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Abstract
Background. Evaluation of microsurgical proficiency is conventionally subjective, time consuming, and unreliable. Eye
movement–based metrics have been promising not only in detection of surgical expertise but also in identifying actual
cognitive stress and workload. We investigated if pupil dilations and blinks could be utilized in parallel to accurately
classify microsurgical proficiency and its moderating features, especially task-related stress.Methods. Participants (n = 11)
were divided into groups based on prior experience in microsurgery: novices (n = 6) with no experience and trained
microsurgeons (n = 5). All participants conducted standardized suturing tasks with authentic instruments and a surgical
microscope. A support vector machine classifier was used to classify features of microsurgical expertise based on
percentage changes in pupil size. Results. A total of 109 successful sutures with 1090 segments were recorded.
Classification of expertise from sutures achieved accuracies between 74.3% and 76.0%. Classification from individual
segments based on these same features was not feasible. Conclusions. Combined gaze metrics are applicable for classifying
surgical proficiency during a defined task. Pupil dilation is also sensitive to external stress factors; however, the usefulness
of blinks is impaired by low blink rates. The results can be translated to surgical education to improve feedback and
should be investigated individually in the context of actual performance and in real patient operations. Combined gaze
metrics may be ultimately utilized to help microsurgeons monitor their performance and workload in real time—which
may lead to prevention of errors.
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Introduction

Microsurgical techniques are prevalent in numerous sur-
gical disciplines, such as ear–nose–throat diseases, neu-
rosurgery, ophthalmology, oral and maxillofacial surgery,
orthopedics and plastic surgery, and vascular surgery.1

Microsurgical procedures utilize both optical and digital
microscopes to fine-tune instrument handling in confined
spaces and with sensitive tissues, requiring extreme sit-
uational awareness, fluent eye–hand coordination, and
uninterrupted concentration from the operator. Despite
years of training, the microsurgical procedures increase
cognitive workload which in turn increases the chance of
surgical errors.2

Microsurgical expertise spans not only specialist
knowledge, understanding the anatomy and treatment
procedures,3 but also the technical skill and practice of
microsurgical conduct.4 Such expert surgical practice
relies on mentoring and feedback from more experi-
enced surgeons.5 However, the evaluation of surgeons’
proficiency is subject to numerous drawbacks, with
subjectivity belonging to the commonly acknowledged

issues.6,7 To avoid cumulative errors from subjective
practice, medical practitioners have adopted various ob-
jective systems such as checklists and rating scales.8 In
addition, assessment of surgeons’ cognitive workload and
proficiency during the procedures has been an ongoing
area of research for years.6,9

Prior research has investigated various computatio-
nal approaches to objectively assess surgical skills. The
reported methods have mainly involved instrument
movements,10-12 including surgically applied forces and
arm kinetics.6,13 Some authors, such as Grober et al
and Harada et al, investigated microsurgery specifically.
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Several studies have also reported the specific gaze pat-
terns of training surgeons.14-16 In Ref. 17, the authors used
several eye metrics, including the Index of Cognitive
Activity pupil dilation and blink rate and managed to
successfully classify surgeons as experts and nonexperts
using linear discriminant analysis and nonlinear neural
networks. Likewise, in Ref. 18, the authors investigated
the percentage change in pupil size (PCPS) and the Index
of Pupillary Activity in addition to traditional gaze metrics
such as the fixation rate and found these to be capable of
differentiating surgeons’ skill level during live surgery. In
Ref. 19, the increased difficulty in a laparoscopic task was
found to correlate with peak pupil dilation in a group of
novice participants. In Ref. 20, the authors used pupil size
as a metric for mental workload when comparing bi-
manual and unimanual performance during a simulated
endoscopic task.

The use of pupil dilations for assessing expertise and
workload is justified by the phenomenon of task-evoked
pupillary response, where an increased processing load
causes the pupil to dilate.21 The task-evoked pupillary
response has been validated in many different contexts
involving attention, memory, and perception.22 Similarly,
the increased mental workload has been found to correlate
with changes in blinking patterns.23,24 Higher mental
workload and stress have been reported to correlate with
experience in driving,25 in simulated aviation tasks,26 and
during surgery.27 Consequently, the differences in work-
load experienced by novice and expert surgeons should
lead to differences in pupil dilations and blink rates.

