using a Clipeus C18 column (5 μm, 250 x 10 mm, Higgins
Analytical, Inc) and the following typical conditions: buffer A (25 mM TEAA pH 7.5, in 100%
H2O); buffer B (25 mM TEAA pH 7.5, in 50% H2O/ 50% acetonitrile; gradient 9–19% mobile
phase buffer B over 33.5 min at a flow rate of 4.7 mL/min; and column temperature of 30°C.
HPLC runs were monitored by UV absorbance at 264 nm and collected peaks showing activity
in agrocin 84 bioassays were pooled. If necessary, samples were re-purified by HPLC, desalted,
and the agrocin 84 concentration determined using agrocin 84 extinction coefficient [32]. Sam-
ples were stored at -80°C until use.

Cloning, expression and purification of mature AccA
The mature AccA expression plasmid was obtained by cloning accA gene, without the 29 resi-
dues signal sequence, of A. tumefaciens C58 by PCR and adding a C-terminal hexahistidine tag
into the plasmid pET-9aSN1 (a gift from S. Chéruel, I2BC, University Paris Sud, Orsay, France)
between the NdeI and NotI sites using 5’GGATTCCATATGCAAGAACGCCGGGCGCTT3’
as forward primer and 5’TTTGCGGCCGCTCAATGGAGAGTGATGGTGATGGTGGCCG
AAGCTGAGATTGTT3’ as reverse primer. E. coli BL21 competent cells transformed with
pET9aSN1-AccA were grown in 2TY media at 37°C until OD600 of 0.6. 0.5 mM of isopropyl
β-D-1-thiogalactopyranoside (IPTG) was added to the culture for 3 h of expression. The cells
were pelleted by centrifugation at 8000 g for 20 min at 4°C and stored at -20°C. For protein
purification, the cells are resuspended in 50 mM Tris-HCl pH 8, 150 mMNaCl and 20 mM
imidazole and disrupted by sonication. After centrifugation at 25000 g for 45 minutes, the
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filtered supernatant is injected on a nickel affinity column (HiTrap 5 ml, GE Healthcare). After
a washing step of 6% of 50 mM Tris-HCl pH 8, 150 mMNaCl and 300 mM imidazole (Buffer
B), the protein is eluted with 100% of Buffer B and injected on a gel filtration Superdex 200 26/
60 (GE Healthcare) using 50 mM Tris-HCl pH 8 and 150 mMNaCl. The protein fractions are
pooled, concentrated and stored at -80°C.

Expression and purification of mature seleniated AccA
The E. coli BL21 cell transformed with the plasmid pET9aSN1-AccA were grown overnight at
28°C in M9 media supplemented with 0.4% Glucose, 2 mMMgSO4, 1 μMCaCl2, 100 mg/L of
lysine, threonine, and phenylalanine, 50 mg/L of leucine, valine, isoleucine and methionine.
The pelleted cells are resuspended in fresh M9 media (same as above) with 100 mg/L of seleno-
methionine instead of methionine for 1 h at 37°C before inducing the expression with 0.5 mM
IPTG for 5 hours. The cells are are centrifuged at 8000 g for 20 min at 4°C and stored at -20°C.
The purification protocol was the same as described above.

Expression and purification of AccR
The native AccR sequence was chemically synthesized (Genscript, Piscataway, NJ) with the
addition of a 6-His tag at the C terminus and of two restriction sites NdeI and NotI at the N
and C terminus respectively. The open reading frames were inserted into the pET-9aSN1
expression plasmid as for accAORF.

E. coli C41 competent cells transformed with pET9aSN1-AccR were grown in LB media at
37°C until OD600 of 0.6. 1 mM of IPTG was added to the culture for 20 h of expression at
20°C. The cells were pelleted by centrifugation at 8000 g for 20 min at 4°C and stored at -20°C.
For protein purification, the cells were resuspended in 20 mM Bis Tris propane pH 9, 150 mM
NaCl, 10% glycerol (Buffer C) and disrupted by sonication. After centrifugation at 25000 g for
45 minutes, the filtered supernatant was injected on a nickel affinity column (cOmplete His-
Tag Purification Column, 5ml, Roche Lif Sciences). After a washing step using buffer C with
5 mM imidazole, the protein was eluted with 100% of buffer C with 100 mM imidazole before
a dialysis against buffer C. The protein was then concentrated and stored at -80°C.

Crystallization and data collection of AccA
Crystallization conditions for AccA at 12 mg/mL in presence and absence of ligands (between
50 μM and 10 mM) were screened using Qiagen kits (Valencia, CA, USA) with a Cartesian
nanodrop robot (Genomic solutions). The crystals were manually reproduced in hanging
drops experiments by mixing equal volumes of protein solution and precipitant solution men-
tioned in Table 1. Crystals were transferred to a cryoprotectant solution (paraffin oil or mother
liquor supplemented with 25% PEG 400) and flash-frozen in liquid nitrogen. X-ray diffraction
data sets were collected at 100 K on the Proxima 1 beamline (SOLEIL synchrotron, Saint-
Aubin, France). Data processing was performed using the XDS package [42] (Table 1).

