
Evolutionary mechanics: new engineering principles
for the emergence of flexibility in a dynamic and uncertain world

James M. Whitacre • Philipp Rohlfshagen •

Axel Bender • Xin Yao

Published online: 25 November 2011

� The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Engineered systems are designed to deftly

operate under predetermined conditions yet are notoriously

fragile when unexpected perturbations arise. In contrast,

biological systems operate in a highly flexible manner;

learn quickly adequate responses to novel conditions, and

evolve new routines and traits to remain competitive under

persistent environmental change. A recent theory on the

origins of biological flexibility has proposed that degen-

eracy—the existence of multi-functional components with

partially overlapping functions—is a primary determinant

of the robustness and adaptability found in evolved sys-

tems. While degeneracy’s contribution to biological flexi-

bility is well documented, there has been little investigation

of degeneracy design principles for achieving flexibility in

systems engineering. Actually, the conditions that can lead

to degeneracy are routinely eliminated in engineering

design. With the planning of transportation vehicle

fleets taken as a case study, this article reports evidence

that degeneracy improves the robustness and adaptability of

a simulated fleet towards unpredicted changes in task

requirements without incurring costs to fleet efficiency. We

find that degeneracy supports faster rates of design adapta-

tion and ultimately leads to better fleet designs. In investi-

gating the limitations of degeneracy as a design principle, we

consider decision-making difficulties that arise from

degeneracy’s influence on fleet complexity. While global

decision-making becomes more challenging, we also find

degeneracy accommodates rapid distributed decision-

making leading to (near-optimal) robust system perfor-

mance. Given the range of conditions where favorable

short-term and long-term performance outcomes are

observed, we propose that degeneracy may fundamentally

alter the propensity for adaptation and is useful within dif-

ferent engineering and planning contexts.

Keywords Degeneracy � Evolvability � Robustness �
Redundancy � Dynamic optimization � Complex systems

engineering � Dynamic capabilities � Strategic planning

1 Introduction

Engineering involves the design and assemblage of ele-

ments that work in specific ways to achieve a predictable

purpose and function (Fromm 2006; Ottino 2004). Engi-

neering, planning, and science in general have historically

taken a reductionist approach to problem solving; aiming to

decompose a complicated problem into more manageable

and well-defined sub-problems that are largely separable or

modular (cf. Sect. 3.1; Minai et al. 2006; Beckerman

2000). A reductionist problem decomposition reduces the

degrees of freedom that are considered at any one time. It

is methodical, conceptually intuitive, and it can help

individuals understand the most relevant determinants of

each sub-system’s behaviour. If sub-systems truly represent
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modular building blocks of the larger system, then there are

(by definition) relatively few ways in which the sub-system

will interact with its surroundings. This often permits the

operating environment to be defined with precision and

accuracy. When these conditions are met, engineers and

planners have historically been able to systematically

design components/subsystems with reliable functioning

that translates into reliable performance at the system-level

(Calvano and John 2003). The application of reductionist

principles also results in a hierarchical decomposition of a

system that contributes to system-level transparency and

benefits global forms of decision-making, trouble-shooting,

planning, and control.

While the reductionist paradigm is logically sound, it is

only loosely followed in practice because many of the

systems within which engineering (or reengineering) takes

place cannot be neatly decomposed. This is partly due to

the factors that have shaped these systems over time

including distributed decision-making during development,

multiple conflicting objectives, bounded rationality, his-

torical contingency (path dependency), and environmental

volatility. However, purist views of planning and engi-

neering often prevail when attempting to understand failure

in complex systems. When failure occurs, it is common and

logical to highlight the precise points where a system has

failed with the implicit assumption that performance could

have been sustained had a relatively small set of modifi-

cations been made during the design stage. Because a

narrative description of failure can be achieved through

careful investigation, it is often assumed that the precise

contingency of failure sufficiently captures the origins of a

system’s design flaws. That these failures might be symp-

tomatic of wider issues related to innate system properties

is sometimes suggested but has been notoriously difficult to

address in practice (Bak and Paczuski 1995; Carlson and

Doyle 2002; Kauffman 1990).

A further limitation to the classic reductionist paradigm

is that it assumes the capacity to anticipate beforehand the

conditions a system will experience and the precise manner

in which the system should respond to those conditions

(Minai et al. 2006), i.e., it assumes a stable environment or

it requires precognition (Gribble 2001). While predicting

plausible future conditions is often a useful exercise, sev-

eral factors can limit prediction accuracy and lead to

uncertainty (Calvano and John 2003). The origins of this

uncertainty are varied, however it is a general rule of

thumb that for complex systems operating in a dynamic

environment, we are limited in our ability to develop

standard operating procedures or contingency plans that

can accurately account for the various plausible conditions

that we might encounter (Mogul 2006; Polacek and Verma

2009; Lane and Boehm 2007). Thus, it becomes important

that a system be adaptable to conditions that were not

anticipated in its design stage. From a classic engineering

and planning perspective, such a design goal is ambiguous

and vague and it may seem that planning for the unex-

pected is an oxymoron.

In contrast to the traditional engineering approach to

problem solving, the creation and maintenance of biolog-

ical functions occurs in a non-reductionist manner that is

exceptionally effective at accommodating and exploiting

novel conditions. There are a number of systems engi-

neering and organization science studies that have pro-

posed ways to exploit properties associated with biological

robustness and adaptability (Sheard and Mostashari 2008;

Grisogono and Spaans 2008; Ilachinski 1996; Ryan 2007).

While a better appreciation of these biological properties

has been useful to decision makers and planners, many of

these properties—including loose coupling, distributed

robustness, and adaptability—are hard to apply because

there is little understanding of their origins or mechanistic

basis and few guidelines for their realization.

One of the key contributions of the work presented in

this article is the description and validation of design

principles that can be defined at a component level and that

can lead to the emergence of system properties such as

flexibility, distributed robustness and adaptability. By dis-

tilling out basic working principles that lead to biological

robustness and adaptability, we will gain useful insights

that can be used within engineering and planning contexts.

In Sect. 2 we focus particularly on one design principle—

degeneracy—that is suspected to play a fundamental role in

assisting complex biological systems to cope with envi-

ronmental novelty (Whitacre 2010a; Whitacre and Bender

2010a, b).

Because degeneracy design principles correspond with

measurable properties that can be realized in an engineering

context, we are able to validate our most important claims

through simulations involving engineered systems that

undergo design optimization. In Sect. 3, we motivate a

strategic planning problem involving the development of a

military vehicle fleet capability, and introduce a simulation

environment for evaluating fleet robustness across a range of

future plausible operating scenarios. We use evolutionary

computation to simulate incremental adaptations that

are aimed at improving the robustness of a fleet’s design. In

Sect. 4, we explore several robustness and adaptability

properties of the fleets as they are exposed to different classes

of environmental change and we find evidence supporting

the hypothesis that degeneracy provides broad advantages

within some classes of environments; most notably envi-

ronments that are complex and occasionally unpredictable.

Section 5 comments on the potential relevance of these

findings and we make concluding remarks in Sect. 6.

Given the multi-disciplinary nature of our topic, the

introduction in Sect. 2 relies on abstract terminology that
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can be universally understood by biologists, engineers,

planners, and decision-makers. Later on in the Case study

and Discussion sections (Sects. 3 and 5), we establish links

between these abstract concepts and their counterparts

within particular disciplines.

2 Lessons from biology

2.1 Robustness

2.1.1 Functional redundancy

Engineered systems typically comprise elements designed

for a single and well-specified purpose. However in bio-

logical systems there is no pre-assignment of a one-to-one

mapping between elements and traits. Instead, at almost

every scale in biology, structurally distinct elements (e.g.,

genes, proteins, complexes, pathways, cells) can be found

that are interchangeable with one another or are otherwise

compensatory in their contributions to system functions

(Whitacre 2010a; Whitacre and Bender 2010a; Edelman

and Gally 2001; Kurakin 2009). This many-to-one map-

ping between components and functions is referred to as

functional redundancy.