With a custom eye tracker embedded into a surgical
microscope, we recorded the blinks and pupil dilations
of novice and expert microsurgeons as they performed
a set of microsurgical training sutures. In our previous
research,28,29 we found that novices estimated the suturing
task to be significantly more demanding than experts and
that there are differences in pupil dilations and blink rates

between these 2 groups. Here, we extend this research by
studying the combined applicability of pupil dilation and
blink rate to classify expertise at suture- and segment-level
features. Our hypothesis is that the blink rate and pupil
dilation are best used in parallel to account for both
proficiency and cognitive workload during microsurgery.

Materials and Methods

Participants and Cognitive Workload Evaluation

We recruited a total of 11 participants for the study
(Table 1). All participants (2 females and 9 males; mean
age = 30.91 years and SD = 6.19) had normal or corrected-
to-normal vision. We divided the participants into novices
and experts based on their previous experience in mi-
crosurgery. The novices had no microsurgical experience,
whereas the experts were plastic surgeons performing 30-
60 surgical operations a month using a surgical micro-
scope or loupes. Some novices had medical training and
some surgical experience outside of microsurgery. One
novice reported high surgical expertise, resulting in a high
standard deviation in the novice group. The experts were
recruited from a plastic surgery clinic, and the novices
were staff at the surgical simulation laboratory where the
experiment took place.

At the start of the experiment, the participants received
instructions and signed a consent form before starting the
task. We also took measures to eliminate potential external
factors that could affect the pupil dilations and the blink
rate. We asked the participants to refrain from using
stimulants such as coffee before the experiment. During
the instruction phase, the participants rested at least
10 minutes before the eye tracker calibration. Each par-
ticipant adjusted the ergonomics of the seat and the mi-
croscope to their personal preferences. Throughout the
experiment, the illumination of the microscope and the
room was kept even.

Table 1. Overview of the 2 Groups. Surgical and Microsurgical Skills Are Reported in Number of Months, Averaged over the
Participants. One Novice Reported High Surgical Expertise, Resulting in High SD of the Novice Group. SURG-TLX Scores Are
Based on Self-Reports from the Participants. Standard Deviations Are Given in Parenthesis.

Group Novice Expert

Demographic Gender 2 females and 4 males 5 males
Age (year) 30.50 (8.26) 31.40 (1.36)
Surgical practice (month) 60.00 (91.65) 61.20 (19.03)
Microsurgical practice (month) .00 (.00) 31.20 (24.71)

SURG-TLX Mental demands 13.06 (2.17) 8.34 (3.91)
Physical demands 14.88 (2.61) 5.82 (2.51)
Temporal demands 8.70 (4.54) 7.76 (1.55)
Task complexity 12.50 (6.09) 5.44 (2.28)
Situational stress 14.30 (1.03) 8.50 (4.65)
Distractions 2.50 (2.77) 6.14 (3.50)
Sum 65.94 (10.48) 42.00 (12.32)

Abbreviation: SURG-TLX = surgery task load index; SD = standard deviation.
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After the experiment, the participants filled the surgery
task load index (SURG-TLX) instrument.30 The SURG-
TLX instrument uses a 20-point Likert scale to measure
surgical workload in 6 dimensions: mental, physical, and
task demands, as well as task complexity, situational
stress, and distractions. Results for the novices and experts
are described in Table 1.

Suturing Task

The training task board was designed iteratively by ex-
perienced surgeons in collaboration between 2 inter-
continental university hospitals. The task cardboard had 2
rows with 3 slots each, in total 6 slightly different suturing
subtasks. Each column has predefined direction (0 – 45 –

90–degree angles), and the second row repeats them under
higher magnification. To each incision, the participants
completed 2 sutures. The card is designed to intuitively
force the performer to adjust for different magnifications
and field of view, which are typically encountered in
microsurgical suturing.

