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Abstract: Identification of nitrate reduction hotspots (NRH) can be instrumental in implementing
targeted strategies for reducing nitrate loading from agriculture. In this study, we aimed to delineate
possible NRH areas from soil depths of 80 to 180 cm in an artificially drained catchment by utilizing
electrical conductivity (EC) values derived by the inversion of apparent electrical conductivity
data measured by an electromagnetic induction instrument. The NRH areas were derived from
the subzones generated from clustering the EC values via two methods, unsupervised ISODATA
clustering and the Optimized Hot Spot Analysis, that highly complement each other. The clustering
of EC values generated three classes, wherein the classes with high EC values correspond to NRH
areas as indicated by their low redox potential values and nitrate (NO3

−) concentrations. Nitrate
concentrations in the NRH were equal to 13 to 17% of the concentrations in non-NRH areas and
occupied 26% of the total area of the drainage catchments in the study. It is likely that, with the
identification of NRH areas, the degree of nitrogen reduction in the vadose zone may be higher than
initially estimated at the subcatchment scale.

Keywords: nitrate reduction hotspots; electrical conductivity; unsupervised ISODATA clustering;
Getis–Ord Gi* statistics; optimized hot spot analysis

1. Introduction

Approximately 90% of the nitrogen load in Danish coastal waters originates from
diffuse sources, primarily through agriculture [1]. This situation challenges the achieve-
ment of nitrogen reduction goals under the European Union Water Directive, as the large
heterogeneity in hydro-geochemical and biotic conditions causes large variations in the
nitrogen export between different fields [2]. In addition, the scale at which the heterogeneity
is assessed also influences estimates of the nitrogen export [3]. As a nutrient management
strategy, a targeted, farm-specific approach that accounts for the heterogeneity of soil
conditions is being devised [4].

As a basis for such an approach, the current national nitrogen model for Denmark [5]
combines the statistical nitrogen leaching model with groundwater-surface hydrological
and retention models. The model estimates the percentage of the total nitrogen that remains
reduced as the water leaves the root zone and reaches the surface water systems. However,
the model fails to account for locations at which reduction occurs, i.e., whether the reduction
occurs within the same catchment or in another catchment area where the total nitrogen
was measured [6]. Determination of the location and extent of nitrate reduction is important
in formulating optimal and cost-effective strategies for nitrogen management [7].

Several studies have assessed the location and spatial heterogeneity of nitrate reduction
through the identification of the redox interface location [8], characterization of the redox
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architecture [9], and multiple geological realizations [10], though this is mainly useful
in the saturated zone. As for the extent of nitrate reduction in the unsaturated zone in
the Danish context, studies are more limited [11]. Nitrate reduction in the unsaturated
zone across different types of Danish soils has not been fully assessed as most studies
are carried out under controlled laboratory conditions that are meant to describe the
possible spatial and temporal heterogeneity under field conditions [11]. Denitrification
potential [12–14], oxygen, organic carbon, and nitrogen species levels [13,15] are among
the factors that have been used as variables for describing the heterogeneity of nitrogen
reduction. Since these variables usually involve extensive sample collection and laboratory
work, and are generally destructive, the sample sizes are often small and locations must
be carefully selected to properly represent spatial characteristics [15,16]. Descriptions of
physico-chemical properties tend to be inferred for large areas when sampling points
are sparse and highly spaced, which could compromise the quality of soil heterogeneity
assessment [17].

Electromagnetic induction (EMI) is a frequently employed proximal soil sensing tech-
nique to supplement time-consuming and labor-intensive conventional soil mapping for
high-resolution spatial characterization of soil properties through measurement of the
soil electrical conductivity (EC) [17–19]. The soil EC mainly relates to its physio-chemical
properties. The salinity is the primary influential factor for soils with EC > 100 mS m−1,
while other edaphic factors, such as texture, moisture content, bulk density, cation ex-
change capacity, and organic matter, contribute to the EC in non-saline agricultural soils
(i.e., EC < 100 mS m−1; [18,20]). The dissolved solids within the water of the larger pores,
the liquid phase, is the primary pathway for apparent soil conductance [21]. Nonetheless,
contributions by the liquid–solid interface through the exchangeable cations associated
with clay particles and the solid phase through direct contact of soil particles, may also
be significant [21,22]. Hence, EMI has been regularly used for mapping the above stated
soil properties, a few examples of which include salinity [23–25], texture [26–28], organic
matter [29], cation exchange capacity [30], water content [31], and also, more importantly,
for the delineation of management zones [32–34].

