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Abstract

Environmental and genetic activation of a brain-adipocyte axis inhibits cancer progression. Leptin is the primary peripheral
mediator of this anticancer effect in a mouse model of melanoma. In this study we assessed the effect of a leptin receptor
antagonist on melanoma progression. Local administration of a neutralizing nanobody targeting the leptin receptor at low
dose adjacent to tumor decreased tumor mass with no effects on body weight or food intake. In contrast, systemic
administration of the nanobody failed to suppress tumor growth. Daily intraperitoneal injection of high-dose nanobody led
to weight gain, hyperphagia, increased adiposity, hyperleptinemia, and hyperinsulinemia, and central effects mimicking
leptin deficiency. The blockade of central actions of leptin by systemic delivery of nanobody may compromise its anticancer
effect, underscoring the need to develop peripherally acting leptin antagonists coupled with efficient cancer-targeting
delivery.

Citation: McMurphy T, Xiao R, Magee D, Slater A, Zabeau L, et al. (2014) The Anti-Tumor Activity of a Neutralizing Nanobody Targeting Leptin Receptor in a
Mouse Model of Melanoma. PLoS ONE 9(2): e89895. doi:10.1371/journal.pone.0089895

Editor: Antonio Facchiano, IDI, Istituto Dermopatico dell’Immacolata, Italy

Received October 11, 2013; Accepted January 23, 2014; Published February 28, 2014

Copyright: � 2014 McMurphy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by National Institutes of Health grants CA163640, CA166590, CA178227, and AG041250 (to L. Cao), and Fund for Scientific
Research-Flanders (Project G.0521.12N), The Interuniversity Attraction Poles (grant P6:36), The Group-ID Multidisciplinary Research Partnership of Ghent University
(to J. Tavernier). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lei.cao@osumc.edu

Introduction

We recently report that living in an enriched housing

environment that provides physical, social, and cognitive stimuli

reduces tumor growth and increases remission in mouse models of

melanoma and colon cancer [1]. Our mechanistic studies have

elucidated one key mechanism underlying the anti-cancer effect of

environmental enrichment (EE): the activation of a previously

poorly understood neuroendocrine hypothalamic-sympatho-

neural-adipocyte axis (HSA). The complex environmental stimuli

induce the expression of brain-derived neurotrophic factor

(BDNF) in the hypothalamus and the ensuing increase in

sympathetic tone to white adipose tissue. The preferential

sympathetic activation of white adipose tissue suppresses leptin

expression and release via action on b-adrenergic receptors

leading to a robust drop of leptin level in circulation. Our

pharmacological and genetic studies demonstrate that leptin is the

key peripheral effector in the HSA axis mediating the anti-cancer

effect of EE [1]. We have developed a molecular therapy to treat

both obesity and cancer by neurosurgical delivering a recombinant

adeno-associated virus (rAAV) vector in order to overexpress

BDNF in the hypothalamus. This gene therapy reproduces the

anti-obesity and anti-cancer effects of EE [1,2]. In this study we

investigated the effect of pharmacological blockade of leptin in the

same mouse model of melanoma.

Leptin (encoded by Ob gene) is a pleotropic hormone primarily

produced in adipose tissue. Leptin plays a crucial role in energy

homeostasis by acting in the central nervous system (CNS) to

increase energy expenditure and decrease feeding via a host of

autonomic and neuroendocrine processes [3,4]. In addition to its

central effects in the CNS, leptin exhibits a large number of

peripheral actions including modulation of immune system [5,6],

regulation of liver and muscle lipid oxidation and glucose

metabolism [7–9], and regulation of pancreatic b-cell function

[10–13]. Leptin mediates its effects upon binding and activation of

the leptin receptor (LepR) encoded by the Db gene [14]. Six LepR

isoforms have been characterized: a long form (LepRb or LepRlo),

four short forms (LepRa, c, d, and f), and a soluble form (LepRe or

sLepR) [15]. The long form LepRb is considered to possess full

signaling capacity [16]. All isoforms have an identical extracellular

domain consisting of two CRH (cytokine receptor homology)

domains, CRH1 and CRH2, both separated by an immunoglob-

ulin-like domain, and followed by two additional membrane-

proximal fibronectin type III domains. To investigate the potential

of leptin antagonists in cancer treatment, choosing a neutralizing

antibody targeting the LepR instead of leptin could restrict leptin

blockade to the periphery because the antibody most likely does

not cross the blood-brain barrier (BBB). Zabeau et al generated

neutralizing nanobodies targeting LepR [17]. A nanobody

comprises the variable domain of the naturally occurring single-
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chain antibodies found in members of the Camelidae family [18].