The participants conducted the sutures using high-
quality microsurgical needle holders and suturing forceps
with 9.3 mm 3/8 taper head needles attached to 7-0, 50-cm
polypropylene monofilament sutures. The participants used

a Zeiss OPMI Vario S88 surgical microscope with an
embedded custom-made eye tracker. The eye tracker had
a sampling rate of 30 Hz and was installed on the right
ocular of the microscope. Figure 1 shows the scene under
the microscope and the view from the eye tracker.

Data Processing and Segmentation

Each suture was divided into segments defined by an expert
microsurgeon (Table 2). The segment names indicate the
event that marked the start of a new segment. For example,
“needle pick” begins when the needle is picked with the
needle holder and ends when the needle touches the edge of
the cut, which marks the start of “edge touch.”

The pupils were detected with a custom Hough
transform–based algorithm, as described in Ref. 28.
Traditional blink detection methods did not deliver sat-
isfying results due to the custom-made setup of the eye
tracker, and thus, we opted to filtering the blinks out
manually. The participants regularly moved away from the
microscope to pick the scissors at the end of the suture, and
these frames were excluded when calculating the blink
rate. Postprocessing of both the pupil and blink data was
implemented in Python using Pandas31 and NumPy32

libraries.

Figure 1. (A) Scene under the microscope and (B) the eye during a blink.

Table 2. Description of the Suture Segmentation. Except for the Cutting Segment, the Event Marking the Start of the Segment Is
Given in the Description, and the End of the Segment Is Marked by the Next Event in the List. The Cutting Segment Starts after
Knot 3 and Ends when both Ends of the Thread Are Cut.

Suture Segment Description

Needle pick A needle is picked up with a needle holder or a loaded needle holder is brought to the field of view
Edge touch An instrument or the needle touches the edge of the target surface
Pierce The needle tip pierces the first surface wall
Needle push and pull The needle tip penetrates the second surface wall
Extraction A needle holder grabs the needle on the edge of the needle
Thread handling The base of the needle penetrates the second wall
Knot 1-3 A nondominant instrument grabs the thread for suturing (this hand can pull thread also after this time point)
Cutting Both suture threads are cut
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We applied linear interpolation to ensure that each
participant had a constant sampling rate of 30 Hz. After
resampling the data, we applied a low-pass filter at a
4-Hz cutoff frequency, as frequencies above 2 Hz can be
considered noise.33 Movement of the hands and the tools
under the microscope could also affect the amount of light
coming to the eye. We estimated the illumination levels
from grayscale frames extracted from the scene videos and
calculated their Pearson correlation with the pupil size.
The correlation on the detrended data was found to be low
(|ρ| < .1).

For normalizing the pupil data, the pupil measure-
ments are usually subtracted by or divided with a suitably
chosen baseline.34 Here, the changes in the pupil size
were calculated as a PCPS compared to the baseline, as
defined in35

PCPS ¼ X � μ
μ

(1)

where X is the pupil size and μ is the baseline pupil size. A
new baseline was calculated for each of the 6 slots in the
training board, from a 200-frame window before the first
suture to that slot was started. Calculating the baseline
before each suture was not possible because participants
often started the second suture right after the first one
within a slot.

Machine Learning for Automatic Classification
of Expertise

Ideally, a system that uses eye tracking data to evaluate
microsurgical expertise should work in near real time. To
this end, we studied the performance of classifiers that use
simple features extracted from pupil dilation data. The
features chosen were the average percentage change in
pupil size (APCPS) and the standard deviation of the
percentage change in pupil size (SDPCPS) in each seg-
ment and the blink rate in blinks per minute.

The classifier performance was evaluated at segment
and suture levels. At the segment level, the classifier was
given features from individual segments, and at the su-
ture level, the classifier was given features from all the

segments that make up that suture. We first pilot tested
various classifiers (logistic regression, linear discriminant
analysis, k-nearest neighbors, decision tree, Gaussian
Naive Bayes, support vector machines (SVMs), Ada-
Boost, and Gaussian process) with default parameters to
estimate classifier performance. Considering the sample
size, distributions of the feature variables, and between-
participant differences, we chose to do the classification
using the SVM classifier.

