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ABSTRACT

To enhance our knowledge regarding biological path-
way regulation, we took an integrated approach, us-
ing the biomedical literature, ontologies, network
analyses and experimental investigation to infer
novel genes that could modulate biological path-
ways. We first constructed a novel gene network via
a pairwise comparison of all yeast genes’ Ontology
Fingerprints––a set of Gene Ontology terms overrep-
resented in the PubMed abstracts linked to a gene
along with those terms’ corresponding enrichment
P-values. The network was further refined using a
Bayesian hierarchical model to identify novel genes
that could potentially influence the pathway activi-
ties. We applied this method to the sphingolipid path-
way in yeast and found that many top-ranked genes
indeed displayed altered sphingolipid pathway func-
tions, initially measured by their sensitivity to myri-
ocin, an inhibitor of de novo sphingolipid biosynthe-
sis. Further experiments confirmed the modulation
of the sphingolipid pathway by one of these genes,
PFA4, encoding a palmitoyl transferase. Comparative
analysis showed that few of these novel genes could
be discovered by other existing methods. Our novel
gene network provides a unique and comprehensive
resource to study pathway modulations and systems
biology in general.

INTRODUCTION

Biological pathways are the de facto functional unit for
studying biology at the systems level. Discovering new play-
ers and mechanisms of pathway modulation may not only
allow us to understand the mechanisms of pathway regu-
lation but may also provide novel targets for therapeutics.
However, such a task faces many challenges: pathways are
complex and consist of many components––some pathways
may consist of hundreds of genes, the regulation of sig-
naling or metabolic pathways is dynamic and involves so-
phisticated mechanisms, such as feed-forward and feedback
loops, and genes that influence a pathway activity may not
have obvious links to that pathway. These challenges make
finding novel players of a pathway very difficult and are
particularly acute in our efforts to understand the sphin-
golipid pathway. Bioactive sphingolipids play many roles in
regulating biological functions, from cell-cycle progression
to cancer pathogenesis. Whereas biochemical reactions by
the enzymes involved in this pathway are well understood,
our knowledge of its regulation is modest. Studies employ-
ing computational approaches and mathematical modeling
have helped us to understand the dynamics of the pathway
(1), but little is known about other genes that can influence
the sphingolipid pathway activity.

Biological networks, such as protein–protein interaction
(PPI) networks (2,3), genetic interaction (GI) networks (4)
and co-expression networks (5,6), have been used to infer
new genes that may influence pathway activities, as genes are
connected in the network regardless of the pathway bound-
aries. The limitation of this approach is that each type of
network focuses on only one specific aspect of biology, e.g.
a PPI network helps us understand the disease only from the
aspect of PPIs, even though many proteins that play critical
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roles in human disease do not directly interact with each
other. To overcome this hurdle, methods have been devel-
oped to combine these networks into functional networks,
such as YeastNet (7), but their performance is affected by
the quality of individual data sets (e.g. PPIs have a high
false-positive rate) (8).

As an alternative, recent work inferred comprehensive
networks from the biomedical literature in which genes, dis-
eases and the relationships among them were comprehen-
sively characterized by experimental and quantitative anal-
yses throughout the history of biomedical research. The
majority of these approaches, such as the work by Jenssen
et al. (9)), infer gene–gene relationships by identifying the
co-occurrence of two genes within the biomedical litera-
ture, with extensions, such as Génie (10), in which compara-
tive genomics approaches were employed. However, this ap-
proach is limited by the fact that 70% of PubMed abstracts
only contain information about a single gene (based on a
gene2pubmed file from the National Center for Biotech-
nology Information (NCBI). Two alternative approaches
are the rule-based, or knowledge-based, approach (11) and
the statistical, or machine-learning-based, approach (12).
These two approaches use text-mining algorithms and nat-
ural language processing methods to extract useful infor-
mation from the biomedical literature. Both methods rely
on high-quality corpuses that are difficult to compile, and
the error rate can be close to 35% (13). To overcome this
hurdle, ontology-based methods have been developed to in-
fer gene–gene relationships by calculating semantic similar-
ities (14–16). However, these methods use manually curated
Gene Ontology (GO) annotation of genes. Although the an-
notation is of high quality, it is limited and cannot take ad-
vantage of the yet-unannotated biomedical literature linked
to genes. However, text-mining efforts to recognized con-
cepts are making significant progress (17–19), but the con-
tribution of these methods to gene annotation is still not
ready for prime time compared to the manual annotation.
In addition, the calculation of semantic similarity relies on
the structure of GO. Whereas some aspects of GO are well
developed and capture the most intricate details of biology,
other aspects are still under development, leaving the bio-
logical details granular and coarse.

