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A B S T R A C T

The novel COVID-19 pandemic, has effectively turned out to be one of the deadliest events in modern history,
with unprecedented loss of human life, major economic and financial setbacks and has set the entire world
back quite a few decades. However, detection of the COVID-19 virus has become increasingly difficult due
to the mutating nature of the virus, and the rise in asymptomatic cases. To counteract this and contribute to
the research efforts for a more accurate screening of COVID-19, we have planned this work. Here, we have
proposed an ensemble methodology for deep learning models to solve the task of COVID-19 detection from
chest X-rays (CXRs) to assist Computer-Aided Detection (CADe) for medical practitioners. We leverage the
strategy of transfer learning for Convolutional Neural Networks (CNNs), widely adopted in recent literature,
and further propose an efficient ensemble network for their combination. The DenseNet-201 architecture
has been trained only once to generate multiple snapshots, offering diverse information about the extracted
features from CXRs. We follow the strategy of decision-level fusion to combine the decision scores using the
blending algorithm through a Random Forest (RF) meta-learner. Experimental results confirm the efficacy of
the proposed ensemble method, as shown through impressive results upon two open access COVID-19 CXR
datasets — the largest COVID-X dataset, as well as a smaller scale dataset. On the large COVID-X dataset, the
proposed model has achieved an accuracy score of 94.55% and on the smaller dataset by Chowdhury et al.,
the proposed model has achieved a 98.13% accuracy score.
1. Introduction

The Novel Coronavirus disease (COVID-19) has massively impacted
the world and has brought it to a standstill since its first emergence
in December, 2019. The COVID-19 or SARS-CoV-2 is a severe acute
respiratory syndrome which spreads via droplets containing the virus
produced as a result of coughing or sneezing of a COVID-19 infected
person. As of 25th March, 2022, seen below in Fig. 1, the number of
people affected by the virus has increased at an astonishing rate and
according to the official World Health Organization (WHO) website [1],
there have been 480,170,572 confirmed cases of COVID-19, including
6,124,396 deaths worldwide.

One of the primary ways to curb the spread of the virus is to
identify the infected individual and prevent other healthy individuals
from coming into their vicinity. The most effective way of screen-
ing infected patients is through the Reverse Transcription Polymerase
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Chain Reaction (RT-PCR) which can detect SARS-CoV-2 ribonucleic
acid (RNA) from respiratory specimens obtained via nasopharyngeal or
oropharyngeal swabs. But the test involves a lot of labor, takes plenty
of time and the results often proved to be inconsistent as mentioned
in [2].

A reliable and quick alternative screening method is analyzing chest
radiography images e.g., chest X-ray (CXR) or computed tomography
(CT) images using deep learning(DL) with the help of CADe which saves
both time and labor, thus speeding up the detection process.

In the field of biomedics, CADe has proved to be very effective as
evident from the works of [3–5]. It finds its use in the detection of pul-
monary disorders, coronary artery disease, Alzheimer’s disease, pneu-
monia and other such diseases. The sample CXR images for COVID-19,
pneumonia and normal patients are shown in Fig. 2.
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Fig. 1. Weekly distribution of covid positive cases and death counts (worldwide) as of 25th March,2022 [1].
Fig. 2. Sample images of CXRs for all three classes taken from the COVID-X dataset.
In our paper, we have used deep learning techniques in CADe along
with CNNs which are trained by transfer learning followed by ensem-
bling the CNNs using blending which reduces the computational time
by a great extent as well as increases the accuracy of the predictions by
a considerable amount thus helping the medical community at large.

1.1. Motivation and contributions

In early 2021, there was a significant surge in the research and de-
velopment related to vaccine production. AstraZeneca, Pfizer, Sputnik,
Covishield, and Covaxin are, to name a few, some of the popularly used
vaccines. However, as the COVID-19 virus keeps mutating into various
other forms, it becomes more challenging for the vaccines to neutralize
them. As of 17 March 2022, a total of 10,925,055,390 vaccine doses
have been administered [1]. Due to the mutations compiled with the
ever increasing population, it is hard to effectively supply vaccines as
well as vaccinate all developing nations. Most of the African nations
have dangerously low vaccination rates [6] which could potentially
cause more loss of human lives. Therefore, it is of acute importance
2

that alternative methods to diagnose COVID-19 virus in patients be
developed. It is quite evident from Fig. 1, that even after 1 year since
the discovery of vaccines, the number of COVID-19 cases are ever
increasing, further highlighting the need for research in this domain.