Before training the classifier, the training and test sets
were scaled separately to have a zero mean and unit
variance. To find an optimal value for the penalty pa-
rameter C that determines the cost of misclassifications,
we followed the guidelines given in Ref. 36 and ran
exponential grid-search k-fold cross-validation with the
parameter range [2�3, 2�2, …, 217] and fold size k = 10.
The parameter search was done on both segment- and
suture-level classification schemes separately, after which
we chose one value that was used for all classification.
The optimal penalty parameter C was found to be .25.

In the segment-level classification, each segment was
evaluated individually with APCPS and SDPCPS as fea-
tures. In other words, we assume that the segment from
which the feature values come from is known. The ob-
served blink rate was too low to make it useful in classi-
fying individual segments. For suture-level classification,
the features were APCPS and SDPCPS from each of the
10 segments that make up the suture and the blink rate for
the complete suture, with a total of 21 features and 109
sutures. Since the pupil features are likely to be correlated
in nearby segments and because the large number of pupil
features would diminish the applicability of the blink rate,
we also tested dimensionality reduction using principal
component analysis (PCA). Figure 2 shows an overview of
the classification scheme.

At both classification levels, we used repeated stratified
k-fold cross-validation with a fold size of 10 and 10
repetitions to evaluate classifier performance. We also
tested the effects of individual participants by repeating
the suture-level classification and each time leaving out
one participant. The parameters used to evaluate classifier
performance are as follows

Figure 2. Scheme for classifying expertise from segments and sutures. For segments (A), we train and test the classifiers for each
segment individually (here, knot 1). In the suture classification (B), data from all the segments are used.
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1. Accuracy: Percentage of participants classified
correctly as a novice or an expert;

2. True positive rate: Percentage of experts correctly
classified as experts;

3. False positive rate: Percentage of novices classi-
fied as experts; and

4. Precision: Percentage of true experts out of all
participants classified as experts.

In all, 55% of the data belonged to experts, which can
be taken as the baseline accuracy for classification. Python
package Scikit-learn was used to perform the training of
the statistical models and classification.37

Results

Data from one of the novice participants were discarded
because of technical issues, leaving 5 novice and 5 expert
participants. Two novice participants failed to complete
all the sutures, and the unsuccessful sutures—11 in total—
were left out of the final analysis. Thus, 109 sutures were
completed successfully, of these, 60 by expert partic-
ipants. As each suture consisted of 10 segments, there
were a total of 1090 segments. Five segments had missing
data that we replaced with the mean value of similar
segments from the same participant.

Mean duration of a suture for experts was 70.6 seconds
(SD = 14.9) and for novices, 168.8 seconds (SD = 68.7).
According to a two-tailed t-test, this difference is statis-
tically significant, t(108) = 10.78, P < .001. The mean
blink rate per suture was 4.69 blinks/min (SD = 5.04) for
experts and 4.68 blinks/min (SD = 3.62) for novices.

Assessing Expertise from Segments

Results of segment-based classification are displayed in
Table 3. Considering the baseline accuracy of 55%, it is
evident that segment-based classification using these
features does not perform sufficiently well. The recall and

precision values show that most participants were clas-
sified as experts. Best accuracies were achieved at the
beginning and toward the end of the suture, but even then,
the performance is only slightly above the baseline.

Assessing Expertise from Sutures

The performance of suture-level classification is given in
Table 4. The table also provides results of classification
with only the pupil features and with the dimensionality
of the pupil features reduced. PCA was applied to the
APCPS and SDPCPS features separately. With 4 principal
components for APCPS and SDPCPS each, the classifi-
cation results were on par with the results from using the
entire set of features. However, inclusion of the blink rate
as one of the features did not significantly improve the
results. Nevertheless, the achieved accuracies of 74.3%-
76.0% are promising, and together with recall and pre-
cision values, they show an apparent improvement over
segment-based classification. In addition, the trained
classifier generalized well with minor variance. As can be
seen in Table 5, the achieved classification rates varied
only modestly in the leave-one-participant-out cross-
validation.