To briefly describe the working principle, the EMI sensors measure the apparent
electrical conductivity (ECa) derived from the quadrature-phase response of the primary
and secondary magnetic fields recorded by the receiver coils [35]. The secondary field is
generated due to the eddy currents in the conductive material present in the subsurface
that are induced by a transient primary field generated through powering the transmitter
coil using an alternating current [36].

Recent technological advancements have led to the development of on-the-go measur-
ing systems, which provide ECa measurements up to multiple depths, making it feasible
for a rapid collection of densely sampled data across large areas [17]. Subsequently, sophis-
ticated inversion routines can be employed on these datasets to determine depth-specific
estimates of EC, enabling the mapping of soil properties in three dimensions [23,24,30,37].
Mapping soil properties with EMI also gives an additional advantage of revealing com-
plexities in the soil-landscapes patterns, particularly in disturbed, land-levelled landscapes
(e.g., artificially drained agricultural areas), which could have been disregarded with
methods relying on point measurements such as monitoring wells, core samples, and soil
moisture probes [16,17]. Furthermore, the direct current resistivity, an electrical method
counterpart, either employed as an on-the-go measuring system or as electrical resistivity
tomography, i.e., by injection of a series of electrodes into the ground, can provide similar
ECa measurements and depth-specific EC estimates [30,38,39]. However, as all the electrical
(direct current resistivity, induced polarization, and self-potential) methods necessitate
direct electrode contact with the ground, they are more suitable for the plot scale investiga-
tions, and their applicability is severely compromised when the spatial extent of the area
being surveyed is upscaled to the catchment level.

In this relation, to discern the soil nitrogen status at catchment level, Senal et al. [40]
employed EMI sensor measurements and showed that variation in soil EC reflected patterns
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in potential nitrogen removal areas, as areas with higher EC often displayed reducing
conditions. The authors linked this finding to clay contents, which reduce the hydraulic
conductivity of the subsoil and lead to waterlogged conditions, as high clay contents and
moisture increase the soil EC [17,27]. Clay contents have also been associated with the
presence of anoxic microsites, which are potential sites for active nitrate reduction [41,42].

However, in order to make this finding operational for management purposes, it
is necessary to delineate areas with high EC in geographic space and to determine the
nitrogen removal capabilities of these areas. For this purpose, clustering algorithms can be
a solution with a considerable potential.

The unsupervised ISODATA (Iterative Self-Organizing Data Analysis) clustering
algorithm [43] is a widely used clustering method which measures the means within a data
space and iteratively generates clusters from the remaining pixels using minimum distance
techniques. The process iterates until a maximum number of iterations has been reached.
It is a relatively straightforward and computationally inexpensive clustering technique
for delineating zones for management purposes [44,45]. However, it often depicts abrupt
changes in soil properties at boundaries between subzones, which is unlikely in actual
soil conditions [45], and relies on maps of spatially interpolated variables generated either
through kriging or co-kriging techniques.

A promising alternative clustering technique is based on Getis–Ord Gi* statistics [46]
which evaluates the statistical significance of the value at a point observation based on the
context of the neighboring point observations. A high value is only considered significant
when the neighboring features also have significantly high values. A cluster of these
significantly high values may then be regarded as a hot spot. The Getis–Ord Gi* statistics
has been widely used in studies pertaining to transportation [47,48], public health [49–51],
species distributions [52–54], etc., but its application for soil studies is still limited, most
likely due to the limited availability of spatially dense data such as EC.

The hypothesis is that subzones with high EC values are potential nitrate reduction
hotspot (NRH) areas, which can be determined through their low average nitrate (NO3

−)
concentrations and redox potential values (Eh). The use of Optimized Hot Spot Analysis for
generating the subzones is based on the assumption that the EC values have an acceptable
density for this clustering method. By identifying the potential NRH in the soil layers
above the drainage pipes, we also characterize the spatial heterogeneity of nitrate reduction
in the unsaturated zone, an area that is still lacking understanding in its heterogeneity
and processes. This will support the efforts for creating targeted, farm-specific nutrient
management strategies. It also is worth a mention that, though induced polarization can
be useful to understand the physio-chemical processes and the relationship between the
nitrate reduction hotspots and the soil EC [55,56], an EMI sensor was chosen in this study, as
it is optimal for surveying large catchment scale areas and acquiring densely sampled data.