The use of deep learning techniques in CADe along with CNNs, a
type of deep learning model, have especially shown outstanding results
in the field of image classification due to its higher ability to extract
and learn the low-level features and patterns in images and later using
the gained knowledge for classifying the images as is evident from
the works [7–9]. Hence, in our paper, a CADe framework has been
proposed where the individual predictions of the CNN models gen-
erated while training only one state-of-the-art CNN model have been
ensembled together, thereby classifying CXRs with greater predication
ability. The steps of the proposed work are summarized in Fig. 3. Deep
learning based techniques have also been used to predict the number
of new cases and death-rate using time series data. As seen in the work
[10], the authors have used a comparative study between forecasting
methods and are predicting new cases and death rate one, three and
seven-day ahead during a span of 100 days.
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Fig. 3. Schematic diagram of our proposed methodology which consists of: (I) Acquisition and Preprocessing of input CXRs, (II) Transfer Learning upon the DenseNet-201 CNN
architecture, (III) Generation of multiple Snapshots with Cosine Annealing (Section 3.4.2) with only one training phase, and (IV) Ensemble of classifiers using blending algorithm
with RF meta-learner to yield prediction, available for medical practitioners.
Researchers have often turned to transfer learning during cases
of low availability of data, where the weights of the deep learning
network is provided from a state-of-the-art model’s previous training
cycle though in a different domain. It has been utilized previously
in the works [11,12] and more recently in COVID-19 CADe in the
works [13–23].

The ensembling approach has been explored in the work [24].
Stacking after ensembling has been explored in the work [21]. Although
there are approaches using ensembling for combined prediction, the
instances of such works to accurately classify and detect COVID-19
from CXRs, are not abundant. Also, the ensembling of several CNN
models involve training the models separately which is very time
consuming and requires a lot of computational effort, which we solve
through a more efficient strategy.

Taking all of the aforementioned facts into consideration, in this
paper, we have made the following contributions:

• We utilize the strategy of transfer learning on our CNN based
model (DenseNet-201) to predict and generate decision scores
upon training on the CXRs.

• We apply the process of cosine annealing based learning rate
schedule, thereby generating different snapshots of the CNN, each
having learned diverse information from the CXRs. Hence, we
generate base model snapshots for ensembling by training the
CNN model only once.

• We use the snapshots to generate decision scores, provided as
input to a RF meta-learner through the blending ensemble algo-
rithm.

• We achieve satisfactory results on a large COVID-19 CXR dataset
of 15471 samples as well as a smaller dataset of 2905 samples.

2. Related work

2.1. COVID-19 detection

There exist two primary sources for generating medical images and
thereby using them as a dataset for COVID-19 CADe methods. The first
one is the CT scan and the second one is the CXR.
3

Ensemble learning strategies are a powerful tool for CADe which
provides better accuracies in terms of image classification and have
been previously utilized successfully in other domains such as detection
of Tuberculosis [3,25] and also in cardiomegaly classification [26].

Such ensembling approach has been further extended in the COVID-
19 detection domain as well, which is evident from the work of [24]
where they had implemented the approach of majority vote on classical
machine learning models using texture features extracted from the CXR
images.

For CADe, CNN based classifiers are usually used for image classifi-
cation. In the work of [27], the authors had proposed a parallel-dilated
CNN based COVID-19 detection system to extract radiological features
from CXRs. CNN based deep feature extraction using CXRs had also
been proposed in the work of [28]. The authors of [29] adapted
Darknet-19 CNN architecture to work on CXRs while [30] utilized CNN
to explore the network design using generative synthesis, a machine-
driven exploration strategy. Similarly, the authors of [31] have em-
ployed the MobileNetV2 architecture and integrated it into Capsule
Networks to construct a fully automated and lightweight model. The
model, termed as MobileCaps is capable of classifying COVID-19 CXR
images, and predicting severity scores based on the RALE scoring
technique. COVID-NET CT-2 proposed by the authors of [32], in 2021
is another state-of-the-art implementation of Deep Neural Network
based COVID-19 detection based on COVIDX [33] dataset. A COFE-Net
deep-learning based model, proposed by the authors of the work [34],
achieved an accuracy score of 96.39% on multi-class classification of
COVID-19 from CXR images.