Pure redundancy is a special case of many-to-one

mapping and it is a commonly utilized design tool for

improving the robustness of engineered systems. In par-

ticular, if there are many copies of an element that perform

a particular service then the loss of one element can be

compensated for by others; as can variations in the

demands for that service. However, maintaining diversity

amongst functionally similar elements can lead to addi-

tional types of stability. If elements are somewhat different

but partially overlap in the functions they perform, they are

likely to exhibit different vulnerabilities: a perturbation or

attack on the system is less likely to present a threat to all

elements at once. Alternatively, we might say that a system

gains versatility in how a function can be performed

because functionally redundant elements enhance the

diversity of conditions under which a particular demand

can be satisfied (Whitacre and Bender 2010a; Carpenter

et al. 2001; Holling 1996).

2.1.2 Functional plasticity

Whether elements are identical (i.e., purely redundant) or

only functionally redundant, the buffering just described

always requires an excess of resources, and this is often

viewed in engineering as a necessary but costly source of

inefficiency (Carlson and Doyle 2002; Csete and Doyle

2002; Stelling et al. 2004). What is less appreciated how-

ever is that simple trade-offs between robustness and

efficiency do not necessarily arise in biological systems.

Not only are different components able to perform the

same function (a many-to-one mapping), many of these

components are also multi-functional (one-to-many map-

ping), with the function performed depending on the con-

text; a behavior known as functional plasticity (Whitacre

2010a; Atamas and Bell 2009; Batada et al. 2007; Kurakin

2007). Functionally plastic elements that are excluded from

participating in a particular function (e.g., due to demands

for that service already being met) will switch to other

functions (Kurakin 2010). Functional plasticity thus alters

the tradeoff between efficiency and robustness because

excess resources are shared across multiple tasks.

2.1.3 Degeneracy

Functional plasticity and functional redundancy are

observed at all scales in biology and we have described

simple and generic situations where these properties con-

tribute to trait stability through local compensatory effects.

In biological systems, it is common to observe functionally

plastic components that appear functionally redundant in

some contexts but functionally distinct in other contexts.

The observation of both functional redundancy and func-

tional diversity within the same components is referred to

as degeneracy. In the literature, there is an extensive list of

documented cases where degeneracy has been found to

promote trait stability (Whitacre 2010a; Whitacre and

Bender 2010a, b; Edelman and Gally 2001).

Degeneracy has also been shown to create emergent

system properties that further enhance trait stability

through distributed compensatory effects. The origins of

this additional and less intuitive form of robustness have

been described in the networked buffering hypothesis

(Whitacre and Bender 2010a). Using genome:proteome

simulations, Whitacre and Bender found evidence that

networked buffering can roughly double the overall

robustness potential of a system for each of the perturba-

tion classes tested. An important conclusion from those

studies is that even small amounts of excess functional

resources can have a multiplicative effect on system-level

flexibility and robustness when degeneracy is prevalent in a

system (Whitacre and Bender 2010a; b). This is of con-

siderable relevance to this study because these distributed

forms of robustness were also found to substantially

enhance a system’s ability to adapt to novel conditions.

2.2 Adaptation

2.2.1 Accessing novelty

In both biology and engineering, the discovery of an

improved component design necessitates the exploration of
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new design variants. Theoretically, degeneracy should

enhance a system’s access to design novelty because

functionally redundant elements retain unique structural

characteristics. Structural differences afford a multiplicity

of design change options that can be tested, and thus pro-

vide more opportunities for new innovative designs to be

discovered (Whitacre 2010a; Whitacre and Bender 2010b;

Wagner 2008; Kirschner and Gerhart 1998).

2.2.2 Transforming novelty into innovation

The availability of distinct design options is an important

prerequisite for innovation, however new opportunities

often come with new challenges. To transform a local

novelty into an exploited innovation, a system must be

flexible (e.g., structurally, behaviorally) to accommodate

and utilize a modified component effectively. For instance,

design changes in a device sometimes require new speci-

fications for interaction, communication, operating condi-

tions, etc. However, a system must accommodate these

new conditions without losing other important capabilities

or sacrificing the performance of other core system pro-

cesses. In other words, the propensity to innovate is

enhanced in systems that are robust in many of their core

functions yet flexible in how those functions are carried out

(Kirschner and Gerhart 1998).

2.2.3 Facilitating unexpected opportunities

Because design novelty is not predictable, we propose that

the flexibility needed to exploit design novelty cannot be

entirely pre-specified based on the anticipation of future

design changes. To support innovation, it appears that this

robust yet flexible behavior would need to be a property

that is pervasive throughout the system. Yet within the

wider context of a system’s development—where each

incremental design change involves a boundedly rational

and ultimately myopic decision—it also seems that this

flexibility must be a property that, while intimately tied to

the history of the system’s development, can readily

emerge without foresight. In contrast, if flexibility only

arises in the places where we perceive future need, then a

system’s ability to accommodate novel design conditions

will be limited by our foresight, e.g., our ability to predict

plausible future environments.

We have established a theoretical basis explaining how

degeneracy can support these prerequisites for adaptation

in an efficient manner and we have recently accumulated

some evidence from simulation studies that supports these

conjectures. For instance, we have found evidence that

degeneracy considerably enhances access to design novelty

(Whitacre and Bender 2009, 2010b). We have also dem-

onstrated that these novelties can be utilized as positive

adaptations (Whitacre 2010b; Whitacre et al. 2010) and can

sometimes afford further opportunities when presented

with new environments (Whitacre 2010c). In attempting to

understand how novelties are transformed into adaptations,

we have shown in (Whitacre and Bender 2010a) that high

levels of degeneracy lead to the emergence of pervasive

flexibility in how a system can organize its resources and

thus allows for a decoupling between the preservation of

important functions and the accommodation of new ones.

These experimental findings support each of our stated

conjectures regarding how degeneracy provides a mecha-

nistic basis for robustness and adaptability in biological

systems (Whitacre 2010a; Whitacre and Bender 2010b,

Edelman and Gally 2001).

2.3 Conflicts between robustness and adaptability

The requisite conditions that we have outlined above sug-

gest a relationship between robustness and adaptability that

we argue is rarely observed in engineered systems and may

even be entirely absent in systems that are designed

entirely using classic reductionist design principles. Some

evidence supporting this view is found by comparing the

relationships between robustness and adaptability in

human-designed evolutionary optimization algorithms with

that observed in natural evolution. In agreement with the-

ories on neutral evolution (Kimura 1955, 1983; Ohta 2002),

simulations of gene regulatory networks and models of

other biological systems have indicated that increasing

mutational robustness may increase a system’s propensity

to adapt (Whitacre and Bender 2010b; Ciliberti et al. 2007).

Taking cues from the original theories, research into

nature-inspired optimization has looked at designing

mutational robustness into an optimization problem’s rep-

resentation and has almost exclusively done so through the

introduction of gene redundancy, e.g., polyploidy. The

result has been a negligible or sometimes negative influ-

ence on the adaptive capabilities of individuals and popu-

lations (Banzhaf 1994; Keller and Banzhaf 1996; Knowles

and Watson 2003; Vassilev and Miller 2000; Yu and Miller

2001; Smith et al. 2002; Rothlauf and Goldberg 2003).

More recently we have investigated simulations where

evolution is given the option to create robustness through

degeneracy. We have found evidence that this leads to the

selective growth of degeneracy, substantial improvements

in evolving robustness towards environmental volatility,

and better adaptive capabilities in responding to environ-

mental novelty (Whitacre 2010b; Whitacre et al. 2010).

Thus, positive relationships between robustness and

adaptability have historically been absent in evolutionary

simulations but can be established when designed redun-

dancy is replaced by the evolution of degeneracy.
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3 Case study

In this article, we consider a simple but well-defined

framework that allows us to study fully the mechanistic

basis for robustness and adaptability in engineered systems.