Here, we report a novel approach to identify new play-
ers of important biological pathways based on the concept
of the Ontology Fingerprint, which is the set of GO terms
overrepresented in PubMed abstracts linked to a gene or
disease, along with those terms’ corresponding enrichment
P-values (20). In this work, we derived a novel global yeast
gene network based on Ontology Fingerprints and used the
network to discover novel genes that influence sphingolipid
pathway activities in vivo. The gene network can be applied
to discover new players of biological pathways and to study
other cellular functions at the systems level.

MATERIALS AND METHODS

Data sources and pre-processing

PubMed abstracts were downloaded from NCBI. GO
terms and their descriptions were obtained from the GO
Consortium. The links between PubMed abstracts and
genes were obtained from the GO ‘gene association.goa’

Figure 1. Using Ontology Fingerprint to quantify the biological relevance
between two genes. (1) Identifying gene-PubMed and GO-PubMed rela-
tionships in all PubMed abstracts that were annotated with yeast genes;
(2) the Ontology Fingerprint of each yeast gene was generated by a hy-
pergeometric test of the enrichment of all the ontology terms in all the
PubMed abstracts associated with the gene; (3) the biological relevance of
Gene A and Gene B was quantified by calculating a gene–gene similarity
score by comparing the two genes’ Ontology Fingerprints (Equation (1)).
Genome-wide pairwise comparison yielded the initial gene network.

file (downloaded on December 20, 2009) and the NCBI
‘pubmed2gene’ file (December 30, 2009). Abstracts that
contain GO terms and their synonyms were identified by
exact string match. The mapping quality was assessed by
manually evaluating a set of randomly selected abstracts
that contain mapped terms. The identified PubMed-Go
term pairs were then combined with those extracted from
GO ‘gene association.goa’ file. The abstracts containing
a GO term were also labeled with its parent terms re-
trieved from GO hierarchy from the Web Ontology Lan-
guage (OWL) file. In addition, each abstract was labeled
with a mapped GO term only once regardless of how many
times the term occurred. Other details can be found in the
Supplementary Materials (Supplementary Table S1). Yeast
genes involved in the sphingolipid metabolic pathway were
manually reviewed by a group of experts in this area and
deemed as known sphingolipid genes for our network anal-
ysis.

Construct a novel yeast gene network from Ontology Finger-
prints

To develop the Ontology Fingerprint derived gene network,
we first employed a hypergeometric test on each pair of
yeast gene and GO term to construct the Ontology Finger-
print for the genes (Figure 1, steps 1 and 2) (21). We then
performed pairwise comparison of the resulting Ontology
Fingerprints of genes for the whole genome to develop the
network. The comparison of two genes’ fingerprints gen-
erated a similarity score to indicate the extent to which the
genes were biologically relevant (Figure 1, step 3). The score
was calculated by Equation (1), which uses a modified ver-
sion of the inner product:

Si j =
∑O

o=1 log(rio) log(r jo)I(rio < λ < r jo < λ)

max
{

1, 1
2

∑O
o=1

[
I(rio < λ)I(r jo ≥ λ) + I(rio ≥ λ)I(r jo < λ)

]} (1)