When working with CNNs, the principle of transfer learning has
been utilized very often. The architecture and saved weights of state-of-
the-art CNN classifiers on the ImageNet benchmark provides the users
with higher accuracies while classifying images with CNNs and hence
has developed into a popular choice as depicted in the work of [13].
The authors of [16] utilized the ResNet-50 architecture and performed
data augmentation to increase the variations in their data set. [17]
used an Xception architecture based CNN transfer learning method.
The multi-stage cascaded disease classification problem was solved in
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the work of [18] utilizing the power of transfer learning with CNNs.
SqueezeNet CNN architecture with transfer learning were utilized in
the work of [20]. The authors of [14] analyzed a large number of
state-of-the-art CNN models with transfer learning along with image
augmentation to enhance the limited number of X-ray samples.

There are several methods proposed by authors where transfer
learning with CNNs has been implemented along with the strategy
of ensembling thereby providing better classification rates, combining
various features. VGG architecture based CNNs with transfer learning
had been ensembled with the empirical decision-level fusion strategy of
stacking in the work of [21]. A similar approach was adapted by [23]
where a capsule-based network had been used. The authors of [22]
used transfer learning based CNN and combined that with ensembling
several empirical fusion schemes which were pruned for optimal hyper-
parameters and finding the best result. In [35], the authors have
cross-examined the effectiveness of ensemble strategy with DNNs for
COVID-19 detection. A CNN and SVM fusion strategy proposed by the
authors of [36]has showcased an accuracy score of 99.02% on CXRs for
COVID-19 detection.

More work, in the domain of multi-class COVID-19 detection would
be useful, as research in the domain is lacking compared to binary-
classification of CXR samples. In [37], the authors proposed a single
layer-based (SLB) and a feature fusion based (FFB) composite system
to automate the detection of COVID-19 in X-ray images using deep
features. Similarly, in [38], the authors have proposed an ensemble of
pre-trained Deep-CNN models and tested it for multi-class classification
on X-ray images in order to attain state-of-the-art results.

Apart from CXRs, CT scans have also been used as a primary source
of dataset as is evident from the work of [39,40]. In the work [41], the
authors have proposed a semi-supervised learning based approach and
utilized GANs to reach a 99.8% accuracy score. A DNN based approach
on CT scans is highlighted in the work [42], where the authors have
proposed DNN-GFE and achieved an accuracy score of 96.71%. A CNN-
Autoencoder fusion model has shown promising results and achieved
96.05% accuracy score. In the work done in [43] however due to
unavailability of data, 200 deceased cases were synthetically generated
to avoid an imbalanced dataset and matched the number of recovered
cases, which can raise questions regarding the models capabilities in
a real world scenario. In the work [44] the authors have utilized a
fuzzy, rank-based fusion on decision scores using the Gompertz function
to achieve accuracy scores of 98.83%. In the work [45], the authors
achieved a 98.93% accuracy score using the Sugeno fuzzy integral en-
semble of four pre-trained deep learning models on CT scan images. The
authors of the work [46] utilized GoogleNet and ResNet and proposed
a hybrid meta-heuristic feature selection algorithm, based Golden Ratio
Optimizer to achieve an accuracy score of 99.15% on CT scan dataset.
ET-NET, an ensemble of three transfer learning based models proposed
by the authors of the work [47] has achieved an accuracy of 97.81%.
However, the high cost of machinery involved along with the enhanced
difficulty of computational models to extract and interpret features
from such data-dense images as obtained from CT scans have rendered
them as an infeasible choice for our model. Moreover, CT scans expose
the subject to much higher radiation levels, as compared to normal X-
rays and require skilled professionals to operate the already expensive
machinery, which can be a major challenge in most of the developing
countries across the world. Hence, in our paper, we have utilized the
CXRs as the source of our datasets.