The case study that we investigate falls into the category of

strategic planning problems.

3.1 Motivations for a strategic planning case study

In strategic planning problems, uncertainty arises from the

long time horizons in which planning goals are defined and

the properties of the systems and environments in which

planning takes place. In particular, strategic planning

almost invariably deals with the manipulation of multi-

scaled complex systems, i.e., systems comprising many

heterogeneous elements whose actions and interactions

translate into emergent system functions or capabilities

that are observable over several distinct timescales. A

number of well-known contemporary issues are exemplars

of strategic planning problems and include financial market

regulation, strategies for responding to climate change and

natural disasters, assistance to developing countries,

defence planning, and strategic planning for nations and

large organizations.

Uncertainty within strategic planning can be character-

ized in different ways (Grisogono and Ryan 2003; Davis

et al. 2007; Davis 2002, 2005). For instance, uncertainty

can be classified into ‘‘known unknowns’’ (conscious

ignorance), ‘‘unknown knowns’’ (tacit knowledge) and

‘‘unknown unknowns’’ (meta ignorance) (Kerwin 1993).

Different classes of uncertainty pose different challenges,

and traditional approaches to planning have mostly been

developed to address conscious ignorance, e.g., through

prediction modelling. Tacit knowledge and meta-ignorance

cannot be explicitly planned for and require the develop-

ment of system properties that facilitate adaptation at dif-

ferent levels within a system. For instance, tacit knowledge

is predominantly revealed during plan execution and

exploiting this knowledge requires plans to be responsive

(behaviourally adaptive). On the other hand, meta-igno-

rance often gives rise to shocks or surprises and knowledge

about the ‘‘unknown unknowns’’ only reveals itself ‘‘after

the fact’’. Dealing with meta-ignorance therefore requires

adaptable design and behaviour that allow for innovation to

germinate. Past experiences only provide very limited

useful insights.

The existence of meta-ignorance means that we are

never entirely certain what future events might be

encountered or how current decisions will shape future

events or ourselves (Lempert et al. 2003). When we

don’t know what we don’t know, we are prevented from

formulating our uncertainty based on the likelihood of

possible future states; a common assumption used in robust

optimization and control. Even the articulation of plausible

states can be difficult due to the emergence of new phe-

nomena. While many aspects of our world remain con-

served over time (described in the literature as historical

contingency, path dependency, or ‘‘frozen accidents’’

(Kauffman 1990; Kirschner and Gerhart 1998; Gould 1990;

Gell-Mann 1995; Crutchfield and Van Nimwegen 2002),

other aspects are not predictable due to, for instance,

unanticipated regime shifts in the physical environment,

paradigm shifts in knowledge and culture, and disruptive

technological innovations that introduce new opportunities

as well as new challenges. Under these circumstances,

desirable solutions or strategies should not only be robust

to expected variability; they should also have an innate

propensity to adapt to novel conditions. More generally, it

is important to understand what design principles, routines,

and system properties will determine a system’s capacity to

function under high variability and facilitate adaptations to

unexpected novelty. Because many long-term planning

problems are appropriately modeled using semi-autono-

mous and multi-functional agents (each of which are also

complex systems), this class of problems provides a suit-

able domain for exploring the biologically inspired prin-

ciples we presented in the previous section.

3.2 Model overview

We now introduce a strategic planning problem involving

investment decisions in a fleet of military field vehicles.

Over short (operational) timescales, fleets must operate

within a volatile environment; having the capacity to rap-

idly deal with both anticipated and unanticipated missions.

Over longer timescales, environments change more dra-

matically and it is important that new fleet architectures

can be developed that can adequately respond to these new

realities. Our model is a realistic representation of a stra-

tegic resource planning problem. It captures the most

important dynamics, namely: changes in the assignment of

vehicles to tasks, changes in the composition of vehicles

that make up a fleet, changes in the tasks that must be

executed during fleet operations, and changes in the com-

position of tasks at a timescale comparable to the timescale

for changes in fleet composition.

The model consists of a fleet of vehicles and each

vehicle corresponds to a specific vehicle type that is

capable of carrying out two specific task types. Each

vehicle may devote its resources (e.g., time) to either or

both tasks: a vehicle that is capable of performing tasks

A and B, for instance, could devote 30% and 70% of its

time to task A and B respectively. The fleet is exposed to a

number of environmental conditions (referred to as sce-

narios), each of which specifies a set of demands for the
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specific task types. It responds to each environment by

re-distributing its resources using a local decision making

process. In particular, each vehicle may distribute its own

resources amongst the two tasks it can perform, based on

global feedback about the current priority level for fulfill-

ing each task. The problem can thus be stated as finding a

suitable fleet composition that allows the fleet to respond to

a volatile environment through the redistribution of its

resources. In our experiments, this fleet composition

(or architecture) is evolved, using a genetic algorithm, to

maximize fleet robustness towards this environmental

volatility. In order to compare and evaluate different fleet

architectures, constraints are imposed on the evolutionary

process so that degeneracy is allowed to emerge in some

but not all cases.

3.2.1 Vehicle fleet and task types

The problem is formally defined as follows: There are a

total of m task types and vehicles are constrained in what

types of tasks they can perform. This constraint emulates

restrictions that may arise naturally in real-world scenarios

where specific tasks have specific hardware requirements

that may either be in conflict with one another or simply

too expensive to be combined within a single vehicle. In

particular, we constrain task-type combinations by defining

a symmetric neighborhood for any task type 0\i�m as

NrðiÞ ¼ f j jji� jj � r; i 6¼ jg where r is a predefined

radius, set as r = 2 in all experiments. We assume the set

of task types to have periodic boundaries such that the

neighborhood wraps around the extreme values.

The design of a fleet of n vehicles is characterized by the

matrix V ¼ 0; 1f gn�m
: If vehicle i can carry out task-type j,

then Vij = 1. Otherwise, the matrix entry Vij is 0. As any

vehicle is capable of exactly two types of tasks, it follows

that
Pm

j¼1 Vij ¼ 2; 8i. Furthermore, task combinations in

any vehicle i are constrained such that for any j and k for

which Vij = Vik = 1, it follows that k 2 NrðjÞ. The matrix

V thus fully specifies a valid fleet architecture where each

vehicle is constrained in (a) the number of task types it may

execute and (b) the relationship between the task types

(i.e., the radius). While this definition of a vehicle fleet’s

design may seem highly abstract, it actually is a realistic

description of how vehicles are assigned to tasks, e.g., in

military vehicle schedule planning problems. The only

contrived aspect of our model is the constraint that vehicle

types are capable of performing exactly two tasks. As our

current research shows, weakening this constraint does not

alter the findings and insights presented in the next section.

A second matrix R ¼ fx 2 Z : 0� x� 10gn�m
is used to

indicate the degree to which each vehicle distributes its

resources. Each element Rij specifies how much of its

resources vehicle i has assigned to task type j. Any entry Rij

may be non-zero only if vehicle i is able to perform task

j (i.e., Vij = 1). We assume that a vehicle allocates all of its

resources such that
Pm

j¼1 Rij ¼ 10; 8i. The alteration of

elements in R thus specifies the distribution of tasks across

the fleet of vehicles.

3.2.2 Redundancy and degeneracy

The matrix V specifies the task types each vehicle in the

fleet can carry out. We may thus use V to compute a degree

of redundancy or degeneracy found in the fleet. Two

vehicles are redundant with respect to each other if they are

able to carry out precisely the same two task types. If two

vehicles have exactly one task type in common, they are

considered degenerate. In order to calculate redundancy

and degeneracy in a fleet, we consider all n2 � nð Þ=2

unique pair-wise comparisons of vehicles and count the

number of vehicle pairs that have identical task capabili-

ties, partially similar task capabilities and unique capabil-

ities. We then normalize these measurements by the total

number of pair-wise comparisons made. More specifically,

vehicles i and j are redundant if Vi � Vj ¼ 2, degenerate if

Vi � Vj ¼ 1 and unique with respect to one another if

Vi � Vj ¼ 0. The fleet’s degree of degeneracy is then given

by:

jVjdegen ¼
1

n2 � n

Xn

i¼1

Xn

j¼1
j 6¼i

Vi � Vj ¼ 1
� �

ð1Þ

where �½ � returns 1 if the containing statement is true and 0

otherwise.