The cloned variable domain is a stable polypeptide harboring the

full antigen-binding capacity of the original heavy-chain antibody

[19,20]. The advantages of nanobodies compared to classical

antibodies include improved tissue penetration, stability, easier

genetic manipulation and production in bacteria. Nanobody 2.17

directly against the CRH2 domain of LepR blocks leptin binding

to the receptor. To improve in vivo use, the nanobody targeting

LepR was converted into a bi-specific format by fusing it to a

nanobody that targets mouse serum albumin (mAlb). Binding to

endogenous serum albumin greatly prolonged half-life of the bi-

specific nanobody in the circulation [17]. Here we assessed the

effects of the bi-specific nanobody 2.17-mAlb in the highly

aggressive B16 melanoma model.

Materials and Methods

Mice
Male C57BL/6J mice, 6 weeks of age, were purchased from

Charles River. All protocols were approved by the Institutional

Animal Ethics Committees of the Ohio State University and were

in accordance with NIH guidelines.

Bispecific nanobody
The construction, production, and purification of bi-specific

nanobody 2.17-mAlb were described in detail before [17].

Melanoma implantation and nanobody treatment
We single housed mice for melanoma implantation and

treatment of 2.17-mAlb. In local administration experiment, mice

were shaved at the right flank. A syngeneic melanoma cell line B16

(ATCC) was subcutaneously implanted on the right flank (16105

cells per mouse). 2.17-mAlb (10 mg per mouse per injection), or

PBS as a control, was injected subcutaneously adjacent to the

tumor cell implantation site at day 1, 7, and 14 after tumor cell

implantation. We measured the size of tumor using a caliber and

calculated the tumor volume by the formula for ellipsoid

(V = length6width26p/6). Mice were sacrificed 18 days after

tumor implantation. In systemic administration experiment, B16

cells were implanted to the right flank of mice as described above.

The mice were randomized to three groups: PBS, low-dose 2.17-

mAlb, and high-dose 2.17-mAlb. 2.17-mAlb or PBS was injected

intraperitoneally immediately following tumor cell implantation

(100 mg per mouse per injection). Low-dose 2.17-mAlb mice

received 2.17-mAlb twice weekly. High-dose 2.17-mAlb mice

received daily injection. Mice were sacrificed 16 days after tumor

cell implantation. We dissected out the tumors from neighboring

tissues and measured the weight at the time of sacrifice. In the

established tumor model experiment, B16 cells were implanted to

the right flank of mice as described above. On day 5 after tumor

cell implantation when tumors became palpable, the mice were

randomized to four groups: PBS, three doses of 2.17-mAlb

treatment: 10 mg, 50 mg, and 100 mg per mouse per injection. The

mice received PBS or 2.17-mAlb injections subcutaneously

adjacent to the tumor implantation site on day 5, day 8, day 12

and day 15. Mice were sacrificed day 18 after tumor cell

implantation.

Body weight and food consumption
We maintained the mice on a normal 12 h/12 h light/dark

cycle with food and water ad libitum throughout the experiment.

Body weight of individual mouse was recorded twice weekly. Food

consumption was recorded twice weekly as the total food

consumption and represented as the average of food consumption

per mouse per day.

Serum harvest and biomarkers measurement
Blood was collected following decapitation. We prepared serum

by allowing the blood to clot for 30 min on ice followed by

centrifugation. Serum was at least diluted 1:5 in serum assay

diluent and assayed using DuoSet ELISA Development System

(R&D Systems) for mouse leptin, adiponectin, IGF-1, and soluble

leptinR. Insulin was measured using Mercodia ultrasensitive

mouse insulin ELISA (ALPCO Diagnostic). Glucose was mea-

sured using QuantiChrom Glucose Assay (BioAssay Systems).