2.2. Snapshot ensembling

In the work [48], the authors have introduced the concept of
warm restarts in gradient-based optimization, as a modification of the
commonly used Stochastic Gradient Descent (SGD) algorithm. In the
work [49], the authors have further proposed an ensemble strategy
4

of the models generated in the interim training process described
in [48]. They have suggested that there is a significant diversity be-
tween the local minima found at each cycle, and this diversity can
be exploited through an appropriate ensemble approach. The authors
of the work [50] proposed the use of a DL based improved Snapshot
Ensemble technique for efficient COVID-19 chest X-ray classification, to
take advantage of the transfer learning technique using the ResNet-50
model. EDL-COVID [51], an ensemble DL model was generated by com-
bining multiple snapshot models of COVID-Net, by employing a pro-
posed weighted averaging ensembling method that is aware of different
sensitivities of DL models on different classes types. The paper [52]
proposes an ensemble of CNNs called ECOVNet, based on EfficientNet
(for feature extraction) and model snapshots to detect COVID-19 from
chest X-rays. Moreover, the results of this literature suggest that the
soft ensemble of the proposed ECOVNet model snapshots outperforms
the other state-of-the-art methods.

2.3. Random forest classifier

Random Forest (RF) [53], proposed in 2001, is a widely successful
method for classification via the ensembling of decision trees. They
have been applied for classifier combination in applications such as
bearing fault diagnosis [54], solar power forecasting [55] and hyper-
spectral image classification [56] to name a few. Even for applica-
tions related to COVID-19, RF classifier finds use in the methods [57,
58]. Class imbalance is a huge problem when dealing with Covid-
19 datasets, due to the lack of adequate labeled, high quality, Covid
positive X-ray samples. Using a Boosted RF Classifier as in the works
of [59] can not only aid in Covid-19 detection on imbalanced dataset,
but can also greatly reduce the requirement of computational resources
as in the alternatively used Snapshot Ensembling methods. A proof-
of concept of RF based COVID-19 detection system can be seen in
the work of [60], where they have proposed a web based solution,
called Heg.IA, to optimize the diagnosis of COVID-19. The system
aims to support decision-making regarding diagnosis of COVID-19 and
indicates the necessity (even severity e.g. regular ward, semi-ICU or
ICU) of hospitalization based on the results of the patients’ blood tests.
Medical professionals have participated in the development of this
system, and it can help professionals make a decision based on an
easy-to-use system, when there is a lack of testing kits.

3. Proposed method

3.1. Data acquisition

Two datasets have been used in this paper.

3.1.1. Wang et al.’s dataset (COVID-X)
The first one is COVID-X that we have obtained from the work

of [33], which is the largest open access COVID-19 X-ray dataset, at the
time of the experimental study and consists of 15471 CXR images. Five
different repositories of chest X-ray scans had been merged to create
this dataset. It consists of three different classes of scans — COVID-
19 positive patients, pneumonia infected patients, and normal patients.
The distribution of data used in this work is shown in Table 1. All of
the data used being medical images, and no form of data augmentation
has been performed on this dataset as that would imply synthetic or
artificial manufacturing of real-world patient data which may be an
impractical representation of the human body parameters. In more
recent times, the authors of [33] have released a new training dataset
with over 30,000 CXR images collected from over 16,400 patients. The
dataset consists of 16,490 positive COVID-19 images from over 2,800
patients.

The train set is further split into a train set and a holdout set in the

ratio 8:2 which is shown in Table 1.
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Table 1
Class-wise distribution of CXR samples in the COVID-X dataset.

Phase COVID-19 Pneumonia Normal Total

Train 375 4367 6373 11115
Test 100 594 885 1579
Holdout 93 1091 1593 2777

Total 568 6052 8851 15471

Table 2
Class-wise distribution of CXR samples in the COVID dataset by Chowdhury et al.

Phase COVID-19 Pneumonia Normal Total

Train 136 838 833 1807
Test 25 149 147 321
Holdout 58 358 361 777

Total 219 1345 1341 2905

Fig. 4. Sample chest X-ray scan images taken from COVID-X dataset [30] showing: (a)
COVID-19 positive and (b) Pneumonia cases.

3.1.2. Chowdhury et al.’s dataset
The second dataset is obtained from the work [14] consisting of

2905 CXR images. This data set also consists of three different classes of
scans — COVID-19 positive patients, pneumonia infected patients, and
normal patients. The dataset is first split into train and test sets in the
ratio 89:11 as done in the work [14]. After that, the train set is further
split into train and holdout sets in the ratio 7:3. The data distribution
for each set is shown in Table 2.