Structure determination and refinement of AccA
The crystal structure of the AccA-Agrocinopine complex was determined by SADmethod from
selenomethionine-labelled protein and refined at 2.65 Å resolution. Solvent content analysis
using CCP4 (Collaborative Computational Project, Number 4) indicated the presence of one
monomer in the asymmetric unit. The positions of 17 over 18 selenium atoms were found using
SHELX suite program [43]. The phases were calculated using PHASER [44] and density modifi-
cation was performed by PARROT (CCP4 suite). An iterative process of manual building in
COOT combined with phase calculation using PHASER [44], where a partial model was used as

Agrocin 84, Opine and Derivatives Bound to AccA

PLOS Pathogens | DOI:10.1371/journal.ppat.1005071 August 5, 2015 18 / 24



input, allowed the modelling of the complete polypeptide chain. The structure of the free-
liganded AccA was solved by molecular replacement with PHASER [44] using the coordinates
of lobe 1 and lobe 2 of SeMet-AccAmonomer as separated search models whereas all the com-
plexed structures were solved using the SeMet-AccAmonomer as a search model. Refinement
of each structure was performed with BUSTER-2.10 [45] with NCS restraints when the asym-
metric unit contains more than one protein molecule. One TLS group was assigned for each
structure. Inspection of the density maps and manual rebuilding were performed using COOT
[46]. The three dimensional models of agrocinopine, agrocin 84 and agrocinopine 3’-O-
benzoate, L-arabinose-2-phosphate and L-arabinose-2-isopropylphosphate were generated
using the ProDRG webserver [47]. Refinement details of each structure are shown in Table 1.
Molecular graphics images were generated using PyMOL (http://www.pymol.org).

Fluorescence titration measurements of AccA
Each ligand bound to AccA was monitored by autofluorescence by excitating the protein at a
wavelength of 295 nm and monitoring the quenching of fluorescence emission of tryptophans
at 335 nm. All experiments were performed at 22°C in 3 x 15 mm quartz cuvettes using Cary
Eclypse spectrofluorometer (Varian) in 25 mM Tris-HCl pH 8.0 and 150 mMNaCl with a
fixed amount of proteins (2 μM) and increasing concentrations of ligand. Each ligand has no
emission signal at 335 nm. The data were analysed using Origin 7 software and fitted to the
equation f = ΔFluorescencemax�abs(x)/(KD+abs(x)).

Isothermal titration microcalorimetry measurements of AccA and AccR
Isothermal titration microcalorimetry experiments were performed with an ITC200 isothermal
titration calorimeter fromMicroCal (GE Healthcare). The experiments were carried out at
20°C for AccA and 25°C for AccR. Protein concentration in the microcalorimeter cell (0.2 mL)
varied from 10 to 25 μM for AccA and 40 μM for AccR. 19 injections of 2 μl of ligand solution
(agrocinopine A, agrocinopine 3’-O-benzoate, L-arabinose-2-isopropylphosphate and L-arabi-
nose-2-phosphate) concentration from 150 to 240 μM for AccR and from 300 to 500 μM for
AccR were performed at intervals of 180 s while stirring at 500 rpm. For agrocin 84 experiment,
we inverted the protein and ligand positions: the ligand was in the cell and the protein in the
syringe. This strategy was chosen to overcome the small amount of agrocin 84. The experimen-
tal data were fitted to theoretical titration curves with software supplied by MicroCal (ORI-
GIN). This software uses the relationship between the heat generated by each injection and ΔH
(enthalpy change in Kcal.Mol-1), Ka (the association binding constant in M-1), n (the number
of binding sites), total protein concentration and free and total ligand concentrations [48].

Agrocinopine 3’-O-benzoate uptake assay
A single colony of Agrobacterium tumefaciens C58 with pTiC58 derivative pTi::Gm [49] was
grown overnight at 28°C in AB media supplemented with mannitol (2 g/L) and gentamicin
25 μg.ml-1. 20 ml of AB media in presence of a carbon source (agrocinopine 3’-O-benzoate or
L-arabinose-2-phosphate at a final concentration of 1 mM) or in absence of any carbon source
and supplemented with gentamicin (25 μg.ml-1) were inoculated at an initial OD600 of 0.03
and the OD was monitored for 48 hours.

A. tumefaciens strains and growth conditions
The A. tumefaciens C58 control is the pTiC58 derivative pTi::Gm [49] and the defective accF
mutant (A. tumefaciens C58 accF) is a kind gift from S. Farrand [14]. In complementation
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assay, the accF wild-type gene was cloned into p6000 [50] plasmid and electroporated into the
accFmutant. Rifampicin-resistant recipient strain C58.00 was derived from A. tumefaciens
C58 cured of the At and Ti plasmids[51]. A. tumefaciens was cultivated at 28°C in AB minimal
medium containing ammonium chloride (1 g/L) and mannitol (2 g/L), or in Luria-Bertani
modified medium (LBm; NaCl 5 g/L). The antibiotics gentamycin and rifampicin were added
at 25 μg/mL and 100 μg/mL, respectively.