Hypothalamic dissection
Brains were quickly isolated on ice. The hypothalamus was

dissected from 2 mm-thick-coronal sections (20.7,22.7 mm

Figure 1. Systemic effects of local administration of 2.17-mAlb
adjacent to tumor implantation site. (A) Body weight (PBS: n = 17,
2.17-mAlb: n = 23). (B) Food intake (PBS: n = 17, 2.17-mAlb: n = 23). (C)
Biomarkers in serum 18 days after 3 injections of 2.17-mAlb (total dose
30 mg per mouse). n = 10 per group, * P,0.05. Data are means6SD.
doi:10.1371/journal.pone.0089895.g001
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from bregma, 1.5 mm dorsal to the bottom of the brain, 1 mm

bilateral to the midline) under a dissection scope and stored at

280uC for further analysis.

Quantitative RT-PCR
We dissected epididymal adipose tissues and isolated total RNA

using RNeasy Lipid Kit plus RNase-free DNase treatment (Qiagen).

Tumor RNA and hypothalamic RNA were isolated using RNeasy

mini kit plus RNase-free DNase treatment. We generated first-

strand cDNA using TaqMan Reverse Transcription Reagent

(Applied Biosystems) and carried out quantitative PCR using Light

Cycler (Roche) with the Power SYBR Green PCR Master Mix

(Applied Biosystems). We designed primers to detect the following

mouse mRNAs: Agrp, Cartp, Npy, Mc4r, Pomc, Insr, Leprb, Lep, Adipoq,

Ap2, Fasn, Cpt1a, Cd31, Vegf, Kdr, Mitf, Tyrp2, and Magea4. Primer

sequences are available on request. We calibrated data to

endogenous control Actb or Hprt1 and quantified the relative gene

expression using the equation T0/R0 = K62(CT,R-CT,T). T0 is the

initial number of target gene mRNA copies, R0 is the initial number

of internal control gene mRNA copies, CT,T is the threshold cycle

of the target gene, CT,R is the threshold cycle of the internal control

gene and K is a constant.

Cell proliferation
We cultured B16 melanoma cells (5000 cells/well in 96-well

plate) with DMEM medium plus 1% mouse serum with or without

2.17-mAlb (50 mg/ml) for 3 days. Proliferation was measured

using the CellTiter 96Aquesous One Solution Cell Proliferation

Assay (Promega).

Western blot
The dissected tumors were lysed in 100 ml RIPA buffer

containing 1% proteinase inhibitor (Calbiochem 539134) by

sonication. Rabbit Anti-CD31 (Abcam ab28367, 1:300), rabbit

Anti-VEGF (Abcam ab46154, 1:1000), mouse Anti-GAPDH

(Calbiochem CB1001, 1:1000) were used in western blot analysis.

Statistical analysis
Values are expressed as mean 6 SD. We used JMP software to

analyze the following: repeated measures MANOVA for food

intake, weight gain, and tumor volume; one-way ANOVA for

serum biomarker measurements, tumor weight and adipose tissue

weight, quantitative RT-PCR data, western blot quantification.

Figure 2. Local administration of 2.17-mAlb inhibited melano-
ma progression. (A) Tumor volume (P,0.05. PBS: n = 17, 2.17-mAlb:
n = 23). (B) Tumor weight (PBS: n = 17, 2.17-mAlb: n = 23. * P,0.05). (C)
2.17-mAlb inhibited B16 melanoma growth in vitro when cultured with
mouse serum (n = 4. * P,0.05). Data are means6SD.
doi:10.1371/journal.pone.0089895.g002

Figure 3. Local administration of low dose 2.17-mAlb modu-
lated gene expression in melanoma. (A) Gene expression in tumor
(n = 5 per group. * P,0.05). Mitf, microphthalmia-associated transcrip-
tion factor; Tyrp2, tyrosinase related protein 2; Magea4, melanoma
antigen family A4. Data are means6SD. (B) Western blot of tumors.
doi:10.1371/journal.pone.0089895.g003
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Results