3.2. Pre-processing

The ImageNet dataset has been used to train the CNN models. The
ImageNet input images are of dimension 224 × 224. However, the CXRs
used in the first dataset are of varying dimensions, while the second
dataset are of compatible dimensions.

Subsequently, the CXRs of the first dataset are made of compatible
dimension. Hence, at the boundaries of the images, black borders are
added to ensure that the CXRs are of required dimension.

It is of acute importance that, the model is able to correctly distin-
guish between COVID and Pneumonia cases, as it would be disastrous
if the model misclassifies COVID patients as pneumonia. An example
of it can be seen in Fig. 4, where the model might falsely classify
the COVID case as pneumonia, thereby increasing the need for bet-
ter pre-processing and data augmentation strategies to aid in model
classification.

3.3. Blending

Deep learning models have a stochastic nature, and there is pos-
sibility for diverse information to be captured from the various local
minima in the training process. In this situation, an ensemble strategy
may be used for information fusion. Hence, the blending algorithm is
5

used for classifier combination as a form of decision-level fusion. The
algorithm of our ensemble strategy is shown in Algorithm 1.

The blending algorithm consists of two stages. The first stage is
a traditional training phase which is used for generation of decision
scores. The second stage is a training phase of a meta-learner, used to
combine the decision scores from multiple sources, which are regarded
as input features. It is to be noted that the training data utilized in
the first stage are separate from the holdout data used for training the
meta-learner in the second stage. This is to ensure that overfitting of
the meta-learner model does not take place.
Algorithm 1: Blending Algorithm
Input : Dataset, 𝐷 = {𝐷𝑇 𝑟, 𝐷𝐻𝑜, 𝐷𝑇 𝑒}
Output: Predicted class �̂�

Stage 1: Learn base classifiers
foreach Base classifier 𝐶𝑖 ∈ 𝐶 do

Train 𝐶𝑖 on 𝐷𝑇 𝑟
𝐷𝑆𝑖 ← Prediction of 𝐶𝑖 on 𝐷𝐻𝑜

end

Stage 2: Meta-learning
Train meta-learner on 𝐷𝑆

Stage 3: Prediction
foreach Base classifier 𝐶𝑖 ∈ 𝐶 do

𝐷𝑆𝑖 ← Prediction of 𝐶𝑖 on 𝐷𝑇 𝑒
end
�̂� ← Prediction of meta-learner on 𝐷𝑆

3.4. Base classifiers

As the first part of the blended ensembling method, we have used
the strategy of transfer learning to fine-tune pre-trained CNN model
which was originally trained on the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) dataset [61], to classify COVID-19 from
input CXR images. The CNN that we used in this paper has the pre-
trained convolutional blocks and the weights of the standard DenseNet-
201 CNN architecture. The process of extracting the low-level features
of the CXRs during the training phase is accelerated by the saved
weights of the pre-trained convolutional blocks of the DenseNet-201.

The classifier is pre-trained on the benchmark ImageNet dataset.
Hence, even if the dataset is small sized as in case of our second dataset,
described in Table 2, the shared weights obtained from the DenseNet-
201 helps to efficiently make classifications on the new dataset, as it is
enhanced by knowledge mined from the ImageNet dataset.

The architecture of conventional CNN models has a feed forward
mechanism where the knowledge gained in the previous layer is passed
on to the next layer. The DenseNet proposed in the work [62] is a
massive improvement over the conventional CNN model as it learns
from the output of all the previous layers and uses them as an input
to the current layer thus generating its output. The vanishing gradient
problem is thus treated and the model also trains for less epochs,
thereby lessening the training time.

3.4.1. Architecture
The architecture begins with the conventional convolution and pool-

ing layers followed by three sequences of dense blocks and transition
layers. These layers are followed by a dense block and classification
layer which finally gives us the output. In each of the dense block,
each layer receives inputs from all previous layers thus improving the
efficiency of the model as well as the accuracy of classification. The
difference of DenseNet with other such models lies in the number
of convolutional layers in the third and fourth dense blocks. There
are a total of 201 layers in the network, thus the model is called as
DenseNet-201.

The architecture of the classifier following the feature extractors
has two fully connected dense layers, each consisting of 256 neurons,
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Fig. 5. Shows a cyclic learning rate while following the cosine function providing a
warm restart after every 10 epochs.

followed by a softmax layer. Dropout with a probability of 50% has
been deployed between the two dense layers to account for complex
co-adaptations in the data. The softmax layer which is the final layer of
our model provides the necessary output and classifies the input image
into one of the three classes.