This study aims to delineate potential nitrate reduction hotspot (NRH) areas within
the vadose zone above the drainage pipes. To achieve this, we have two objectives: (1) to
utilize EC values acquired through the EMI technique to generate subzones with signa-
ture nitrogen and redox profiles, and (2) to generate these subzones through clustering of
EC values via two different methods: unsupervised ISODATA clustering and Getis–Ord
Gi* statistics (utilized through the Optimized Hot Spot Analysis). Comparison of clusters
generated via the two methods were conducted to demonstrate the potential of Getis–Ord
Gi* statistics as a quicker alternative to the clustering techniques that rely on spatially
interpolated variables such as the unsupervised ISODATA clustering method. The unsu-
pervised clustering algorithm has been the more familiar delineation method despite the
increased availability of EC measurements [57,58].

2. Materials and Methods
2.1. Study Area

The Fensholt subcatchment (56◦00′17′′ N 10◦06′23′′ E) lies in the Norsminde Fjord
catchment west of the town of Odder, Denmark (Figure 1a). The subcatchment area is



Sensors 2022, 22, 1508 4 of 20

6.12 km2 with 78% currently used for agriculture. This study was carried out in four small
artificially drained catchments that were delineated based on the topography (Figure 1b–e),
as well as the total areas being drained by a continuous network of drainage pipes that
empty into known drain outlets. The drainage catchments are referred to as D1 (Figure 1b),
D5 (Figure 1c), D7 (Figure 1d), and D8 (Figure 1e). Soils in the area are primarily loamy tills.
A pair of soil profiles from D7 and D8 were classified as a Stagnic Luvic Phaeozem and
Gleyic Cambic Phaeozem, respectively. Additional soil auguring in the area supports the
generality of this classification for the entire subcatchment. Minor occurrences of peat and
gyttja have been recorded in the lowland areas [59,60]. Soil texture is nonetheless largely
sandy loam with a few occurrences of clay loam partly due to clay illuviation, which has
transported clay vertically through the soil profile or as a product of hydro-topographical
gradients in the area [61]. In general, the artificial drainage pipes have been estimated to be
located at depths of 1.0–1.5 m with a spacing of approximately 20 m based on participatory
mapping with the farmers.

Figure 1. (a) Fensholt subcatchment and the location of the drainage catchments, (b) D1, (c) D5,
(d) D7, and (e) D8, and their corresponding topographic elevation contours, flow accumulation values,
and piezometer nests within the boundaries. Each piezometer nest consists of 1 to 3 piezometers.

2.2. Flow Accumulation

The flow accumulation was calculated through the R package RSAGA in SAGA
GIS [62]. A digital elevation model with a spatial resolution of 10 m × 10 m was used and
a Triangular Multiple Flow Direction algorithm [63] was employed in the calculation.

2.3. Electromagnetic Induction Survey, Data Processing, and Inversion

A DUALEM-21S instrument (Dualem Inc., Milton, ON, Canada), which is a single-
transmitter (Tx) multi-receiver (Rx) frequency domain ground conductivity meter operating
on a frequency of 9 kHz, was used to carry out the EMI survey. It has a Tx coil located at one
end that is shared by two pairs of Rx coils forming horizontal coplanar (HCP) and perpen-
dicular (PRP) configurations. For the HCP configurations, the Tx-Rx separation distances
are 1 and 2 m, and for the PRP configurations they are 1.1 and 2.1 m, respectively. The
quadrature-phase and in-phase signal responses of the EMI instrument are representative of
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the ECa and the magnetic susceptibility of the soil [35]. Each of the four coil configurations
results in the sensing of different soil volumes with varying depth sensitivities represented
in the ECa measurements [64–66]. The depth of exploration (DOE) can be defined as the
depth at which the signal accumulates 70% of its total sensitivity. When operating at low
induction numbers, the depth sensitivity of ECa measurements can be approximated to be
a function of coil spacing (S) and array orientation and to be independent of the soil EC
for a given frequency [35]. Hence, the DOE for HCP and PRP arrays are 1.6 S and 0.5 S,
respectively, when the instrument is placed on the ground [66]. As such, the 1 and 2 m
HCP configurations provide measures of ECa for soil volumes reaching depths of 1.6 m
and 3.2 m, whereas the 1.1 m, 2.1 m PRP configurations provide ECa to depths of 0.5 m and
1.0 m, respectively.