Local administration of a nanobody targeting LepR
We firstly assessed the effect of nanobody 2.17-mAlb on

melanoma progression when injected adjacent to the tumor

implantation site. B16 melanoma cells were injected subcutane-

ously to the flank of male C57BL/6J mice. One day after tumor

cell implantation, a low-dose of nanobody 2.17-mAlb (10 mg/

mouse) or PBS was injected subcutaneously adjacent to the tumor

cell implantation site. The nanobody or PBS control was injected

at day 7 and day 14 at the same dose and the experiment was

terminated at day 18 after tumor cell implantation. The nanobody

2.17-mAlb treatment did not affect weight gain (Fig. 1A) or food

intake (Fig. 1B) indicating the absence of central effects. We

observed a signature biomarker change in the serum associated

with EE-induced inhibition of melanoma including decreased

leptin, increased adiponectin, and decreased IGF-1 [1]. The

subcutaneous administration of low-dose 2.17-mAlb had no

significant effects on circulating leptin, adiponectin, or IGF-1

(Fig. 1C). Leptin inhibits insulin expression and secretion and

affects b-cell mass [21]. The low-dose 2.17-mAlb had no

significant effect on serum insulin while decreased blood glucose

levels were observed (Fig. 1C). Interestingly, 2.17-mAlb signifi-

cantly increased sLepR level in the circulation (Fig. 1C). Local

administration of low-dose 2.17-mAlb (30 mg/mouse the whole

course) significantly slowed the melanoma growth (Fig. 2A) and

decreased melanoma mass by 33.167.9% (Fig. 2B). Quantitative

RT-PCR was used to measure relative expression levels of

transcription factors and antigens which have been associated

with melanocyte differentiation and progression including mi-

crophthalmia-associated transcription factor (Mitf), silver gp100,

tyrosinase, tyrosinase related protein 1, and 2 (Tyrp), as well as

melanoma antigen family A2 and A4 (Mage). MITF, the

transcription factor regulating the development and differentiation

of melanocytes [22] was significantly elevated in 2.17-mAlb

treated mice, as was TYRP-2 (Fig. 3A). MITF leads to

differentiation, pigmentation and cell-cycle arrest in melanocytes.

Progression of melanoma is associated with decreased differenti-

ation and lower expression of MITF although its function may not

be the same in melanoma as in normal melanocytes [23]. The

increase in MITF and the genes in its pathway found in 2.17-mAlb

treated animals may indicate more differentiated and less

progressive tumor. Similar molecular changes were found in EE-

induced inhibition of melanoma progression including increased

Mitf, Maega4 and Tyrp2 (Data not shown). Leptin plays a role in

modulating angiogenesis. 2.17-mAlb decreased the expression of

vascular marker CD31 and the key VEGF receptor KDR that is

critical to tumor angiogenesis (Fig. 3A) suggesting that the

nanobody suppressed angiogenesis. Western blot showed that

the VEGF protein level was significantly reduced by 60.3612.7%

Figure 4. Intraperitoneal administration of 2.17-mAlb. (A) High-dose intraperitoneal administration of 2.17-mAlb accelerated weight gain
(n = 10 per group, P,0.05 high-dose 2.17-mAlb compared to PBS and low-dose 2.17-mAlb. No significance between low-dose 2.17-mAlb and PBS). (B)
High-dose 2.17-mAlb increased food intake (n = 10 per group, P,0.05 high-dose 2.17-mAlb compared to PBS and low-dose 2.17-mAlb. No
significance between low-dose 2.17-mAlb and PBS). (C) Biomarkers in serum (n = 10 per group. Bars not connected by same letter are significantly
different. (D) Tumor weight (n = 10 per group). Data are means6SD.
doi:10.1371/journal.pone.0089895.g004
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(P = 0.042) (Fig. 3B). In an in vitro experiment, the expression of

LepR in B16 melanoma cells was confirmed by RT-PCR. In a cell

proliferation experiment, B16 melanoma cells were cultured with

mouse serum. 2.17-mAlb substantially attenuated the effect of

mouse serum on tumor cell proliferation (Fig. 2C). These results

showed that the nanobody targeting LepR efficiently inhibited

melanoma proliferation in vitro and tumor progression in vivo

possibly via direct effect on cancer cell proliferation and indirect

effects on tumor angiogenesis.