3.2.3 Environments

At any moment in time, t, the fleet is exposed to a set

of e = 10 environmental scenarios Et ¼ et
1; e

t
2; . . .; et

e

� �

where 0� et
ij� n specifies the number of times task type

j needs to be executed in scenario ei at time t. For each

scenario ei
t, the complete satisfaction of task demands

requires a fully utilized fleet,1 i.e.,
Pm

j¼1 et
ij ¼ 10n; 8i; t.

The scenarios are generated as follows: The first scenario

in the set—the ‘‘seed scenario’’, eseed—is created by ran-

domly sampling, with replacement, n tasks from the m task

types. The remaining e - 1 scenarios are generated from

the seed using two methods as described below. We dis-

tinguish between a decomposable case, where correlations

are restricted to occur between predetermined pairs of

1 Assuming the architecture of the fleet is optimal with respect to the

environment (i.e., the fleet can satisfy all demands given an optimal

distribution of resources).
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tasks, making the problem separable, and a non-decom-

posable case where correlations between the variation of

any two task types is avoided (Fig. 1c).

3.2.3.1 Decomposable set of scenarios In order to gen-

erate the decomposable scenarios, the m task types are

randomly grouped into m/2 pairings which are place into a

set S. A random walk is then used to create new scenarios

based on eseed. At each step of the random walk, a single

task i is selected and its demand incremented by 1. At the

same time, the demand for the corresponding task j, i.e., the

task type for which (i, j) [ S, is decremented by 1, ensuring

that the total number of tasks required by the environment

is always constant and equal to 10n (Fig. 1d). The corre-

lated increase/decrease is allowed as long as either task

demand is within the bounds of 0 and n. The volatility of Et

is subsequently defined as the length of the random walk

which always starts from eseed.

3.2.3.2 Non-decomposable set of scenarios In the non-

decomposable case, each step of the random walk involves

an entirely new and randomly selected pair of task types

(i.e., there is no predetermined set S). This ensures that the

number of correlated task types is minimised, making the

problem non-decomposable.

3.2.3.3 Validation scenarios For selected experiments,

fleet robustness evolves for one set of environmental

scenarios (‘‘training scenarios’’) and is then further eval-

uated on a new set of ‘‘validation scenarios’’. The vali-

dation sets are generated in the same manner as the

scenarios used during evolution but with the following

additional consideration: In each validation set, one sce-

nario is selected at random from the set used during

evolution and is then used as the seed to generate the new

set of scenarios. For validation set 1 (‘‘Validation I’’), the

generation of the remaining scenarios is further con-

strained such that variations between the original and

validation set remain decomposable, i.e., the same task

type correlations (as of set S) are used. For validation set

2 (‘‘Validation II’’), the remaining scenarios are generated

without such restriction, i.e., they are non-decomposable.

This implies that the scenarios within the second valida-

tion set are not only non-decomposable with respect to

Fig. 1 a Fleet encoding in genetic algorithm. The genetic algorithm

evolves a population of N individuals, each of which represents a

complete fleet of vehicles: at each locus, an individual/fleet has a

specific vehicle type as specified by two distinct task types. b A

simple example highlighting the differences between sets of redun-

dant and degenerate vehicles: given four vehicles (each vehicle

represented as a pair of connected nodes) and four task types—A, B,

C, D, the fleet on the left-hand side consists of two sets of identical

vehicles. The fleet on the right-hand side consists of four unique

vehicles with partial overlap between their functionalities (i.e., task

types); in both cases, each task is represented to the same degree. c An

illustration of task-type frequency correlations that characterize the

variation in decomposable and non-decomposable environments. d
Environmental scenarios differ from one another in the frequency of

task types but not the total number of tasks (vertical axis)
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one another but they are also non-decomposable with

respect to the training scenarios.

3.2.4 Evaluating fitness

The fleet of vehicles is specified by the matrix V and the

distribution of resources is given by the matrix R. The fit-

ness of a fleet V at time t is determined by how well the

fleet satisfies the demands imposed by the set of environ-

ments Et. For every scenario et
i 2 Et, the fleet may compute

a new matrix Ri
t. We denote as djðRt

iÞ ¼
Pn

k¼1 Rt
i kj the sum

of elements across column j in matrix Ri
t, which corre-

sponds to the total amount of resources the fleet devotes to

task type j. The fitness of the fleet with respect to envi-

ronment ei
t is then calculated as follows:

fet
i
¼
Xm

j¼1

max 0; et
ij � djðRt

iÞ
n o2

ð2Þ

Fleets are exposed to e scenarios at any one moment in time

and the fitness of a fleet is simply the average over the

individual fitness values:

FEt
¼ 1

e

Xe

i¼1

fet
i

ð3Þ

It should be noted that fleet A is considered fitter than fleet

B at time t when FEt
Að Þ\FEt

Bð Þ:
The fitness of a fleet depends on its composition and the

subsequent construction of R. The resources are allocated

using a local asynchronous decision making process that

aims to optimize fitness: all vehicles are considered in turn

and for each vehicle, its resource allocation is adjusted (using

ordered asynchronous updating). We increment/decrement

the value Rij according to how this affects the fleet’s fitness

(global feedback). Once no further improvements are pos-

sible, the next vehicle is considered. This process is repeated

until no further improvements can be made.

3.3 Genetic algorithm

To evaluate the merits and limitations of reductionist ver-

sus degenerate design principles, we define specific design

options for a fleet such that certain structural properties can

be maintained within the fleet architecture. The resource

allocation of the fleet is computed on the fly (as tasks are

introduced) but the fleet’s composition (i.e., its vehicle

types) needs to be optimized towards a particular Et. In

order to do so, we employ a genetic algorithm based on

deterministic crowding. The fleet is represented as a vector

of vehicle types (Fig. 1a). During the evolutionary process,

two parents are randomly selected from a population of 30

fleets (without replacement) and subjected to uniform

crossover with probability 1: the crossover operator selects,

with probability 0.5, for each locus along the chromosome,

whether the corresponding gene (vehicle type) will be

allocated to offspring 1 or 2. Each offspring is mutated

(see below) and then replaces the genotypically more

similar parent if its fitness is at least as good.

The design options available to a fleet (i.e., redundancy

or degeneracy) are controlled exclusively by the mutation

operator: When reductionist design principles are enforced

by the mutation operator, the fleet always maintains a fully

decomposable architecture. This is illustrated in Fig. 1b

where fleets comprise vehicles that are either identical

(purely redundant) or entirely dissimilar in their function-

ality. Unsurprisingly, fleets with this architecture acquire

much of their robustness through vehicle redundancy and

consequently are referred to as redundant fleets. When

reductionism is not enforced by the mutation operator,

some changes to vehicle designs may result in a partial

overlap between the capabilities of vehicles (see right panel

of Fig. 1b). Fleets evolved under these conditions are

referred to as degenerate fleets. In our experiments, the

initial fleet is always fully redundant independent of the

mutation operator used.

The mutation operator plays a central role in the process

of finding the best fleet design in a strategic planning

problem in which possible future scenarios display differ-

ent uncertainty characteristics (decomposable vs. non-

decomposable, see Sect. 2.2.3 above): it is used to restrict

the fleet compositions that may evolve. Its design is thus

crucial, especially as it is important to ensure that both fleet

compositions, redundant and degenerate, are obtained due

to selective pressure alone and not auxiliary effects such as

differences in solution space size. The mutation operator

has thus been designed with the following considerations in

mind: (a) the search space is to be of the same size in all

experiments; (b) in some experiments both redundancy and

degeneracy can be selected for during the evolutionary

process (as opposed to degeneracy emerging as a conse-

quence of the specifications of the model).