The instrument was mounted on a sled (0.3 m above the ground) attached to an all-
terrain vehicle (ATV) and the survey was performed in August 2014 along parallel transects
spaced approximately 8 to 12 m apart. Georeferencing of the data was carried out using a
real-time kinematic (RTK) Global Navigation Satellite System (GNSS) with sub-decimeter
accuracy. Dedicated data processing and inversion were performed using the Aarhus
Workbench software [67] that performs fully nonlinear inversion using the Aarhus Inv
code [68]. The data processing involves both automatic and manual steps. Firstly, the
automatic data processing was performed to remove negative ECa values, to correct for
the offset between the RTK/GNSS setup and the data from the individual channels, and to
improve the signal to noise ratio by averaging the data choosing an appropriate sounding
distance (3 m) and running mean width (6 m). A careful choice of sounding distance and
running mean width are necessary in order not to smear the data generated by the soil
variability at hand and to eliminate the redundant information to reduce the computation
time for performing inversions. Once the automatic processing was complete, manual
inspection of the raw data was undertaken to identify and remove potential noise due to
coupling with anthropogenic sources such as buried cables, metal fences, or proximity of
the instrument to the ATV when making turns. The changes made in the raw data during
the manual processing were integrated back into the averaged data generated through the
automatic processing step.

Later, the processed data were inverted using a quasi-three-dimensional spatially
constrained inversion algorithm that applies constraints both in-line and cross-line using
Delaunay triangulation [68,69]. A homogeneous eight-layer initial model was chosen with
depths to the top of each layer being 0, 0.3, 0.6, 1.0, 1.5, 2.0, 2.6, and 3.3 m, respectively, and
with an initial EC estimate of 25 mS m−1. After the inversion, EC values were extracted for
every 0.2 m depth interval to a depth of 1.8 m. Since significant differences in the Eh at the
different parts of the subcatchment were observed at depths between 85 to 165 cm from a
complementary study [40], the EC values between depths 0.8 to 1.8 m were averaged and
subsequently used in our analysis.

2.4. Measurement of NO3
− Concentrations

In the four drainage catchments, 7 to 18 piezometer nest installation points (45 in total)
were chosen to represent transects along the expected direction of the groundwater flow
and differences in EC. The layout of the piezometers along the topography and average
EC per piezometer nest are detailed in [40] and shown in Figure 1. The piezometers were
base-sealed PVC pipes with 43 mm internal diameter, 30 cm screens, and a mesh size of
0.5 mm. For each installation point, a piezometer was installed with its screen placed at
the midpoint of the most active nitrate reducing zones, which are likely to occur between
85 and 115 cm. The tentative identification of the most active reduction zones was based
on the occurrence of redoximorphic features in the form of red-orange mottles distributed
over grey sheaths [70] as observed visually in the soil cores from the boreholes. Additional
piezometers were installed for each installation point at depths between 125 to 165 cm to
represent a possibly different redox environment. Piezometers were completely installed at
least four weeks prior to the first collection of the water samples. The specific piezometers
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and their respective location coordinates and installation depths are listed in Table A1 in
Appendix A.

Collection of water samples for NO3
− analysis was carried out between February and

August 2017, typically at intervals of three weeks. Field measurements were planned to
succeed a rainfall period to increase the likelihood of collecting a substantial number of
water samples. No measurements were possible in July 2017 due to insufficient water levels
in the piezometers.

The piezometers were emptied first prior to the collection of the water samples. The
time between emptying the piezometer and sample collection varied from six to eight days
(February to April 2017) to one to three days (remaining period). Approximately 10 to
300 mL of soil water were present in the piezometers during sample collection. Water
samples were filtered on-site using Sefar Nitex 03-31/24 monofilament (Sefar AG, Heiden,
Switzerland) with a mesh size of 31 µm. They were kept in 250-mL HDPE bottles at 4 ◦C
until analysis. NO3

− concentrations were measured within 24 h after sample collection
using the colorimetric method through the segmented-flow SEAL Autoanalyzer III (SEAL
Analytical, Inc., Mequon, WI, USA).