3.4.2. Cosine annealing
An important hyperparameter for optimization in deep learning

based models is the learning rate. In fact, SGD has been shown to
require a learning rate annealing schedule to converge to a good mini-
mum in the first place. We have used SGD with Warm Restart (SGDR)
technique as proposed in the work [48] with cosine annealing. In
this technique, the learning rate is initialized with a high value and
is scheduled to decrease. Hence, we start with a high value for the
learning rate and with each batch, we get closer and closer to the global
minimum. The learning rate decreases along the cosine function.

𝛼(𝑡) =
𝛼𝑜
2
(cos

𝜋 × 𝑚𝑜𝑑(𝑡 − 1, ⌊𝑇 ∕𝑀⌋)
⌊𝑇 ∕𝑀⌋

+ 1) (1)

Eq. (1) obtained from the works of [48,49] is for the cosine annealing
based learning rate schedule, where 𝛼(𝑡) is the learning rate at epoch 𝑡,
𝛼𝑜 is the maximum or starting learning rate, 𝑇 is the total number of
epochs, 𝑀 is the number of cycles, mod is the modulo operation, and
square brackets indicate a floor operation.

We perform this for a particular number of epochs, at the end of
which the model converges to the local minima. After that, the learning
rate shoots up rapidly once again. But this stimulated restart of the
learning process does not take place with a new set of small random
numbers as the weight, but good weights obtained from the previous
learning process is reused thus providing a ‘‘warm restart’’ instead of a
cold one. The purpose of the high initial learning rate after a restart
is to essentially pull the parameters out of the minimum to which
they previously converged and then to converge to a different local
minima. This periodic aggressive annealing thus helps the model to
rapidly converge to a new and better solution. Fig. 5 shows the learning
rate schedule used in our experiments.

3.4.3. Generating and ensembling snapshots
Snapshot ensembles are a recent technique that uses warm restarts

when training a single model. At the heart of snapshot ensembling
is an optimization process which visits several local minima before
converging to a final solution i.e., the global minima. As soon as the
model converges to a local minima after a number of epochs, we save
a snapshot of the model containing the weights, as mentioned in the
work [49] . Hence from a single training process, an ensemble of
diverse models are produced using the snapshot ensembling technique.
A collection of these snapshots are later used as the base models in the
blending technique mentioned in Section 3.3.
6

The success of ensembling relies on the diversity of the individual
models in the ensemble. Snapshot ensembling ensures this through
cosine annealing in the training process which enables the model to
converge to a different local minimum after every restart.

3.5. Meta-learner

Decision Trees are the primary building blocks of the RF model. A
RF has a large number of individual decision trees that operate as an
ensemble. Each individual tree in the RF gives a prediction and the class
with the most number of predictions is the final prediction of the entire
model. A large number of relatively uncorrelated models (each Decision
Tree) operating as a single unit outperforms any individual Decision
Tree model, thereby leading to the robust nature of RF classifier.

After generating the snapshots, we have used them to predict the
outcomes on the holdout set, therefore generating decision scores. The
outputs in the form of concatenated decision scores serve as the input
to the next model. We have utilized the RF classifier to be our meta-
learner as part of the blending technique mentioned in Section 3.3.
After this meta-learner is trained only on data originating from the
holdout set, we are ready to generate the test predictions on our
pipeline.

4. Results and analysis

We have trained the DenseNet-201 model on both the COVID-X
dataset by Wang et al. and also on the dataset by Chowdhury et al.
thereby generating 5 snapshots and later ensembled them using RF clas-
sifier model. The accuracies on the two datasets obtained are 94.55%
and 98.13%, respectively. The performances of our proposed method
and its implementation process has been discussed in the following
subsections.

4.1. Implementation

We have utilized the TensorFlow library in Python for implemen-
tation of the base classifiers. Our CNN model is trained with the
Stochastic Gradient Descent (SGD) algorithm with the momentum value
as 0.9 and starting learning rate as 0.001. The model is trained for 50
epochs and snapshots of the model i.e. the model weights are stored
at an interval of 10 epochs thus generating 5 snapshot models which
are used as the base models in the blending technique mentioned
previously.