The mutation operator replaces exactly one randomly

chosen vehicle in the fleet with a new vehicle type. For

each locus in the chromosome, replacement options are

predetermined and limited to m/2 unique vehicle types. For

experiments in which the fleet cannot evolve degenerate

architectures, alleles for all loci are drawn from set S. It

follows that a purely redundant fleet remains redundant

after mutation. For experiments in which the fleet can

evolve degenerate architectures, allele options are almost

the same as before, except that for half the alleles available

at each locus, one task is changed to a new task type, thus

allowing a partial overlap in functions to be possible

between genes in the chromosome.

In some of our experiments we compare the results

obtained from evolving fleets (using the genetic algorithm)
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with ‘‘un-evolved’’ fleets that have the same composition

characteristics as the evolved fleets. In constructing an un-

evolved fleet, we proceed with an initial fleet as defined at the

beginning of our evolutionary simulations, i.e., a randomly

generated redundant fleet. We then proceed to iteratively

implement the mutation operators associated with each fleet

class (redundant, degenerate) with the mutated fleet replac-

ing the original if its redundancy or degeneracy measurement

becomes more similar to that of the evolved fleets. This

mutation/selection procedure is iterated until redundancy or

degeneracy differences are less than 5%.

3.4 Evaluating robustness

Possibly the clearest definition of robustness is put forth in

(Alderson and Doyle 2010) which states: ‘‘a [property] of a

[system] is robust if it is [invariant] with respect to a [set of

perturbations].’’ The square brackets are used to emphasize

that measurements of robustness requires one to specify the

system, the property, the set of perturbations, and some

measure of invariance (e.g., relative to some norm). Within

the context of the proposed case study, robustness is related

to system fitness and is characterized as the maintenance

of good fitness values within a set of distinct scenarios,

e.g., an aggregation function of fitness values FEt
(Eq. 3)

with FEt
\T where T describes some satisfactory fitness

threshold.

One drawback to such measurements arises when the

threshold T is high. Then complete and immediate failure is

unlikely. While many fleets will ‘‘survive’’ or appear robust

to most conditions, they may still exhibit substantial dif-

ferences in their ability to maintain competitive perfor-

mance with important subsequent effects to their long-term

survival or growth prospects, i.e., there is a decoupling

between robustness over short and long timescales. On the

other hand, with tolerance thresholds T too low, all fleets

will fail to meet the fitness requirements and will appear

equally poor. This poses a technical challenge to fleet

optimization as it eliminates selectable differences if cor-

rective steps are not taken, e.g., thresholds are continually

changed over time to ensure distinctions are possible in

comparing fleets that would otherwise be consistently

below or above satisfactory levels. One alternative is to

create a two-tiered selection criterion whereby fleets are

first compared based on satisfying fitness thresholds, and

when differences are not resolved by this comparison they

are further compared by their average fitness over all sce-

narios. This is the approach that we take in the analysis of

our experiments. When using this measurement in pre-

liminary tests we found it was still necessary to tune the

threshold (or tune scenario volatility) in order to resolve

differences between fleets.

While our findings might change when scenarios are

assigned different priorities or when the number of sce-

narios is small (\20), our tests indicate that reporting an

average fitness generates qualitatively similar conclusions

in comparison to the use of a tuned robustness measure-

ment. Average fitness is not a commonly used measure of

robustness, however it does provide some advantages in the

current study. In particular, an average fitness allows for a

direct observation of abrupt performance changes in a

system that could otherwise be dismissed as minor differ-

ences attributable to the crossing of a threshold.

4 Results

4.1 Evolution in environments with decomposable

volatility

In the first set of experiments, we optimize fleets of vehi-

cles to effectively handle a set of anticipated future sce-

narios. Each scenario defines a set of tasks that the fleet

must perform and scenarios differ from one another in the

frequency of task requirements. We proceed by investi-

gating problems where environmental uncertainty is highly

constrained and where reductionism in fleet design is

expected to be favored. In particular, fleets are evolved in

environments where, unbeknownst to the fleet optimization

algorithm, the differences between scenarios exactly match

vehicle capabilities within a fleet of a specific structural

decomposition (i.e., a particular redundant fleet). We call

these ‘‘scenarios with decomposable variation’’ (see Sect.

3.2.3).

With environmental variations matching a decomposable

architecture, any fleet with that same decomposition will find

that these variations can be decomposed into a set of smaller

independent sub-problems that each can be addressed by a

single class of vehicle and thereby solved in isolation from

other vehicle types. This also means that any changes in fleet

design that improve performance for one scenario will not

result in lowered performance in other scenarios, i.e., per-

formance across scenarios is correlated and evolution pro-

ceeds within a unimodal fitness landscape. These features

provide ideal conditions for reductionist engineering design

and we see in Fig. 2a that such design approaches can gen-

erate maximally robust fleets. Notice that according to our

definition of fleet fitness, FEt
in Eq. 3 a fleet is considered

more robust than another fleet when its robustness measure is

smaller. ‘‘Maximum’’ robustness is achieved when our

robustness measure approaches 0.

Allowing fleet architectures to deviate from a pure

decomposition should not be beneficial for these types of

predictable problems. While the environment varies in an

entirely decomposable manner, available fleet responses do
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not. During fleet evolution, we see in Fig. 2a that fleets

with degeneracy initially evolve quickly and can learn how

to respond to most variations within the environment,

although evolution does not discover a maximally robust

architecture in every problem instance (see ‘‘Training’’

results in Fig. 2b).

4.2 Robustness in environments with uncertainty

We next evaluate how the evolved fleets respond to various

forms of environmental uncertainty. In particular, fleets

evolved under the previous set of environments (now

called training scenarios) are reevaluated in a new set of

environments (validation scenarios). Uncertainty is char-

acterized by the differences between training scenarios

used during evolution and the new scenarios that are

defined within the validation set. We present results for two

validation tests that allow us to highlight some of the

strengths and weaknesses that we have observed in the two

fleet architectures.

4.2.1 Validation I

As described in Sect. 3.2.3, the first validation set is gen-

erated by selecting a scenario from the training set and

using its position in scenario space as a seed for generating

a new set of scenarios, via short random walks. The intu-

ition behind this validation test is that actual future con-

ditions are often partially captured by our expectations

such that some expectations/scenarios are invalidated while

other regions of scenario space become more relevant and

are expanded upon. We impose the following additional

constraints on validation set I: differences between sce-

narios must be decomposable when comparing scenarios

within the validation set as well as across the training and

validation sets.

While redundant fleets are not guaranteed to respond

optimally to every new scenario, the constraints imposed

on the validation set should place these fleets at a consid-

erable advantage. It is seen in Fig. 2b that redundant

fleets often maintain optimal robustness; however, they

also occasionally exhibit poor performance outcomes. We

found bimodal validation responses were a common phe-

nomena in redundant fleets. In particular, redundant fleets

tended to provide highly effective responses towards

scenarios that fit within their design limits but once

these limits were exceeded, their performance degraded

markedly.

In contrast, the degenerate fleets are not designed in a

manner that is biased towards the validation set’s decom-

position. In many validation instances the fleet’s robustness

is degraded as its repertoire of responses fails to match the

new requirements (Fig. 2b). However, performance losses

were attenuated, i.e., degenerate fleets were less sensitive

to environmental demands that deviated from optimal

conditions than were redundant fleets.

4.2.2 Validation II

The next set of validation tests utilize similar conditions as

before except that non-decomposable variation is now per-

mitted in the set of validation scenarios. More precisely,

differences between scenarios are decomposable when

comparing scenarios within the training set, but not decom-

posable for comparisons within the validation set or for

comparisons across sets. This is a harder validation test to

satisfy, firstly because the validation scenarios do not meet

the assumptions implicit in the training data. Secondly,

decomposition requirements restrict scenarios to compact

regions of scenario space and in removing this restriction, the

scenarios can now be more distinct from one another, even if

their distance from the seed position remains unchanged.