Despite the possible differences in the nitrogen input between the different drainage
catchments, the NO3

− concentrations presented from each installation point is the average
NO3

− concentrations of the samples within the entire sample collection period (February
to August 2017). The average NO3

− concentrations were used due to the lack of signif-
icant differences in the temporal analysis of the values. In addition, only piezometers
installed between 85 to 165 cm were considered, since the differences in Eh were most pro-
nounced within this depth range. The NO3

− concentrations are available as Supplementary
Material [71].

2.5. Measurement of Redox Potential Values

Each piezometer had a complementary redox probe installed into the soil, approxi-
mately 20 cm from the midpoint of the screen depth. The redox probes are platinum wires
with copper tips with the Pt tip in contact with the soil [72]. Prior to installation, the redox
probes were checked for accuracy using a hexacyanoferrate II/III redox buffer (pH 7). The
redox probes were installed into channels initially made by a stainless steel rod with a
6 mm diameter.

The redox potential was measured by connecting a pH meter to the Cu tip of the
probes while a calomel reference electrode was placed approximately 3 cm into the soil.
Measured redox values were converted to standard hydrogen electrode potentials (Eh) by
adding +245 mV as a correction for the reference calomel electrode. Similar to the average
NO3

− concentrations, the average Eh for the entire water sample period was calculated for
each installation point and are available as Supplementary Material [71].

2.6. Spatial Autocorrelation Using Global Moran’s I Statistic

Spatial autocorrelation of the EC values was determined prior to the hotspot analysis
using the spatial autocorrelation tool to determine the values’ dependence on its neighbors.
The spatial autocorrelation tool utilizes Moran’s I spatial statistics that simultaneously
determines the features’ similarity based on their location and values [73]. The Moran’s I
statistic is calculated as:

I =
n
S0

∑n
i=1 ∑n

j=1 wi,j zizj

∑n
i=1 z2

i
. (1)

where zi and zj is the deviation between the features, (i.e., in this case the EC value at
positions i and j, respectively, from the mean); wi,j is the spatial weight between the values
at i and j; n is the total number of the features; and S0 is the sum of all the spatial weights.
The spatial weight, wi,j , depends on the conceptualization of the spatial relationships
between the features. The fixed distance band method was selected for calculating the
spatial weights as this was recommended for point data [74]. In the fixed distance band
method, features that are within the specified distance band were given an equal spatial
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weight of 1 and any features outside of it were ignored. A distance band of 14.5 m was
used as computed by the spatial statistics tool.

The closer the Moran’s I index value is to 1, the more clustered are the data, while
the closer it is to −1, the more dispersed. A value of 0 indicates perfect randomness. The
Moran’s I spatial statistics tool also generates the z-score and p-value of the Moran’s I index
to indicate the statistical significance of the Moran’s I index. A positive z-score indicates
that the values are spatially clustered, while a negative z-score indicates that the values are
clustered in a competitive way (e.g., high values repelling high values).

2.7. Geostastistics of EC

The trends and distribution of the EC values were analyzed first prior to kriging and
were normalized through box-cox transformation. Second-order trend removal was applied
based on a directional trend analysis of the EC values. To conduct the trend analysis, EC
values were plotted on an x,y plane, and its values were projected as stick heights on a
z-plane. By fitting polynomial equations through the scatterplots, the directional trend
across the x,z and y,z planes may be determined. The trend analysis and the proceeding
geostatistical analyses were carried out in ArcGIS 10.0 software (ESRI, Redlands, CA, USA).

To map EC, kriging was used to predict the values for locations without measurements.
The prediction map was generated within the geostatistical analyst extension module.
Ordinary kriging was used to generate the prediction map of EC values. The equation for
ordinary kriging is:

ẑ(s0) =
n

∑
i=1

λiz(si) (2)

where ẑ(s0) is the predicted value for the location s0; z(si) is the measured value at location
si; λi is the interpolation weight for the measured value at the location i; and n is the number
of neighboring locations searched for the interpolation. The value of λi will depend on
the semivariogram model which is a function for the semivariance against the distance
between the observation points. The semivariance was calculated for each predicted value
as follows:

γ
(
si, sj

)
=

1
2n ∑ [z (si)− z

(
sj
)]2 (3)

where γ
(
si, sj

)
is the semivariance between measurements at si and sj; z(si)− z

(
sj
)

is the
difference between the predicted values z(si) and z

(
sj
)
; and n is the number of locations

considered. The semivariances are plotted against the distance between the measured
values. A semivariogram model is fitted into this plot to determine the value of λi. The
semivariogram model that most closely satisfied the criteria of ∑n

i=1 λi = 1 within the
location of the n observations was chosen. The models were evaluated based on the error
values between the measured and predicted values through the mean error (ME) and
standardized root mean square error (RMSE) of the model. Ideally, ME and RMSE would
be close to 0 and 1, respectively.

2.8. Clustering of EC Values with Optimized Hot Spot Analysis (Getis–Ord Gi* Statistics)

The Optimized Hot Spot Analysis was carried out by calculating the Getis–Ord
Gi* statistics (z-score) for each EC value. The calculation of the Getis–Ord Gi* z-score is:

G∗i =
∑n

j=1 wi,jxj
X
− ∑n

j=1 wi,j

S

√
n
[

∑n
j=1 w2

i,j−
(

∑n
j=1 wi,j

)2
]

n−1

(4)
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where xj is the attribute value for feature j, wi,j is the spatial weight between feature i and j,
n is equal to the total number of features and

X =
∑n

j=1 xj

n
(5)

and

S =

√
∑n

j=1 x2
j

n
−
(

X
)2 (6)

The local sum of the z-scores of the EC values is compared with the expected local sum.
If the difference between the calculated and expected local sum is too large and less likely to
be a result of a random chance, the z-score of the feature is statistically significant. Similar
to the Moran’s I statistic, the fixed distance band method was selected for calculating the
spatial weights, wi,j. A p-value is also generated along with the z-scores.

A high EC value with a highly positive z-score and a low p-value indicates that the
particular value is significantly surrounded by other high EC values. Such EC value is
labeled as a ‘hot spot.’ Alternatively, a ‘cold spot’ would have a highly negative z-score
and a low p-value.

With Optimized Hot Spot analysis, the EC values were automatically assessed whether
changes to the data (e.g., aggregation) have to be performed before analysis. Scale distance
determination through analysis of incremental spatial autocorrelation was also initially
performed. False Discovery Rate (FDR) correction method was also applied to the z-scores
to resolve possible issues with multiple testing and spatial dependence. The issue with
multiple testing arises when a high number of data would increase the possibility of
producing false results (i.e., type 1 error) during comparison of the EC values with each
other [75]. A comparison of the significance of a feature based on the context of neighboring
features would also exacerbate the influence of spatial patterns that in actuality may only
be minimally present or even non-existent. Hence, the issue with spatial dependence may
also arise [74].

The FDR correction method ranks the significant p-values according to the smallest to
largest values, then removes the smallest values according to an estimate of the number
of false positives based on the confidence level. The remaining EC values with significant
p-values are binned together according to specific confidence levels [74]. The specific
confidence levels associated with the binned p-values are referred to in this paper as ‘Gi
bin’. The confidence levels have values ranging from −3 to 3, wherein −3 to -1 is classified
as a ‘cold spot’ area; −1 to 1 as ‘not significant’; and 1 to 3 as ‘hot spot’ area [74]. The
cold spot and hot spot features are further classified according to confidence intervals of
99%, 95%, and 90%. The higher the absolute value of the confidence level, the higher is its
significance level, i.e., a confidence level of -3 indicates that it is a 99% cold spot while a
value of 3 indicates it is a 99% hot spot. Similarly, a confidence level with an absolute value
of 2 and 1 reflects 95% and 90% confidence intervals, respectively.