The similarity score considered the enrichment level r
(i.e. P-value from the hypergeometric test) of ontology term
o among the PubMed abstracts annotated with gene i or
gene j. The denominator of the similarity score empha-
sized the number of overlapping ontology terms between
two Ontology Fingerprints compared. Where there was a
large number of non-overlapping ontology terms, the score
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decreased. We also eliminated ontology terms with insignif-
icant enrichment P-values that were higher than λ when
calculating the similarity score of Ontology Fingerprints
(see the following section for how λ was estimated). After
the genome-wide pairwise comparison of Ontology Finger-
prints of genes, we obtained a novel gene network in the
form of a weighted, undirected graph where vertices are
genes and edges are similarity scores. The network was fur-
ther optimized as described in Supplementary Figure S1.

In order to generate a biologically meaningful network,
we developed a Bayesian hierarchical model to estimate the
similarity score threshold that indicates whether two genes
are biologically relevant (Supplementary Figures S2, S3, S4
and Table S2). The threshold was utilized to separate bi-
ologically relevant gene pairs from irrelevant gene pairs,
and applied to the optimized network by leaving out edges
with the similarity scores lower than the threshold (Sup-
plementary Figure S3). The properties of the resulting net-
work were analyzed extensively (Supplemental Figures S5
and S6). We further evaluated the ability of the network to
capture known biological relationships, such as PPIs or ge-
netic interactions, and compared the performance to that
of the STRING database (22) using the shortest distance
(Dijkstra algorithm) (23) and shortest link measures (Sup-
plementary Table S3).

Identify novel genes that modulate the yeast sphingolipid
pathway by ranking on demand

Our sphingolipid experts handpicked 30 yeast sphingolipid
genes based on current knowledge (Supplementary Table
S4). We then identified 855 first neighbors of these 30 genes
from the network. Out of these first neighbors, 453 genes
had linked PubMed abstracts or gene descriptions that con-
tained the ‘sphingo’ prefix or ‘ceramide’. These genes were
considered not to have novel relevance to sphingolipid path-
way and were excluded from further analysis. The remaining
402 genes (candidate genes) were analyzed in the developed
gene network to identify the most likely candidates to mod-
ulate the yeast sphingolipid pathways.

Given a weighted gene network, we ranked genes based
on their similarity to a set of seed genes from the same func-
tional class, i.e. ranking on demand (24). In this process,
the 402 candidate genes identified above were ranked in de-
creasing order by their overall connectivity to the 30 sphin-
golipid genes as measured by a Total Score (TotalS), i.e. the
sum of gene–gene similarity scores between a candidate sph-
ingolipid gene and all 30 known sphingolipid genes (Equa-
tion (2)):

Total Si =
30∑
j=1

SSi j (2)

where i is the ith candidate gene, j is the jth sphingolipid
genes and SSij is the similarity score between the ith candi-
date gene and the jth sphingolipid gene. TotalSi is the Total
Score of candidate gene i. This Total Score captures both
the candidate gene’s connectivity to the known sphingolipid
genes and the similarity of Ontology Fingerprints between
the candidate gene and the sphingolipid genes. We hypoth-
esized that the higher the gene’s ranking, the more likely

the gene’s involvement in the sphingolipid pathway. This hy-
pothesis was tested by several measures. We performed the
leave-one-out cross-validation to evaluate whether the net-
work can identify genes belonging to the known pathways
(Supplementary Figure S7). We also compared the ability
of the network to prioritize candidate genes to other simi-
lar programs (Supplementary Figure S8). Furthermore, we
experimentally tested by examining whether the proportion
of genes that influenced the sphingolipid pathway out of the
top-ranking genes was greater than that out of the bottom-
ranking genes, as described in the following section.