(a) (b)

Fig. 2 a Robustness profiles of degenerate and redundant fleet

designs evolved in environments with decomposable variation

(training scenarios). b Robustness is then reevaluated within new

validation scenarios. ‘‘Training’’ shows robustness values of all 30

fleets at the end of evolution against the training scenarios of ‘‘a’’.

‘‘Validation I’’ and ‘‘Validation II’’ show robustness values for the 30

evolved fleets against two different types of validation scenarios

(described in main text). The inset shows the same results as the main

panel but on a linear (not a logarithmic) robustness scale
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Under these validation conditions, we see that the robustness

of redundant fleets considerably degrades. Degenerate fleets

also suffer degradation in robustness, however they display

substantially better responses towards this type of novelty

compared to redundant fleets.

Our findings vary somewhat depending on the parameter

settings that are used to generate the validation tests. For

both validation sets, as the distance between the training

seed and validation seed grows, robustness decays in both

types of fleets although this is more rapid for the redundant

fleets. As the volatility is reduced in the training set, the

robustness advantage of degenerate systems also decreases;

in the limit where there is only a single member in the set

of training scenarios, both fleet classes always evolve to

optimal robustness.

4.3 Evolution in environments with non-decomposable

volatility

In strategic planning, it is unlikely that anticipated future

states (e.g., training scenarios) or the actual future states

(e.g., validation scenarios) will involve compartmentalized

variations. In the context of our model, this means that task

requirements are more likely to change such that the

covariance in task frequencies cannot be decomposed into

a set of isolated relationships or sub-problems. The second

set of validation scenarios evaluated in Fig. 2b were for-

mulated to capture this type of ‘‘non-decomposable

uncertainty’’ (see Sect. 3.2.3) as they allow correlations to

arise between the frequencies of any pair of task types.

For these reasons, we focus our attention on the

robustness and design adaptation characteristics for fleets

that evolve under Validation II type non-decomposable

environments. By tracking fleet robustness during the

course of evolution, we now see in Fig. 3a that degenerate

fleets are becoming substantially more robust and do so

more quickly than fleets evolved using reductionist design

principles.

In our view, there are two factors that primarily con-

tribute to these observed differences: (i) evolvability of the

fleet architecture and (ii) differences in the robustness

potential of the system. Conceptually, evolvability is about

(a) (b)

(c) (d)

Fig. 3 a Robustness profiles of degenerate and redundant fleet

designs evolved in environments with non-decomposable variation

and exposed to a shock (i.e., an entirely new set of scenarios) at

generation 3000. Characteristic results are also shown for experiments

where only a predefined percentage of vehicles can be designed to no

longer conform to the initial redundant fleet architecture and thus

allow for some restricted level of partially overlapping capabilities

within the fleet. b Degeneracy is measured (for fleets where it can

emerge) during the course of evolution. c Gene diversity during the

evolution of ‘‘a’’; measured as the proportion of vehicles that have

changed in pair-wise comparisons of fleets within the population.

d histogram for the number of offspring sampled before an

improvement is found (time length). Sampling is restricted to the

evolution of fleets throughout the first 3000 generations of ‘‘a’’
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discovering design improvements. In Fig. 3d, we record

the probability distribution for the time it is taking the

optimization algorithm to find new improvements to the

fleet design. As can be seen, degenerate architectures are

allowing for a more rapid discovery of design improve-

ments than redundant architectures. A further analysis of

fleet evolution confirms that design adaptation rates

predominantly account for this divergence in robustness

values. In Fig. 3b we track degeneracy levels within the

fleet and find that, when permitted, degeneracy readily

emerges in the fleet architecture. We will show that the

growth of degeneracy during evolution is a key factor in

both the robustness and design adaptation of these fleets.

4.4 Adaptation to novel conditions

One of the claimed advantages of degeneracy is that it

supports a system in dealing with novelty; not only in

system design but also in environmental conditions. To

investigate this claim, we expose the fleets to an entirely

new set of scenarios and allow the fleet designs to re-

evolve (Fig. 3a, generations 3000–6000). When high levels

of degeneracy have already evolved within the fleet

architecture, we see that the speed of design adaptation

increases. When only redundancy is permitted, design

adaptation after shock exposure at generation 3000 appears

marginally worse. In our analysis of these results, we

determined that the degraded adaptation rates in redundant

fleet (re)evolution is an artifact of the optimization proce-

dure and can readily be explained based on the following

considerations: (i) we use a population-based optimization

algorithm, i.e., many fleet designs are being modified and

tested concurrently, (ii) the population of fleets is con-

verging over time, i.e., differences between fleets or

diversity get lost (Fig. 3c), and (iii) it is generally true, in

both biology and population-based optimization, that a loss

of diversity negatively affects a population’s adaptive

response to abrupt environmental change. We can confirm

the population diversity effect by initializing populations at

low diversity or more simply by reducing the population

size, which results in redundant fleet robustness profiles

that are indistinguishable when comparing evolution in old

(generations 0–3000) and new (generations 3000–6000)

environments.

In contrast, degenerate fleets evolve improved designs

more rapidly in the new environment (Fig. 3a) and this

effect is not eliminated by altering the population size.

However, when we restrict the total amount of degeneracy

that is allowed to arise in the fleet (Fig. 3b), the fitness

profiles before and after shock exposure become increas-

ingly similar (Fig. 3a). Together, these findings support the

hypothesis that degeneracy improves fleet design evolv-

ability under novel conditions.

4.5 Innate and evolved differences in the robustness

potential of degenerate fleets

In our introductory remarks, we proposed that degeneracy

may allow for pervasive flexibility in the organization of

system resources and thereby afford general advantages for

a system’s robustness. To evaluate this proposal, in Fig. 3d

we introduce fleets that are not evolved but instead are

artificially constructed (see Sect. 3.2) so that they have

levels of degeneracy and redundancy that are similar to

their evolved counterparts from the experiments in Fig. 3a.

Figure 4 reports the robustness of these (un-evolved) fleets

against randomly generated scenarios. We see that innate

advantages in robustness are associated with degenerate

fleet architectures. We contend that this finding is not

intuitively expected based on a reductionist view of vehicle

capabilities given that: both degenerate and redundant

fleets have the same number of vehicles (and the fleet

design spaces are constrained to identical sizes), fleets are

presented with the same scenarios, and vehicles have

access to the same task capabilities.

It is interesting to ask whether this innate robustness

advantage can explain entirely our previous results or

whether the manner in which degeneracy evolves and

becomes integrated within the fleet architecture is also

important, as is proposed in the networked buffering

hypothesis (Whitacre and Bender 2010a). To explore this

question, in Fig. 4 we show robustness results of the final

evolved fleets from Fig. 3a but now robustness is reeval-

uated against randomly generated scenarios. Here we see

that, when degeneracy evolves, a fleet’s robustness to novel

conditions becomes further enhanced, indicating that the

organizational properties of degeneracy play a significant

role in a system’s robustness and capacity to adapt.

Importantly, it suggests that the flexibility is tied to the

Fig. 4 Comparisons of the robustness of evolved and un-evolved

fleets towards randomly generated scenarios. Un-evolved degener-

ate fleets were constructed with levels of degeneracy as large as

evolved fleets
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history of the system’s evolution yet remains pervasive and

can emerge without foresight, thus satisfying our third

stated requirement for supporting innovation. In contrast,

the capacity to deal with novel conditions is unaffected by

evolution in redundant fleets and remains generally poor

for both evolved and randomly constructed fleet designs.