2.9. Clustering of EC Values Using Unsupervised ISODATA Clustering

To delineate clusters in the EC prediction map, an unsupervised ISODATA clustering
algorithm [43] was applied using the Geostatistical Wizard module (ESRI, Redlands, CA,
USA). It is a highly heuristic and iterative process which seeks for the minimum Euclidean
distance between a candidate cell (pixel) to a cluster [74]. Cluster centers are randomly
placed when calculating the Euclidean distance during each iteration. Within each cluster,
the standard deviation is calculated from which the merging and splitting of clusters will
be based upon. Clusters are merged either if the distance between two clusters is less than
the defined threshold or if the number of cells in a cluster is less than the set minimum.
A cluster is otherwise split if the standard deviation is higher than the threshold value or
if the number of cells is twice the threshold for the minimum number of cells [43]. The
process of randomly creating cluster centers and calculating standard deviation is repeated
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until the maximum number of iterations is reached. The default clustering parameters in
the Iso Cluster Unsupervised Classification tool were used wherein the minimum number
of cells is 20, sample interval is 10, and number of iterations is 20. Three classes were set
for clustering EC values to make it comparable with the clusters from the hotspot analysis
described in Section 2.8.

2.10. Data Analysis

Statistical analyses were performed using SigmaPlot 11.0 (Systat Software, Inc., San
Jose, CA, USA). A two-way ANOVA was conducted to test if the resulting classes generated
from each clustering method had an effect on the NO3

− and Eh values. A Dunn’s post hoc
test was conducted to determine significant differences between specific classes following a
normality test on the data.

3. Results and Discussion
3.1. Distribution and Descriptive Statistics and Spatial Distribution of EC Values

The highest EC values were mostly found in the eastern part of the subcatchment,
particularly in the D1 drainage catchment and in discrete spots in the D5 drainage catchment
(Figure 2). The histogram of the data (Figure 3) showed that values (n = 5693) were
slightly skewed to the left, which indicates a non-normal distribution of the data due to
several relatively high EC values ranging approximately between 60 and 100 mS m−1

which are located in D1 drainage catchment (Figure 2). Several portions of the drainage
catchment that do not have ECa measurements are either built-up or inaccessible areas
where measurements could not be physically conducted (Figure 2).

Figure 2. Spatial distribution of the electrical conductivity (EC) values in drainage catchments (a) D1,
(b) D5, (c) D7, and (d) D8 using the ordinary kriging method. The average of the EC values between
the depths of 80 to 180 cm was used for the interpolation. Portions without EC are either built-up or
inaccessible areas where physical measurements cannot be conducted.

The spatial variability of the EC values was best described by a tetraspherical vari-
ogram model (Figure 4) wherein the predicted EC values have an ME of <0.01, and RMSE
of 1.0. Figure 4 lists the fitted parameters for the model. The lag distance of 9 m confirms
that the minimal distance of the survey lines is the optimal distance for collecting the ECa
measurements. Given that a nugget ratio of 0.25 or less indicates a strong spatial autocorre-
lation [76,77], a 0.20 ratio from the semivariogram indicates a strong spatial autocorrelation
of EC values within the range of 99 m. The small effective range of 99 m indicates a
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distribution pattern of small patches [78,79]. The spatial autocorrelation of the EC values
was also confirmed with the results of Moran’s I statistics. A Moran’s I index value of 0.8
with a significant z-score of 105 (p < 0.01) shows that there is significant autocorrelation at
99% confidence within a distance of 14.5 m, which is slightly higher than the maximum
survey transect line distance (i.e., 12 m).

Figure 3. Histogram of the average electrical conductivity (EC) values at 80 to 180 cm depth from the
four drainage catchments.

Figure 4. Semivariogram and the values of the fitted parameters for the prediction model of the
electrical conductivity (EC) values. A tetraspherical model was used for its generation.

The significant spatial autocorrelation of the EC values confirms that the clusters
of EC values are determined by consistent, systematic processes that occur on a small
scale [80]. Given that the EC is significantly correlated with clay content in non-saline
agricultural soils [81], it is expected that the variations in the EC values are mainly due
to the heterogeneity in the clay contents. Indeed, clay illuviation zones were observed at
depths approximately 50 to 100 cm above a relatively impermeable layer under a calcareous
boundary [61]. Zones of clay accumulation in the area most likely consist of inherent zones
of clay layers of lenses due to the natural geological variations in the soil and/or mobilized
clay particles transported through hydro-topographical gradients in the area [61], which
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explains the high clay content even at depths between 25 to 75 cm in low elevated areas [82].
Indeed, EC had been demonstrated to be significantly correlated with the clay content
measured in soil samples collected at varying locations and depths [40], which suggests
that EC was largely due to surface conduction [83] in the subcatchment. The association
of high clay percentage with high EC was considered to enable the presence of anoxic
microsites that led to the more reducing conditions in these areas, thereby rendering them
as potential NRH areas [40].