Experimental validation of novel yeast sphingolipid genes

Strains and growth conditions. All strains used in this study
are listed in Supplementary Table S5. Cells were grown
on standard Difco YPD solid or liquid medium. Myriocin
was purchased from Sigma (Sigma-Aldrich, St. Louis, MO,
USA. Catalog #M1177). We used two concentrations of
myriocin (750 and 1000 ng/ml) in liquid and solid medium.
Phytosphingosine and dihydrosphingosine were purchased
from Avanti Polar Lipids (catalog #860499P and #860498P,
respectively) and used in liquid medium at 0.3 �M each.
Myriocin, phytosphingosine and dihydrosphingosine were
dissolved in methanol.

Testing the sensitivity or resistance to the de novo sphingolipid
synthesis inhibitor myriocin. We selected top 30 candidate
genes as the test gene set (Supplementary Table S6). As
a control, we also selected 15 random samples from the
25% lowest-ranked candidate genes and 15 random sam-
ples among background genes (genes with no connection
to any of the 30 sphingolipid genes in the network) (Supple-
mentary Table S7). Deletion strains of these 60 genes were
obtained from a BY4741 gene-deletion library (Invitro-
gen) (Supplementary Table S5). Followed by spot test (25),
myriocin was added to medium at 0, 750 or 1000 ng/ml.
As controls, the mutant LCB2 (Lcb2-DAmP, purchased
from Thermo Scientific, Open Biosystems Cat# YSC5094–
99851666) and wild type (WT) BY4741 were used.

Rescue of pfa4� strain by phytosphingosine and dihydrosph-
ingosine in the medium. The growth of WT and pfa4�
strains in YPD liquid medium was measured at 30◦C
at 18, 24 and 48 h under six different treatment condi-
tions: methanol (solution control), myriocin (750 ng/ml),
phytosphingosine (0.3 �M), dihydrosphingosine (0.3 �M),
myriocin (750 ng/ml) + phytosphingosine (0.3 �M) and
myriocin (750 ng/ml) + dihydrosphingosine (0.3 �M).

Method comparison

We evaluated four other comparable networks and meth-
ods for their ability to predict the experimentally validated
novel genes that influenced the sphingolipid pathway ac-
tivity in vivo. PPI networks (26) and GI networks (27) are
the two most commonly used biological networks and have
been used to prioritize genes for diseases and pathways.
Another yeast network that can serve this purpose is the
yeast probabilistic functional gene network developed by
Lee et al. (7,28). In addition, genes can be prioritized by
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Figure 2. Network structure and its functional relevance in the novel yeast
gene network. (A) The largest component of the yeast gene network with
edges weighted by top 5th percentile of similarity scores. Ten clusters iden-
tified by the MCODE algorithm were highlighted by distinct colors and an-
notated by the most enriched GO terms, indicating the correlation between
subnetwork structure and biological functions. (B) The partly zoomed-in
interactions between clusters enriched for ‘nuclear mRNA splicing, via
spliceosome’ (in red) and ‘actin cytoskeleton organization and biogene-
sis’ (in blue) among the yeast global gene network; CDC40 and TAF14
were annotated by large nodes. (C) The partly zoomed-in interactions be-
tween clusters enriched for ‘sphingolipid metabolic processes’ (in purple)
and ‘translation’ (in green) among the yeast global gene network.

Génie, a literature-based gene prioritization approach (10).
We used the 30 known sphingolipid genes as input to eval-
uate whether these networks or methods can identify the
genes discovered by Ontology Fingerprint approach as sig-
nificantly related to the sphingolipid pathway. For the PPI,
GI and yeast functional networks, we used the same algo-
rithm to detect relevant genes as we did for Ontology Fin-
gerprint derived networks. For Génie, we used their opti-
mized algorithms to identify genes relevant to the known
sphingolipid genes. Detailed methods can be found in Sup-
plementary Figures S9 and S10.

RESULTS

Developing a novel global gene network in yeast
By performing pairwise comparisons of the Ontology Fin-
gerprints of 5446 yeast genes, we identified 7 586 754
gene–gene connections weighted by the resulting similar-
ity scores. These genes and their connections constituted a
novel global gene network for yeast (Figure 2).