Systemic administration of nanobody targeting LepR
We next evaluated the effects of nanobody when administrated

systemically. The B16 melanoma cells were implanted to the flank

of mice and the 2.17-mAlb was injected intraperitoneally (i.p.

100 mg/mouse) immediately following the tumor cell implanta-

tion. In the low-dose group, nanobody was injected twice weekly (5

injections in total). In the high-dose group, nanobody was injected

daily till the end of the experiment at day 16. Intraperitoneal

administration of nanobody showed dose-dependent effects on

weight gain and food intake. High-dose nanobody led to

accelerated weight gain (Fig. 4A) and hyperphagia (Fig. 4B) while

low-dose nanobody showed no significant changes. In contrast to

local administration, intraperitoneal administration of nanobody

failed to inhibit melanoma growth (Fig. 4D). High-dose nanobody

markedly increased the adiposity with visceral fat pad increased by

51.366.6% (Fig. 5A). Consistent with the increased fat mass,

serum leptin level was increased in the high-dose group while

adiponectin and IGF-1 were not affected (Fig. 4C). Insulin level

was significantly increased in the high-dose group (Fig. 4C). The

hyperleptinemia and hyperinsulinemia could compromise the anti-

cancer effect of 2.17-mAlb. The sLepR level was substantially

increased in both low-dose and high-dose 2.17-mAlb treated mice

(Fig. 4C). The increase of sLepR was dose-dependent with high-

dose i.p. 2.17-mAlb showing the largest increase while low-dose

2.17-mAlb injected locally showing the smallest change (Fig. 4C,

Fig. 1C). We examined the gene expression of visceral fat by

quantitative RT-PCR. High-dose 2.17-mAlb increased leptin

expression in the adipose tissue (Fig. 5B). Ap2, an adipocyte

differentiation marker was also increased consistent with the

expansion of fat depot [24]. Leprb, the long-form leptin receptor,

showed a trend of increase (Fig. 5B) probably indicating an

adaptive response to the antagonism to LepR. The accelerated

weight gain and hyperphagia suggested that high-dose intraper-

itoneal administration of 2.17-mAlb antagonized central actions of

leptin. Leptin acts on two populations of neurons in the arcuate

nucleus of hypothalamus, with one population expressing Pro-

opiomelanocortin (POMC), the other co-expressing neuropeptide

Y (NPY) and agouti-related peptide (AgRP) [25,26]. We profiled

gene expression in the hypothalamus by quantitative RT-PCR

(Fig. 6). The orexigenic neuropeptides NPY and AgRP were

significantly induced consistent with the increase in food intake.

The anorexigenic POMC and CART prepropeptide (Cartpt) as

well as the melanocortin 4 receptor (MC4R), a key pathway

regulating energy balance [27], were not affected (Fig. 6).

Nanobody targeting LepR in established tumor model
We next tested the efficacy of nanobody targeting LepR in the

established melanoma model. The B16 cells were implanted to the

flank of the mice. Local subcutaneous nanobody treatment was

delayed to day 5 after tumor cells implantation when tumors

became palpable. Three dose levels (10 mg, 50 mg, and 100 mg per

mouse per injection) were used. Low dose nanobody (10 mg per

injection, 40 mg the whole course) had no effects on weight gain

(Fig. 7A), food intake (Fig. 7B), or adiposity (Fig. 7C). Low dose

nanobody significantly decreased tumor mass even with shorter

window of treatment (Fig. 7D). In contrast, subcutaneous injection

of high dose nanobody failed to inhibit tumor growth (Fig. 7D).