4.6 Costs in the design and redesign of fleets

So far, we have found that degenerate fleet designs can be

broadly robust as well as highly adaptable; enabling these

fleets to exploit new design options and to respond more

effectively to novel environments. Only when environ-

ments are stable and characterized to favor reductionist

principles did we find redundant architectures to slightly

outperform degenerate architectures. While these pre-

liminary findings are promising, there are additional factors

that should be considered when weighing the pros and cons

of degeneracy design principles.

Depending on how the planning problem is defined, it

may be of interest to know how the fleet composition

changes in response to a new set of environmental

demands. For instance, if we considered the initial condi-

tions in our experiments to represent a pre-existing fleet,

then it would be important to know the number of vehicles

that are being replaced, as this would clearly influence the

investment costs.

We would expect that, without having explicit cost

objectives in place, degenerate fleets would diverge

rapidly from their original conditions. Interestingly, we

find in Fig. 5 that divergence is not substantially greater

in comparison to reductionist design conditions and that

more favorable cost-benefit trade-offs appear to exist for

evolution under non-decomposable environments, cēterı̄s

paribus.

For example, in decomposable environments an opti-

mally redesigned redundant fleet was typically found by

replacing 15% of the vehicles while degenerate fleets

achieved near optimal performance when approximately

20% of the fleet is redesigned (Fig. 5a). In complex envi-

ronments, no fleet typically is able to discover an optimal

redesign, however, the increased propensity to discover

adaptive design options is shown to confer degenerate

fleets with a performance advantage that becomes more

pronounced as larger investments are considered (Fig. 5b).

However, such conclusions do not factor in additional

costs from the development of new vehicle designs or

reduced costs that may come from economies of scale

(a)

(c)

(b)

Fig. 5 a Robustness of evolved fleets plotted against the proportion

of vehicles that have changed when comparing an evolved fleet with

its original design (at gen = 0). Evolution takes place within a

decomposable environment. b Same as ‘‘a’’ but with evolution taking

place in non-decomposable environments. c Comparisons of the

evolved fleet robustness for degenerate and redundant architectures at

different fleet sizes. In these experiments the fleet size, the number of

task types T, random walk size, and maximum generations are all

increased by the same proportion
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during the manufacturing and purchase of redundant

vehicles. While such costs depend on the planning context,

these factors will influence the advantages and disadvan-

tages from degeneracy and warrant further exploration.

Having noted the potential costs from degeneracy, one

should not immediately conclude that fleet scaling places

degeneracy design principles at a disadvantage. For

instance, in Fig. 5 we consider fleet evolution (under non-

decomposable environments) at different sizes of our

model. Here we see that the robustness advantage from

degeneracy has a non-linear dependence on fleet size.

Moreover, because degeneracy is a relational property,

modifying the design of a small number of vehicles can

have disproportionate influence on degeneracy levels

within a fleet. For instance, in one of the data sets in Fig. 3a

only 20% of the fleet is permitted to deviate from its ini-

tially redundant architecture yet we observe considerable

improvements in degeneracy and fleet robustness. In short,

the careful redesign of a small subset of the fleet could

provide considerable advantages, particularly for large fleet

sizes.

4.7 Multi-scaling effects

In our fleet fitness evaluation, it was necessary to determine

how vehicle resources can be matched to the task

requirements for each scenario. While decision support

tools might view this as a simulation (Davis 2002), in

operations research this simulation would be formulated as

a resource assignment problem. Regardless of how the

fitness evaluation is viewed conceptually, architectural

properties of the fleet are likely to have non-trivial conse-

quences in the assignment of vehicles to tasks.

As formally described in Sect. 3, we approximate task

assignment by a local decision-making heuristic. While this

heuristic simplifies our experiments, it also maintains a

rough analogy to how these decisions are made in reality,

i.e., by vehicle owners (management) instead of optimi-

zation algorithms. The ‘‘owner’’ of a vehicle distributes the

vehicle’s resources (time) over suitable tasks. However, as

other owners make their own decisions, the relative

importance of remaining unfulfilled tasks can change and

owners may decide to readjust their vehicle’s tasks, thus

(indirectly) adapting to the decisions of others. In the fol-

lowing, we investigate how a fleet’s architecture influences

the amount of time required to complete this task assign-

ment procedure and similarly, how placing restrictions on

the time allotted to the procedure, i.e., changing the max-

imum simulation runtime, influences the performance

results for different fleet architectures.

In Fig. 6a, we evolve fleets with different settings for the

maximum simulation runtime and record how this alters

the final robustness achieved after evolution. In the limiting

case where vehicle task assignments are never updated, a

fleet has no capacity to respond to changes in the envi-

ronment and performance is entirely genetically deter-

mined, i.e., vehicles are not functionally plastic. In this

case the problem collapses to one that is equivalent to

optimizing for a single scenario (i.e., the mean task

requirements of the scenario set) and the two types of fleets

evolve to the same poor performance. When fitness eval-

uation is extended to allow short simulation times (i.e., a

few decision adjustments), degenerate architectures display

modestly better matches between vehicles and tasks and

this continues to improve as simulation time is increased

and robustness converges to near optimal values (Fig. 6a).

The experiments reported earlier (in Sects. 4.1–4.6) did

not impose restrictions on the simulation runtime, i.e., task

assignment heuristics were run until no decisions could be

readjusted. To evaluate the task assignment efforts that

took place in these experiments, Fig. 6c plots the frequency

distribution for the number of decision adjustments that

occur as a fleet responds to a scenario. As can be seen the

discovery of a stable assignment can take considerably

longer for degenerate fleets than for redundant fleets.

However, we also have seen in Fig. 6a that constraining

the assignment runtime had only modest repercussions to

performance when the fleets are forced to evolve under

these constraints. We have found two factors that con-

tribute to these seemingly contradictory findings. Firstly,

the largest fitness improvements that result from decision

adjustments predominantly occur during the early stages of

a simulation. This is shown in Fig. 6b where fitness

changes are recorded as decision adjustments are made.

While some fleet-scenario combinations potentially require

many decision adjustments, the fleet still provides decent

performance if the simulation is terminated early. We also

speculate that a second contributing factor could be that

evolution under restricted runtimes influences how the

architecture evolves. With simulation runtime restricted,

evolution may prefer fleet architectures that find decent

assignments more quickly.

To investigate this conjecture, we evolve fleets with

simulation runtime restricted to at most ten decision

adjustments. We then remove this restriction and record the

total number of decision adjustments as the fleets respond

(without runtime restriction) to new scenarios (Fig. 6d).

Compared to the results in Fig. 6c, we see a large reduction

in runtime distributions indicating that fleets have been

designed to be more efficient in task assignment. In addi-

tion higher quality vehicle assignments are found more

quickly for degenerate fleets optimized under these con-

strained conditions (Fig. 6b).

In summary, an exploration of the underlying resource

assignment problem indicates that important interactions

exist in fleet performance characteristics as they are
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observed at different timescales of our planning problem.

However, in the context of the distributed decision-mak-

ing heuristics that were implemented, we have generally

found that degeneracy based design can result in high

robustness without incurring large implementation costs.

Importantly however, satisfactory cross-scale relationships

depend on whether short-timescale objectives (i.e., simu-

lation runtime) are being accounted for during fleet

planning.

5 Discussion

Fleet degeneracy transforms a trivial resource allocation

problem that, in principle, can be solved analytically into a

problem with parameter interdependencies that is not

analytically tractable for large systems. From a traditional

operations research perspective, degeneracy should thus be

avoided because it increases the difficulty of finding a

globally optimal assignment of resources. However,

despite increased complexity in centralized resource con-

trol, our results in Sect. 4.7 indicate that simple distributed

decision-making heuristics can provide excellent resource

allocation assignments in degenerate fleets. The superior

fleet design easily lends itself to a more effective allocation

of resources compared with the globally best solutions for

fleets designed based on reductionist principles.