Unlike networks that depend on a single biological fea-
ture, such as PPI, our network summarized all the biological
aspects captured in GO and the literature. As a result, our
network is dense and captures a wide range of biological
relationships. The extent of such relationships is indicated
by the weighted edges (similarity scores), which allowed us
to trim the dense network by omitting insignificant connec-
tions. These insignificant connections were evaluated by a
biologically meaningful threshold of the similarity score es-
timated by a Bayesian hierarchical model (Supplementary
Figure S2 and Table S2). Any connection between two genes
with a score above this threshold was comparable to two
genes belonging to the same known biological pathway with
a connection in the pathway. The resulting network con-
sisted of 5445 genes and 528 581 edges, and was capable of

capturing known biological relations such as the protein–
protein and genetic interactions as compared to widely used
STRING database (Supplementary Table S3).

Evaluating the network properties

The Ontology Fingerprint-derived gene network exhibited
the robustness properties of typical biological networks: the
distribution of the node degree followed the power law, in-
dicating a scale-free network; the clustering coefficient plot
also demonstrated the modularity of the network, where the
average clustering coefficient was negatively correlated with
the node degree (Supplementary Figure S5).

We further explored the network modularity and found
that the structure of the network had strong connections
with biological functions. We selected the largest network
component, which contained 2511 genes and 24 156 edges
weighted by the top 5th percentile of similarity scores, and
identified 10 major functional clusters that were annotated
by distinct colors (Figure 2A). We found that clusters close
to each other in the network were functionally related. For
example, the cluster enriched for ‘nuclear mRNA splic-
ing, via spliceosome’ and the cluster enriched for ‘actin cy-
toskeleton organization and biogenesis’ were close to each
other in the network (Figure 2A). This finding is sup-
ported by the work of Dahan et al., which showed that
CDC40 controls cell-cycle progression through the splic-
ing of the TAF14 gene. TAF14 mutants exhibit defects in
actin cytoskeletal organization and have several morpho-
logical aberrations, which correlate with cytoskeletal imper-
fection (29). Some of the connections between these two
clusters within the global gene network are illustrated in de-
tail in Figure 2B. These connections were mediated through
a group of genes (in gray), including CDC40 and TAF14
(shown as large nodes).

As another example, the cluster enriched for ‘sphin-
golipid metabolic processes’ was close to the cluster en-
riched for ‘translation function’ in the network (Figure 2A),
and some of their connections within the global gene net-
work are shown in Figure 2C. The functional relevance of
these two clusters is supported by the fact that sphingolipid
bases are required for translation initialization during heat
stress in yeast (30) and by the role of sphingolipids in regu-
lating the formation of P Bodies (31). Our analyses indicate
that the Ontology Fingerprint-derived novel gene network
can be used not only for inferring functional relevance be-
tween genes but also for examining interconnections among
different modules––a useful approach to investigating cellu-
lar functions at a systems level.

Identify pathway-modulating genes from the Ontology
Fingerprint-derived gene network

The structure–function relationship of our network al-
lows us to use the subnetwork structure to discover novel
pathway-modulating genes. We tested this idea by perform-
ing leave-one-out cross-validation using 107 KEGG path-
ways as the standard. The comparison shows that our
method can successfully assign genes to their correspond-
ing pathways with an average AUC of 0.92 (Supplemen-
tary Figure S7). We also compared our method with the
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Table 1. Experimentally validated sphingolipid pathway-modulating genes identified by different methods. Our Ontology Fingerprint-derived gene net-
work uniquely identified 14 novel myriocin-sensitive or resistant genes, of which only a small portion could be discovered by other methods. See Supple-
mentary Figures S9 and S10 for details

Methods

Ontology
Fingerprint-derived
Network Genie YeastNet PPI GI

Number of novel sphingolipid
pathway-modulating genes

14 2 1 1 3

Percentage of novel sphingolipid
pathway-modulating genes (%)