We have utilized the SciKit-Learn library in Python for implemen-
tation of the meta-learner. The hyperparameters for the models were
experimentally determined.

COVID-X dataset [33]. For our RF classifier model, we have kept the
values of 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 i.e., the number of decision trees in our RF to be
900, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 i.e., the minimum number of data points placed
in a node before the node is split to be 5 and 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓 i.e., the
minimum number of data points allowed in a leaf node to be 1. We
have also kept the value of 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ i.e., the maximum number of
levels in each decision tree to be 4.

Chowdhury et al.’s dataset [14]. For this dataset, we have kept the
values of 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 i.e., the number of decision trees in our RF to be
750, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 i.e., the minimum number of data points placed
in a node before the node is split to be 2 and 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑒𝑎𝑓 i.e., the
minimum number of data points allowed in a leaf node to be 1. We
have also kept the value of 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ i.e., the maximum number of
levels in each decision tree to be unbounded.
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Table 3
Comparison with state-of-the-art methods on the COVID-X dataset [30].

Method Data distribution Accuracy %

COVID-Net (2020) [30] 358 COVID-19, 5538 Pneumonia, 8066 Normal 93.3
ECOVNet (2020) [52] 589 COVID-19 , 6053 Pneumonia, 8851 Normal 96.00
COVID-ResNet (2020) [16] 68 COVID-19, 931 Bact. Pneumonia, 660 Viral Pneumonia, 1203 Normal 96.23
COVID-CAPS (2020) [23] Not specified 98.3
COVIDiagnosis-Net (2020) [20] 76 COVID-19, 4290 Pneumonia, 1583 Normal 98.26
EDL-COVID (2021) [51] 100 COVID-19, 594 Pneumonia, 885 Normal 95
COVID-Net CT-2 S (2021) [32] Not specified 97.9
COVID-NET CT-2 L (2021) [32] Not specified 98.1

Blended ensembling 568 COVID-19, 6052 Pneumonia, 8851 Normal 94.55
Table 4
Comparison with state-of-the-art methods on the dataset by Chowdhury et al. [14].

Method Data distribution Accuracy%

CNN + SVM (2020) [28] 219 COVID-19, 1345 Pneumonia, 1341 Normal 98.97
Stacked VGG Ensemble (2020) [21] 219 COVID-19, 1345 Pneumonia, 1341 Normal 97.4
PDCOVIDNet (2020) [27] 219 COVID-19, 1345 Pneumonia, 1341 Normal 96.58

Blended ensembling 219 COVID-19, 1345 Pneumonia, 1341 Normal 98.13
Table 5
Comparison with state-of-the-art methods on multi-class classification.

Method Data distribution Accuracy %

Transfer Learning (on Dataset 1 in cited paper) (2020) [13] 224 COVID-19, 700 Pneumonia, 504 Normal 93.48
Transfer Learning (on Dataset 2 in cited paper) (2020) [13] 224 COVID-19, 714 Pneumonia, 504 Normal 94.72
DarkCovidNet (2020) [29] 127 COVID-19, 500 Pneumonia, 500 Normal 87.02
Majority Voting ML (2020) [24] 782 COVID-19, 782 Pneumonia, 782 Normal 93.41
DenseNet-201 (2020) [14] 423 COVID-19, 1485 Pneumonia, 1579 Normal 97.94
VGG16 (2020) [15] 142 COVID-19, 142 Pneumonia, 142 Normal 95.88
CovXNet (2020) [19] 305 COVID-19, 2780 Bact. Pneumonia, 1493 Viral Pneumonia, 1583 Normal 90.2
CNN + SVM (2021) [36] 77 COVID-19, 256 Normal 99.02
Cascaded CNNs (2020) [18] 69 COVID-19, 79 Bact. Pneumonia, 79 Viral Pneumonia, 79 Normal 99.9
CoroNet (on Dataset 1 in cited paper) (2020) [17] 284 COVID-19, 657 Pneumonia, 310 Normal 95.0
CoroNet (on Dataset 2 in cited paper) (2020) [17] 157 COVID-19, 500 Pneumonia, 500 Normal 90.21
Pruned Weighted Average (2020) [22] 313 COVID-19, 8792 Pneumonia, 7595 Normal 99.01
FFB3 (2021) [37] 125 COVID-19, 500 pneumonia, 500 no-finding, and 87.64
Deep-CNN (2021) [38] 2161 COVID-19, 2022 pneumonia, and 5863 normal chest 92.63
ResNet-50 and AlexNet (2021) [63] 3,616 COVID-19, 1,345 pneumonia, 10,192 normal, and 6,012 lung opacity 95