By exploring this conflict between design and opera-

tional objectives (Sects. 4.6 and 4.7), our study has iden-

tified conditions that support but also limit the benefits that

arise from degeneracy. These conditions appear to be in

agreement with observations of distributed control in bio-

logical systems where trait robustness generally emerges

from many localized and interrelated decisions (Edelman

and Gally 2001). How these local actions translate to sys-

tem traits is not easily understood by breaking down the

system into its respective parts. The lack of centralized

control thus has put into question whether biological

principles are compatible with engineering and socio-

technical systems where centrally defined global objectives

play an important role in assessing and integrating actions

across an organization. However, and in contrast to com-

mon intuition, we have found some evidence to suggest

that difficulties in centralized control do not preclude the

possibility of coherent system behaviors which are locally

determined yet also driven by globally defined objectives.

Reductionist design principles should be well-suited for

addressing planning problems that can be readily separated

(a) (b)

(c) (d)

Fig. 6 a Robustness of fleets that have been evolved with different

restrictions on maximum simulation runtime. b Fitness of a fleet is

evaluated in a single scenario where fitness is recorded during a

simulation, i.e., as vehicle decision adjustments are made. The results

are shown for degenerate fleets that have evolved in conditions where

the maximum simulation runtime is 100 and 10 readjustments.

c Actual runtime distribution for fleets evolved under unrestricted

runtime conditions. d Actual runtime distribution for fleets evolved

under a maximum simulation runtime of 10, but where the

distribution is being evaluated with these restrictions removed
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into sub-problems and where variations in problem con-

ditions are bounded and predictable. On the other hand, we

propose that degeneracy should be better suited for envi-

ronments that are not easily decomposed and that are

characterized by unpredictable novelty.

5.1 Implications for complex systems engineering

As a design principle, degeneracy could be applicable to

several domains, in particular in circumstances where

(1) distributed decision-making is achievable (e.g., in

markets, open-source software, some web 2.0 tech-

nologies, human organizations and teams with a flat

management structure);

(2) agent motivations can be aligned with system objec-

tives; and,

(3) agents are functionally versatile while also following

protocols for reliable agent–agent collaboration.

When these conditions are met, designing elements with

partially overlapping capabilities can dramatically enhance

system resilience to new and unanticipated conditions as we

have shown. On the other hand, if there is a need to maintain

centralized decision-making and system-level transparency,

or in cases where historical bias favoring reductionism is

deeply ingrained, implementing degeneracy design princi-

ples is likely to prove difficult and possibly unwise.

There is a growing awareness of the role played by

degeneracy in biological evolution. However, these

insights have not yet been taken into account in the

application of nature-inspired principles to solve real-world

problems. We propose that our findings can shed new light

on a diverse range of research efforts that have taken

insights from biology and complexity science to address

uncertainties arising in systems engineering and planning

(Sheard and Mostashari 2008; Ilachinski 1996; Ryan 2007;

Levchuk et al. 2002). Degeneracy is a system property that:

(1) based on both empirical evidence and theoretical

arguments, can facilitate the realization of other

important properties in complex systems, including

multi-scaled complexity (Minai et al. 2006; Tononi

et al. 1999), resilience under far from equilibrium

dynamics (Holling 1996), robustness within outcome

spaces (Kuras and White 2005), the establishment of

‘‘solution rich configuration spaces’’, and evolvability

(Minai et al. 2006; Kirschner and Gerhart 1998;

Fricke and Schulz 2005);

(2) depends on the presence of other basic system

properties that were implemented in our experi-

ments such as distributed decision-making (Kuras

and White 2005), feedback (Grisogono and Ryan

2003; Grisogono 2006), modularity/encapsulation

(Fricke and Schulz 2005), protocols/interfaces/tagging

(Csete and Doyle 2002; Grisogono and Ryan 2003),

weak/loose coupling (Fricke and Schulz 2005; Cserm-

ely 2006), exploration (Kirschner and Gerhart 1998),

agent agility (Grisogono and Spaans 2008; Grisogono

2006), and goal alignment within a multi-scaled system

(Minai et al. 2006; Grisogono 2006).

5.2 Reengineering in complex systems

Our introductory remarks regarding system’s engineering

intentionally emphasized distinctions between designed

and evolved systems, however engineering in practice can

take on features of both. Engineering is not simply drawing

up a plan and implementing it. Human-constructed systems

typically coevolve with their environment during planning,

execution, and even decommissioning activities. While

biological terminology is not common to this domain,

several attributes related to degeneracy are found in socio-

technical systems and are sometimes intentionally devel-

oped during planning.

For instance, functional redundancy is a common fea-

ture in commercial/social/internal services when a sus-

tained function under variable conditions is critical to

system performance or safety, e.g., communications and

flight control for commercial aircraft. Functional redun-

dancy is rationally justified in these cases based upon its

relationship to service reliability (see Sect. 1) which is

analogous to the principles underpinning economic port-

folio theory, i.e., risks are mostly independent while returns

are additive. However if nothing else, this study and other

recent studies have shown that a significant amount of the

robustness derived from degeneracy has origins that extend

beyond simple diversity or portfolio effects and is con-

ferred instead as an emergent system property. For

instance, previous work has found evidence that the

enhanced robustness effects from degeneracy originate

from distributed compensatory pathways or so called net-

worked buffers (Whitacre and Bender 2010a).

Moreover, it is not simply reliability in function but also

the relationship between robustness and innovation that

makes degeneracy especially important to systems engi-

neering. To better understand this relationship between

degeneracy, robustness, and innovation, we have taken an

interdisciplinary approach that combines system’s think-

ing, biological understanding and experimentation using

agent-based simulations. In ongoing research, we are using

this approach to explore how degeneracy might facilitate

successful organizational change within an organization as

well as successful reengineering for systems that display

functional interdependencies in the mapping between agent

actions and system capabilities.
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6 Conclusions

In this article, we have investigated the properties of

degenerate buffering mechanisms that are prevalent in

biological systems. In comparison to their engineering

counterparts, these buffering mechanisms were found to

afford robustness to a wider range (both in type and

magnitude) of perturbations and do so more efficiently due

to the manner in which these buffers interact and cooper-

ate. While seemingly paradoxical, we also hypothesized

how the same mechanisms that confer trait stability can

also facilitate system adaptation (changes to traits) under

novel conditions. With the design of transportation fleets

taken as a case study, we reported evidence supporting this

hypothesis, demonstrating that the incremental growth of

degeneracy results in fundamentally different robustness

and design adaptation properties within fleets.

The theories that underpin these ideas are conceptually

straightforward (Whitacre 2010a; Edelman and Gally

2001) yet also operationally useful as they position

degeneracy as a mechanistic facilitator of robustness and

adaptability that, in principle, can be applied outside bio-

logical contexts (Whitacre 2010a). In looking to tackle

real-world problems using inspiration from biology, it is

important to determine whether sufficient parallels exist

between the problem and the biological system of interest.

Here we have proposed that the investment decisions and

subsequent operation of complex engineered systems

consisting of versatile semi-autonomous agents provide a

general domain where these requisite conditions are met

and where degeneracy design principles could prove

advantageous. There are a number of systems that can be

characterized in this manner, with strategic planning for

field vehicle fleets provided as one illustrative example.

Other suitable domains may include particular applica-

tions of agile manufacturing (Frei and Whitacre, 2011) and

applications of swarm robotics. There are however addi-

tional challenges that arise in these other domains because

humans play a smaller role in the communication and

control of agent–agent interactions. For instance, the

design and management of protocols for agent–agent

communication and co-regulation were ignored in our case

study due to the central role of humans in managing mil-

itary vehicle operations but are important issues in agile

manufacturing, swarm robotics and similar systems.

Our future research will continue to investigate the

influence of degeneracy in systems that comprise both

humans and hardware assets, however we will increasingly

focus on the social dimension of such problems. For

instance, some of our future studies will investigate how

degeneracy in the skill mix of military and emergency

response teams can influence team flexibility when such

teams have to deal with surprises and novel threats. Team

flexibility may become particularly important in situations

where individuals are unexpectedly required to take on new

roles in a crisis.
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