100 14.29 7.14 7.14 21.43

Figure 3. Analysis of candidate genes influencing the yeast sphingolipid
pathway. In the subnetwork of 30 known yeast sphingolipid genes (dia-
monds) and the top 30 candidate genes (circles), four functional clusters
circled by dashed lines were identified and labeled with the most enriched
GO terms. The larger nodes denote genes that were identified to be sensi-
tive (in green) or resistant to myriocin (in red). The nodes outside of the
dashed lines were the genes that fail to form clusters by MCODE.

other state of the art approaches in gene prioritization,
and found that our method performed better (Figure S8).
We used this approach to identify a subnetwork containing
the 30 known yeast sphingolipid genes (Supplementary Ta-
ble S4) and the top 30 non-sphingolipid genes (candidate
genes) based on their total connectivity to known sphin-
golipid genes in the network and the fact that these genes
had no known published connection to the pathway (Sup-
plementary Table S6). The resulting subnetwork (Figure 3)
was further investigated by clustering analysis. We evaluated
different network clustering algorithms in identifying bio-
logically meaningful clusters and found that the MCODE
algorithm performed well (Supplementary Figure S6). We
then used the MCODE algorithm to identify four major
functional modules represented by their most enriched GO
terms: ‘sphingolipid metabolism’, ‘acyltransferase activity’,
‘fatty acid biosynthetic process’, and ‘pentose-phosphate
shunt’ (Figure 3, Supplementary Figure S6).

As shown in Figure 3, the 30 known sphingolipid genes in
a diamond shape were clustered together in a single module
enriched with ‘sphingolipid metabolism’. More than half of
the candidate genes (16 out of 30) were clustered in the mod-
ule enriched with ‘acyltransferase activity’, implying that
this function might be highly relevant to the yeast sphin-
golipid pathway. The other two clusters, with five and six
candidate genes, respectively, also provided insight into the
cellular functions relevant to the yeast sphingolipid path-
way. These functional possibilities were revealed from our
network analysis despite the lack of publications linking
these genes to the sphingolipid pathway––a finding that rep-
resents a significant advantage of this approach over meth-
ods based on the co-occurrence of genes in the literature.

To understand how the identified genes could modulate
sphingolipid pathway, we analyzed the ontology terms con-
tributed to the sphingolipid pathway–candidate gene con-
nections. Because our method built upon the literature and
ontology, we were able to trace back to see what ontology
terms contributes to the connections between the known
sphingolipid genes and the identified candidate genes. Sup-
plementary Figure S11 shows two heat maps that illustrate
GO contribution to the association between 30 known sph-
ingolipid genes and top 30 candidate genes. The Ontol-
ogy Fingerprint of PFA4 was generated from 22 publica-
tions linked to the gene and consists of 42 GO terms, com-
pared to only 4 PubMed abstracts and 10 GO terms from
the GO database. Among all the GO terms in the finger-
print, ‘protein palmitoylation’ contributes the most to the
connection between PFA4 and sphingolipid genes. While
‘protein palmitoylation’ is a function of PFA4, many sph-
ingolipid genes also connected to this function in several
different ways. For example, Palmitoyl-CoA is the start-
ing material of the de novo sphingolipid biosynthesis, and
some of the enzymes involved in sphingolipid pathway may
also be palmitoylated. While this piece of information may
provide some hint of how PFA4 might influence the activ-
ity of sphingolipid pathway, there is no explicit connection
between PFA4 and sphingolipid genes in any publication,
demonstrating the unique ability of the Ontology Finger-
print method in inferring implicit relationships.