Discussion

Eye metrics present a new platform for monitoring mi-
crosurgeon’s cognitive workload and performance. In this
work, we specifically investigated the extent of combined
pupil- and blink-based measures for indicating of mi-
crosurgical proficiency. We utilized a custom eye tracker,
which allowed recording with unpreceded accuracy, and
without limiting natural microsurgical ergonomics. Our
results suggest that pupil- and blink-based metrics can
support objective assessment of microsurgical profi-
ciency, with pupil dilations being the predominant in-
dicator of the participants’ expertise.

Table 3. Results for Segment-Based Classification of Expertise Using Support Vector Machines with Average Percentage Change
in Pupil Size and Standard Deviation of the Percentage Change in Pupil Size as Features in Each Segment.

Segment Accuracy Acc. 95% CI Low Acc. 95% CI High TPR FPR Precision

Needle pick .555 .545 .565 .968 .953 .556
Edge touch .663 .640 .686 .883 .606 .647
Pierce .540 .530 .550 .962 .975 .547
Needle push .551 .548 .554 1.000 1.000 .551
Extraction .551 .548 .554 1.000 1.000 .551
Thread handling .539 .531 .547 .975 .996 .545
Knot 1 .614 .594 .635 .882 .713 .606
Knot 2 .539 .528 .549 .952 .968 .546
Knot 3 .597 .578 .617 .922 .802 .588
Cut .624 .602 .645 .908 .725 .609

Abbreviation: CI = confidence interval.
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In the set of machine-learning experiments, we eval-
uated how well the SVM classifier recognizes partic-
ipants’ expertise at the higher suture level and then at the
finer level of suture segments. The classification of ex-
pertise based on pupil dilations at the suture level revealed
greater potential. The SVM was able to classify expertise
at considerably high accuracy, considering the simplicity
of the features and the fact that we were only utilizing eye
tracking data. Adding the blink rate as a feature did not
significantly improve the classification results, most likely
due to the low blink rate that was observed. The low blink
rates were in line with the extremely low blink rates during
microsurgery which have previously been reported.38 In
Ref. 17, the authors used the blink rate as one of the
features to successfully classify expertise in a laparo-
scopic task, but it is unclear howmuch excluding the blink
rate would have affected their results.

The same classification approach at the finer level of
suture segments proved to be mainly unfeasible due to the
large variance that was observed even within individ-
ual participants. The highest performance was seen with
segments toward the end of the suture, suggesting that this
phase could potentially signal differences in expertise. For
a reliable classification from suture segments, we would

have to use more refined features, which on the other
hand, would require a careful control of the noise.

The pupil changes were therefore indicative of micro-
surgical suturing proficiencywhen they were assessed from
longer periods of time, over the entirety of the suture. With
longer time, more information is used to make the clas-
sification and the process is less susceptible to noise since
the effects on individual segments cancel out.39 Unin-
formative noise may occur because the pupil accom-
modates to changes in illumination. However, the pupil size
is also affected by mental effort and motor demands, and
changes in the pupil size are linked to arousal and fatigue,22

and especially cognitive workload.21,40,41 The link between
pupillary responses and cognitive workload has been in-
vestigated in several studies.34 In the field of laparoscopic
surgery, Jiang et al found that the pupil dilations corre-
sponded to the precision of hand movements required by
the task, and the increased peak and duration of the pupil
dilation were associated with elevated task difficulty.39,42,43

One limitation of this study is the large between-
participant variation, which prohibits the use of more
sensitive features for classification. The large variance
between individual participants also indicates the need
for different types of data to create additional constraints,

Table 5. Classification from Sutures with One Participant Left Out, with APCPS, SDPCPS for Each Segment and Blink Rate for the
Entire Suture as Features.

Participant Excluded Accuracy Acc. 95% CI Low Acc. 95% CI High TPR FPR Precision Sample Size

1 Expert .723 .695 .750 .683 .237 .769 97
2 Expert .720 .693 .747 .816 .373 .694 97
3 Expert .792 .767 .816 .819 .235 .794 97
4 Expert .740 .716 .764 .725 .246 .769 97
5 Expert .761 .732 .791 .773 .250 .763 97
6 Novice .759 .734 .784 .857 .379 .773 103
7 Novice .767 .742 .792 .878 .414 .790 97
8 Novice .777 .755 .800 .907 .432 .786 97
9 Novice .773 .748 .797 .905 .416 .769 102
10 Novice .771 .749 .793 .883 .412 .794 97

Abbreviation: CI = confidence interval TPR = true positive rate; FPR = false positive rate.