Blended ensembling on COVID-X 568 COVID-19, 6052 Pneumonia, 8851 Normal 94.55
Blended ensembling on Chowdhury et al. dataset [14] 219 COVID-19, 1345 Pneumonia, 1341 Normal 98.13
4.2. Comparison of results

Table 3 shows comparison with other methods that use the same
dataset from [30] as the proposed work, while Table 4 shows results
on the dataset from the work [14]. Table 5 shows comparisons with
methods outside these two datasets.

From the comparison, we note that for methods which have been
reported using the same as well as different datasets, the proposed
method is able to outperform or achieve comparable performance with
most of the methods, and achieves impressive accuracy. It can be
noted that there are very few state-of-the-art methods that are able
to outperform the proposed method and the margin for that is small.
Due to the lack of a standardized benchmark dataset, all past methods
cannot directly be compared. Even so, the proposed method has been
validated to achieve impressive performance with a considerably larger
number of CXR samples than all compared methods, in the case of the
dataset COVID-X. Overall, we can safely comment that the results are
competitive and the proposed method is technically sound and robust.

4.3. Analysis

The confusion matrices generated by the prediction of the blended
ensembling method for the 3-class classification problem on the COVID-
X dataset [33] and the Chowdhury et al. dataset [14] are shown in
Fig. 7. Fig. 6 shows the performances of the snapshots or the base
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models generated at an interval of every 10 epochs on the test sets of
each of the datasets. Table 6 shows the class-wise performance of the
proposed method on each of the two datasets.

From a close observation of the confusion matrices in Fig. 7, we
observe that our proposed method can classify images into its correct
class with a high accuracy. Furthermore, from Fig. 6, we can observe
the initial performances of the base models on each of the two datasets.
After applying our proposed blended ensembling method, we obtain a
clear spike in the accuracy of the prediction as depicted in the confusion
matrices which hint at the success of our proposed method.

5. Conclusion

In this paper, we have proposed a method to effectively detect
COVID-19 from CXRs. Initially, transfer learning has been used on the
state-of-the-art CNN model DenseNet-201, which has been pre-trained
on the ImageNet dataset. This training phase has been utilized to gener-
ate five snapshots of the model using cosine annealing technique, each
extracting and learning different low-level features of the dataset. Next,
the predictions of these snapshots have been ensembled via blending
to train a RF meta-learner which, in turn, provides more accurate and
reliable prediction upon combining the features of each of the base
models (i.e., snapshots of DenseNet-201). The results of our proposed
method upon the large COVID-X dataset as well as Chowdhury et al.’s
dataset indicate that blending the initial decision scores can lead to
impressive accuracy, hence more reliable predictions.

Since the results of our method are experimental in nature, it

involves finding the optimal hyperparameters for our model. This



Biomedical Signal Processing and Control 78 (2022) 104000A. Banerjee et al.
Fig. 6. Performance of base CNN classifiers.
Fig. 7. Confusion Matrices.
Table 6
Recall (Sensitivity), Precision (Positive Predictive Value), and F1-Score for 3-class
classification.

(a) COVID-X dataset [30]

Metric (%) COVID-19 Pneumonia Normal

Recall 90.00 94.10 95.36
Precision 93.75 93.01 95.69
F1-Score 91.83 93.55 95.52

(b) Dataset [14]

Metric (%) COVID-19 Pneumonia Normal

Recall 100.00 95.94 100.00
Precision 92.59 100.00 97.36
F1-Score 96.15 97.93 98.66

empirical approach may need manual intervention (i.e., some exper-
imentation) to fine tune the parameters to perfection which may be
considered as a possible limitation of our approach. We intend to make
the selection process more efficient with an optimization algorithm,
which will be a part of our future work. We would also like to extend
our proposed method to other areas of healthcare involving other forms
of medical imaging apart from CXRs like CT scans to detect other
diseases as well where it can increase the efficiency of predictions,
thereby boosting the testing rate of patients and benefiting the medical
community.
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