Experimental assessment of sphingolipid pathway modula-
tion by predicted novel genes

The novel connections we identified were not found in pub-
lished results, indicating their potential novel relevance to
the sphingolipid pathway. Therefore, we evaluated whether
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Figure 4. Sphingolipid pathway activity altered by novel genes predicted
from the Ontology Fingerprint-derived gene network. Spot test of pfa4�,
hpa2�, sas3�, eaf6�, Lcb2-DAmP (positive control that was sensitive to
myriocin) and WT strains with myriocin treatment at 0, 750 or 1000 ng/ml.
Compared with WT, pfa4� and sas3� showed elevated sensitivity to myri-
ocin, whereas hpa2� and eaf6� were resistant, all indicating altered sph-
ingolipid pathway activity in vivo.

these genes influenced the sphingolipid pathway in vivo us-
ing myriocin. Myriocin specifically inhibits serine palmi-
toyltransferase, which catalyzes the first step in de novo
sphingosine biosynthesis. Whereas normal cells can survive
lower concentrations of myriocin, changes in myriocin sen-
sitivity indicate alterations in sphingolipid pathway activity
(32).

We investigated the sensitivity of the deletion strains of
the 29 non-essential candidate genes (partly shown in Fig-
ure 4, with the 30th gene being essential) and found that
14 of them exhibited altered myriocin sensitivity (Figure 3,
Supplementary Tables S8 and S9). In contrast, myriocin
sensitivity changed in only 4 out of 29 deletion strains of
those genes with the least connectivity to known sphin-
golipid genes (control strains, Supplementary Table S8). Be-
cause the sphingolipid pathway is complex and not all path-
way changes can be captured by altered myriocin sensitivity,
we cannot draw any conclusion about those genes whose
deletion strains had sensitivities similar to the WT. Nev-
ertheless, our network analysis effectively identified many
genes that influenced the sphingolipid pathway, as mea-
sured by myriocin sensitivity (one-tailed Fisher’s exact test
comparing the proportion of altered sensitivity in the most
versus the least connected genes resulted in a P-value =
0.005, indicating a significant difference at the level of 0.01).

We focused our further experimental validation on
PFA4––the deletion strain that showed the most sensitivity
to myriocin. This elevated sensitivity indicates that deleting
the PFA4 gene may aggravate the deficiency of biosynthe-
sis of yeast sphingolipids. To test this hypothesis, we exam-
ined the ability of two key sphingolipids, phytosphingosine
and dihydrosphingosine, to rescue the growth defect of the
PFA4 deletion strain (pfa4�) in response to myriocin. The
growth of WT strains was similar in the presence of vehi-
cle (methanol), myriocin, exogenous sphingolipids or any
combination thereof (Figure 5A–C). In contrast, the growth
of the pfa4� strain was dramatically repressed by myriocin
(Figure 5A). Importantly, this repression in pfa4� was al-
most completely recovered by adding either of the two sph-
ingolipids (Figure 5B and C). These results strongly suggest
that the elevated myriocin sensitivity of the pfa4� strain is

Figure 5. Sphingolipid rescue of pfa4� on myriocin media indicates an al-
tered sphingolipid pathway in vivo in pfa4� cells. (A) Growth curves of WT
(BY) and pfa4� show that pfa4� could not grow in myriocin, as measured
by the optical density (OD) of the cell culture. (B) Phytosphingosine or di-
hydrosphingosine did not affect the growth of WT (BY) or pfa4� under
normal growth conditions. (C) Both phytosphingosine and dihydrosphin-
gosine rescued pfa4� from elevated myriocin sensitivity.
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a consequence of an altered sphingolipid pathway. Overall,
these experiments indicate that our gene network can be
used to identify novel genes influencing a particular path-
way.

Compare Ontology Fingerprint to other methods in identify-
ing pathway-modulating genes

We used four other comparable networks and methods
but were only able to identify few of the 14 novel genes
discovered by Ontology Fingerprint-derived gene network
(Table 1, Supplementary Figures S9 and S10). We believe
the main reason for this performance difference comes
from the comprehensiveness of the Ontology Fingerprints,
which summarize different aspects of biology through on-
tology and literature. Our results indicate that Ontology
Fingerprint-derived gene network is unique and can iden-
tify many novel pathway-modulating genes that other exist-
ing methods cannot.