High dose nanobody treatment (s.c. 100 mg per injection, 400 mg

the whole course) led to accelerated weight gain (Fig. 7A),

increased food intake (Fig. 7B), increased fat pad mass (Fig. 7C),

elevated leptin and insulin levels in the circulation (Fig. 7E). These

Figure 5. Intraperitoneal administration of high-dose 2.17-
mAlb increased adiposity. (A) Subcutaneous and visceral fat pad
weight (n = 10 per group. * P,0.05). (B) Gene expression profile of
epididymal fat (n = 5 per group. * P,0.05, + P = 0.08). Data are
means6SD.
doi:10.1371/journal.pone.0089895.g005

Figure 6. Intraperitoneal administration of high-dose 2.17-
mAlb affected hypothalamic gene expression. n = 5 per group.
* P,0.05. Data are means6SD.

doi:10.1371/journal.pone.0089895.g006
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changes were similar to the intraperitoneal administration of high

dose nanobody (daily i.p. 100 mg per injection) although to a

smaller degree (Fig. 4).

Discussion

Leptin is not only the metabolic switch that conveys metabolic

information to the brain but is also involved in multiple pathways

affecting many peripheral organs as a mitogen, metabolic

regulator, survival or angiogenic factor depending on the tissue

type [28]. Clinical reports link elevated serum leptin levels to an

increased risk of certain cancers including prostate [29], breast

[30], and melanoma [31]. In vitro and preclinical in vivo data

suggest that leptin acts as a mitogenic agent to promote prostate,

breast, and ovarian cancer cell growth and/or enhances cancer

angiogenesis and migration [32–34]. Thus leptin antagonists hold

potential for future therapeutic use in cancer. A few anti-LepR

antibodies have been generated and tested in models of heart

failure [35], multiple sclerosis [36], and autoimmune encephalo-

myelitis [37]. An anti-rat LepR mAb reduced the growth of bone

marrow leukemic cells with concomitant decrease in angiogenesis,

and prolonged survival [38]. A pegylated leptin peptide antagonist

(LPA) significantly inhibited breast cancer xenografts hosted by

immunodeficient mice without affecting energy balance [39].

Figure 7. Subcutaneous administration of 2.17-mAlb in the established tumor model when treatment was delayed till palpable
tumors appeared. (A) Weight gain (n = 9 per group, P,0.05 2.17-mAlb 100 mg compared to PBS and 2.17-mAlb 10 mg. No significance between
other groups). (B) Food intake (n = 9 per group, P,0.05 2.17-mAlb 100 mg compared to PBS and 2.17-mAlb 10 mg. No significance between other
groups). (C) Epididymal fat pad weight (n = 9 per group, bars not connected by same letter are significantly different). (D) Tumor weight (n = 9 per
group, bars not connected by same letter are significantly different). (E) Biomarkers in serum (n = 9 per group, bars not connected by same letter are
significantly different). Data are means6SD.
doi:10.1371/journal.pone.0089895.g007
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In this study we assessed the effects of a neutralizing anti-LepR

nanobody in a mouse model of melanoma. Local subcutaneous

administration of low-dose 2.17-mAlb significantly inhibited

melanoma growth associated with decreased angiogenesis in the

tumor. The absence of effects on weight and food intake suggested

that the central actions of leptin were not disrupted by low-dose

2.17-mAlb although the low-dose nanobody administered adjacent

to the tumor was sufficient to decrease the growth of a highly

aggressive melanoma by 33%. These results further support our

finding that the EE-induced anti-cancer effect was mediated, at

least in part, by leptin.

The effects of high dose 2.17-mAlb are more complex. The

intraperitoneal injection of 2.17-mAlb at high-dose (100 mg/

mouse, daily) resulted in weight gain, hyperphagia, increased

adiposity, hyperleptinemia, and hyperinsulinemia indicating effi-

cient blockade of leptin signaling in CNS. On the other hand, low-

dose 2.17-mAlb (i.p. 100 mg/mouse, twice weekly, 500 mg the

whole course) showed neither significant metabolic effects nor anti-

cancer effect suggesting that the antagonist availability and activity

were insufficient at the respective sites of action. Therefore the

overall impact of 2.17-mAlb on tumor growth was determined not

only by the direct effects of LepR antagonist on tumor cells and/or

other cells supporting tumor growth, but also by other systemic

factors such as insulin metabolism that are regulated by leptin. In

the context of cancer, insulin signaling and thus the role of leptin

in the regulation of pancreatic b-cell functions are of importance.