Conjugation assays and quantification of OC8HSL
Overnight LBm cultures of recipient (C58.00) and donor (C58 control) cells were mixed in an
equal ratio (1:1). 10 μl of this mix were transferred into 140 μl of AB medium supplemented
with mock or 1 mM of agrocinopine A, L-arabinose-2-phosphate and glucose-2-P for static liq-
uid cultures of 24, 48, 72 and 96 hours. Suspension dilutions of these cultures were spotted
onto selective agar media to enumerate the different bacterial populations (donor, recipient
and Ti plasmid transconjugants). In parallel, to quantify OC8HSLs, aliquots of cell cultures
were spotted onto TLC plates (RP-18/UV254, Macherey-Nagel) and incubated with the
OC8HSL-bioindicator strain A. tumefaciens NT1(pZLR4) as previously described [52].
Tested samples were compared with a calibration curve obtained with pure OC8HSL (Sigma-
Aldrich).

Accession numbers
Coordinates and structure factors have been deposited at the Protein Data Bank (PDB) under
accession codes 4ZE9 (seleniated AccA with agrocinopine), 4ZE8 (free-liganded AccA), 4ZEB
(AccA with agrocinopine), 4ZEC (AccA with agrocin 84), 4ZED (AccA with agrocinopine 3’-
O-benzoate), 4ZEK (AccA with L-arabinose-2-isopropylphosphate), 4ZEI (AccA with L-
arabinose-2-phosphate) and 4RA1 (AccA with D-glucose-2-phosphate)

Supporting Information
S1 Fig. Ligand bound to the ligand binding site of AccA in their annealing Fo-Fc omit map
contoured at 4 σ (a) agrocinopine A, (b) agrocin 84, (c) agrocinopine 3’-O-benzoate, (d) L-
arabinose-2-isopropylphosphate, (e) L-arabinose-2-phosphate, (f) D-glucose-2-phosphate.
(PDF)

S2 Fig. OH1 bound in AccA binding site a. Stick representation of AccA residues interacting
with arabinose O1H group in agrocinopine A (in yellow). Residues from the lobe 1, lobe 2 and
hinge region are shown in slate, pink and red, respectively. b. Superimposition of three bound
ligands, agrocinopine A (yellow), agrocin 84 (orange), agrocinopine 3’-O-benzoate (purple) are
shown as stick.
(PDF)

S3 Fig. Agrocinopine benzoate is used as a carbon source. ODmonitoring (600 nm) of cul-
tures in presence of agrocinopine 3’-O-benzoate (black squares) L-arabinose-2-phosphate
(black circles) as a carbon source and in absence of any carbon source (black triangles) in AB
minimummedia.
(PDF)

S4 Fig. AccA fluorescence monitoring upon titration with each ligand and fit (solid line) to
a single binding model using Origin.Measures were done in triplicates.
(PDF)
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S5 Fig. AccA microcalorimetry measurements. The top panels show heat differences upon
injection of ligand and lower panels show integrated heats of injection and the best fit (solid
line) to a single binding model using Microcal Origin.
(PDF)

S6 Fig. Structural comparison of the ligand binding sites. (a). between AccA (grey)-
agrocinopine A and DPP (green)-GL complexes. Agrocinopine A and GL are shown in cyan
and orange, respectively. The loop region 402–414 in AccA shown in green corresponds to the
helix 383–399 from DPP shown in grey. (b) between AccA (grey)-agrocinopine A and DPP
(green)-GL complexes. Agrocinopine A and GL are shown in cyan and orange, respectively.
The two tryptophans gate (Trp178 and Trp423) and the loop 372–378 from AccA are repre-
sented in red while the corresponding residues (Met152 and Asp408) and the loop 351–359 in
DPP are in deep blue.
(PDF)

S7 Fig. Ligand binding sites of tmCBP (a) and AccA (b). tmCBP (PDB ID 2O7I & 4JSO) and
AccA are colored in green and slate respectively. Agrocinopine A (yellow), cellobiose (light
blue) and laminaripentaose (green) are represented as sticks.
(PDF)

S1 Table. Autofluorescence affinity results. The KD values were obtained using Microcal Ori-
gin. and fitting to a one binding site model using the following equation: f = ΔFluorescence-
max�abs(x)/(KD+abs(x)). ND: no signal detected.
(PDF)

S2 Table. Microcalorimetry results. The values were obtained using Microcal Origin. and fit-
ting to a one binding site model. No signal detected for L-arabinose and D-glucose.
(PDF)

S1 Text. Detailed description of molecules synthesis. Chemical synthesis and characterisa-
tion of synthetized molecules are described.
(PDF)
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