DISCUSSION

We developed a novel gene network from the Ontology Fin-
gerprint to infer new players in the yeast sphingolipid path-
way. Compared to other experiment-based approaches to
construct biological networks, such as PPI (2,33,34), GI (4),
and co-expression (5,35–38), our approach is not limited to
a single aspect of biological function, such as PPI, and is
less labor-intensive. Compared to similar literature-based
methods (39,40) and GATACA (https://gataca.cchmc.org/
gataca/. Last accessed 3/26/2014), our method takes ad-
vantage of high-quality biomedical GO data and, most im-
portantly, infers gene–gene relationships that do not ex-
ist in the literature (not co-occurrence dependent). Com-
pared to other ontology-based methods (41–43), our ap-
proach does not rely on manually curated ontology anno-
tation of genes. Although it is of high quality, the annota-
tion is still in progress and has not comprehensively cov-
ered a majority of biological knowledge. In contrast, the
Ontology Fingerprint-based approach uses all the ontology
terms to survey the entire biomedical literature linked to all
genes in the genome to develop an objective yet compre-
hensive ontology profile. After careful calibration with the
existing knowledge, the gene network derived from the On-
tology Fingerprint is comprehensive, biologically meaning-
ful and capable of directing us to new pathway players that
are not explicitly described in the existing biomedical liter-
ature, as demonstrated by our results and comparison to
other methods through the course of the method develop-
ment (Supplementary Table S10).

Our method built upon PubMed abstracts linked to
genes. One challenge is that as more high-throughput meth-
ods are used, a single publication might link to many genes
and create non-specific connections between genes and GO
terms. We avoided this pitfall by limiting our inclusion of
PubMed abstracts to those that linked to no more than 100
genes.

Another challenge we encountered is the mapping of GO
terms. As GO is developed to capture precise meaning of
gene functions, many labels of the GO terms are long and
detailed, and are not used typically in literature. Therefore,

many GO terms may not be able to find exact match in lit-
erature, and many researchers are working on the named
entity recognition performance against GO (17,18,44). On
the other hand, the amount of GO terms we can recover
from the literature is sufficient for us to build comprehensive
fingerprints that capture enough meaningful features. This
is reflected in the ability of Ontology Fingerprints to iden-
tify genes for biological pathways. However, future work in
providing better mapping could improve the performance
of the Ontology Fingerprints.

As our network is derived from literature, to what extend
a gene is studied and published in literature could influ-
ence the gene–gene relationships in our network. Two ap-
proaches could help to alleviate this issue: first, we could
impose a minimum requirement for the number of papers
published for a gene. If the gene is rarely studied, we will
not include it in the network due to the lack of sufficient ab-
stracts to generate high-quality Ontology Fingerprint; sec-
ond, the enrichment analysis evaluates the overrepresenta-
tion of the GO terms in the paper linked to a gene. Even if
a gene has few publications, the overrepresentation assess-
ment can still identify these terms from these abstracts.

Even though our Ontology Fingerprint-derived gene net-
work performed well in identifying novel genes modulat-
ing sphingolipid pathway, the method could be further im-
proved in several ways. For example, while current Ontology
Fingerprint uses only GO dated back to 2009, including up-
to-date GO and other bio-ontology could significantly im-
prove the current network as these ontologies could cap-
ture additional biological information. Another improve-
ment could stem from the development of novel network
analysis methods, such as community detection algorithms
in social media research. These algorithms could potentially
improve the discovery of novel genes for biological path-
ways. Finally, many relationships are used to develop On-
tology Fingerprints and there could exist false-positive re-
lationships, e.g. gene to PubMed abstracts. Removing these
false positives, such as applying Name Entity Recognition
methods to identify genes in the PubMed abstracts, could
help to improve the performance of Ontology Fingerprints.

With quantified relevance among genes, our network
adds a unique dimension to biological networks. While this
work demonstrated that the network could be used to in-
fer implicit relationships among genes and novel pathway
players, it can also be applied for many other novel anal-
yses. These potential applications can expand our existing
knowledge of biological pathways to identify novel drug
targets and biomarkers for prognostic and diagnostic pur-
poses.
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