Our previous data have shown that obesity increases B16

melanoma growth in obese leptin-deficient ob/ob mice consistent

with other reports [1,40]. Prevention of the obesity by pair feeding

ob/ob mice dramatically reduces tumor weight to a level

significantly lower than wild-type mice of the same weight [40].

Our leptin replacement data also showed that exogenous leptin

increased melanoma mass in ob/ob mice by 140% compared to

pair-fed saline-infused mice with identical body weight and fat

mass [1]. These data all support the role of leptin in promoting

melanoma growth. The hyperinsulinemia associated with leptin

deficiency in ob/ob mice may underlie the accelerated tumor

growth in ob/ob mice and similarly could counteract the anti-

cancer effect of 2.17-mAlb in the high-dose administration

experiment. Although leptin modulates glucose metabolism via

central and peripheral mechanisms, the pancreatic b-cells is a

critical target of leptin actions [21]. LepRs are expressed in the b-

cells and their activation directly inhibits insulin secretion. Long-

term leptin deficiency inhibits insulin gene expression and b-cells

mass [21]. Therefore the adverse effects on b-cells and insulin

require attention for the development and application of leptin

antagonists.

High dose nanobody targeting LepR blocked leptin signaling in

the hypothalamus as evidenced by induction of orexigenic NPY

and AgRP as well as hyperphagia and increased adiposity. There

is little evidence from the literature that nanobodies are actively or

passively transported across BBB [17]. The only two nanobodies

known to transmigrate in an in vitro human BBB model and in vivo

were generated by enrichment of a phage-display nanobody

library with human cerebromicrovascular endothelial cells [41].

One explanation might be that the leptin-sensing neurons in the

arcuate nucleus could make direct contact with the blood

circulation [42–44]. Another idea is that the nanobodies targeting

LepR could disrupt the transportation of leptin across BBB. In this

study, we observed a robust increase of sLepR in 2.17-mAlb

treated mice even when low-dose of nanobody was used. sLepR

deriving from shedding of the extracellular domain is the main

binding protein for leptin in the blood and modulates the

bioavailability of leptin [15,45,46]. Experimental and clinical

studies demonstrate an important role of sLepR as modulator of

leptin action [47–50]. The regulatory mechanisms for the

generation of sLepR are not well understood. A recent report

suggests that lipotoxicity and apoptosis increase LepR cleavage via

ADAM10 (A Disintegrin and Metalloproteinase 10) as a major

protease [51]. sLepR mainly originates from short LepR isoforms

[51,52]. Leptin transport across BBB is thought to be dependent

on short LepR isoforms [53–55]. The increase in sLepR could

indicate elevated shedding of short LepR isoforms and therefore

could restrain leptin transport and subsequently impair central

action of leptin [56]. An alternative explanation for the increase of

sLepR level in nanobody-treated mice could be that the sLepR is

bound by 2.17-mAlb and thereby is retained from clearance from

circulation. Therefore more research is needed to understand the

regulatory mechanisms of the expression of LepR isoforms and the

constitutive shedding of the extracellular domain as well as the

roles of these isoforms in controlling leptin transport, bioavailabil-

ity, and binding and activating signaling pathways in order to

design LepR antagonists as potential therapeutics. The idea that

large molecules such as nanobodies or antibodies cannot cross the

BBB and therefore can restrict their actions to the periphery seems

overly simplistic. Our data raise several questions in targeting

leptin signaling as a treatment for cancer: how to restrict

antagonizing actions to the periphery; how to prevent adverse

effects such as hyperinsulinemia; how to improve bioavailability to

cancer. Coupling the nanobody to the agents specifically targeting

the tumor (antibody or drug conjugates) [57] may enhance the

anti-cancer efficacy while prevent adverse peripheral and central

effects of leptin deficiency.

In summary, we demonstrated the anti-cancer effect of a

neutralizing nanobody targeting LepR in a mouse model of

melanoma. Systemic administration of high dose nanobody led to

blockade of central actions of leptin and may compromise the anti-

cancer effect of the nanobody. These data provide insights for

development of LepR antagonists as treatment for cancer.
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