Table 4. Results for Suture-Based Classification of Expertise Using Support Vector Machines with Average Percentage Change in
Pupil Size, Standard Deviation of the Percentage Change in Pupil Size for Each Segment (10 + 10 Features Total), and the Blink Rate
for the Entire Suture as Features. Principal Component Analysis Was Applied to Reduce the Number of Pupil Features.

Accuracy Acc. 95% CI Precision TPR FPR Feature Set Number of Features

.767 .744-.789 .771 .858 .347 APCPS and SDPCPS 10 + 10

.747 .723-.770 .740 .843 .3715 PCA (APCPS, 4 principal components),
PCA (SDPCPS, 4 principal components)

4 + 4

.744 .719-.769 .747 .833 .365 APCPS, SDPCPS, and blink rate 10 + 10 + 1

.738 .715-.762 .745 .830 .373 PCA (APCPS, 4 principal components),
PCA (SDPCPS, 4 principal components), and blink rate

4 + 4 + 1

Abbreviation: APCPS = average percentage change in pupil size; SDPCPS = standard deviation of the percentage change in pupil size; PCA = principal
component analysis; CI = confidence interval TPR = true positive rate, FPR = false positive rate.
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either more refined features from pupil data or additional
data from other sources. The pupil size is also sensitive to
many factors other than the cognitive workload, and future
implementations of pupil-based metrics need to control
these external factors. These include controllable factors
such as fatigue, caffeine intake,44 and illumination changes
but also factors affecting the mental workload and stress
that are unrelated to the surgical task. To further validate the
method, the results could be compared to other perfor-
mance metrics. For example, expert surgeon’s poor per-
formance could indicate an increase in cognitive workload,
which might be detected as changes in the pupil size.

Regarding the segmentation scheme we used, some of
the segments were extremely short, and the latencies
associated with physiological measures could lead to
observing the effects of increased cognitive workload in
a different segment. The straightforward approach used
here considered the segments as being independent of
each other. There could be interrelationships between
different parts of the suture that can reveal differences in
expertise, and an approach that better considers the se-
quential nature of the data could improve the classifica-
tion. Another approach would be to analyze the pupil
behavior around short independent events, for example,
when the participant pierces the skin with the needle.

Nevertheless, microsurgery offers an ideal platform for
realizing pupil- and other eye-based metrics as more
objective approaches to evaluating workload and exper-
tise since eye tracking can be naturally integrated to the
surgical workflow without a need for external detectors
that could disturb the surgical performance. This also
means that the same experiment could possibly be rep-
licated in a real surgical operation. While the real surgical
operation could present challenges that do not occur
during a training task, the microscope also allows more
control over some of the recording noise that can affect
the results. Furthermore, the microscope camera enables
video-based detection of hand and tool kinematics, and
the eye-based metrics can be used to supplement this
information—again, without adding anything new to the
surgical procedure itself.

Conclusion

Eye metrics are applicable for classifying surgical pro-
ficiency during a training task. Pupil dilation is also
sensitive to external stress factors; however, the useful-
ness of blinks may be impaired by low blink rates. The
results can be translated to surgical education to improve
feedback, and the method should be investigated during
real patient operations.

Our long-term goal for this research was to develop
objective assessment methods, of proficiency and work-
load, that could be used in real time during microsurgery.
These intelligent systems could be applied in future

surgical systems to assist operators in achieving and
keeping up an optimal workflow. Based on our results,
eye tracking has potential in monitoring proficiency and
surgical workload and could be already used in surgical
training for augmenting feedback. Besides improving
microsurgical training, our research has potential appli-
cations in the development of computationally enhanced
systems for evaluating the surgeons’workload in real time
during surgical procedures. Therefore, eye metrics can be
ultimately utilized to help microsurgeons monitor their
performance and workload in real time—which may lead
to prevention of errors.
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