Based on the parameterization of three different modeling approaches by [61], the
horizons with clay illuviation (90 to 130 cm) were estimated to have a range of saturated
hydraulic conductivities between 0.04–0.36 m h−1. In contrast, saturated hydraulic conduc-
tivity at soil depths of 0 to 25 cm had a range of 0.12–0.62 m h−1 [61]. The low saturated
hydraulic conductivity slightly above the drainage pipes seems to promote a perched water
table [40,84].

In addition to the soil geochemical heterogeneity, topography also influences the distri-
bution of water in the soil, as demonstrated by the high flow accumulation values, wherein
the shallow groundwater tends to flow towards the least elevated portions (Figure 1b,e).
Topography and clay content were, therefore, two prominent factors that influence the
variability of the water content in the respective catchments. The topographical gradients
in combination with low hydraulic conductivity of areas with high clay contents, regardless
of whether the clay is inherent or due to accumulation over time, controls the overall soil
water distribution, subsequently resulting in the high EC values in certain distinct areas in
D1 and D5 [17,27].

3.2. Clustering of EC Values
3.2.1. Optimized Hot Spot Analysis of EC Values (Getis–Ord Gi* Statistics)

Figure 5 summarizes the statistics of the EC values from each class generated through
Optimized Hot Spot Analysis. Though the mean EC values progressively increase from
the cold spot to hot spot classes, there is an overlap in the range of the EC values between
classes. The mean EC values for cold spots ranged from 27 to 33 mS m−1, while the range
is 39 to 49 mS m-1 for the hot spot areas. Areas classified as ‘not significant’ have a mean
EC value of 36 mS m−1 (Figure 5).

Figure 5. The layout of the clusters generated from the Optimized Hot Spot Analysis of average
electrical conductivity (EC) values across the drainage catchments (a) D1, (b) D5, (c) D7, and (d) D8.
The accompanying table lists the mean, standard deviation (SD), minimum EC value (min), maximum
EC value (max), and the percentage of the number of EC values per each generated class.
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A total of 30% of the points were classified as hot spots; 33% as not significant; and
37% are cold spots. A majority of the points classified as either a hot spot or cold spot are in
the 99% confidence level (Figure 5), which indicates sharp boundaries between the clusters
of EC values. The hot spots were mainly found in the D1 drainage catchment and in discrete
portions in D5 where groups of high EC values were found (compare Figures 2 and 5).
Despite several high EC values in D7 and D8 (Figure 2), these were only areas registered as
‘not significant’. A majority of the areas in D7 and D8 were ‘cold spots’ (Figure 5).

3.2.2. Unsupervised ISODATA Clustering Results

Figure 6 shows the results of ISODATA clustering on the EC values. Class 1 had
the lowest mean EC estimate (27 mS m−1), while Class 3 had the highest mean estimate
(49 mS m−1), and Class 2 had an intermediate value (36 mS m−1). Most of the areas
were classified as Class 2, which occupied 43% of the total drainage subcatchment area in
the study.

Figure 6. The layout of the classes generated from the unsupervised ISODATA clustering of average
electrical conductivity (EC) values across the drainage catchments (a) D1, (b) D5, (c) D7, and (d) D8.
The accompanying table lists the mean, standard deviation (SD), minimum EC value (min), maximum
EC value (max), and the percentage of the area of each generated class. Class 3 has the highest average
and range of EC values.

Based on their location and the corresponding statistics of the EC values, the generated
classes closely corresponded with the classes generated through Optimized Hot Spot
Analysis. Class 3 from the unsupervised ISODATA clustering corresponded to the ‘hot spot’
areas according to the Optimized Hot Spot Analysis of EC values (compare Figures 5 and 6).
Similarly, Class 2 corresponded to ‘not significant’ areas, and Class 1 corresponded to ‘cold
spot’ areas (compare Figures 5 and 6). Nonetheless, there were still discrepancies in the
area classification at a finer scale. The high EC values in the D8 drainage catchment were
classified as Class 3 (Figure 6) though these were classified as ‘not significant’ through
Optimized Hot Spot Analysis (Figure 5). Similarly, Class 2 areas surrounded with Class
3 areas in D1 (Figure 6) were altogether classified as part of the ‘hot spot’ area through
Optimized Hot Spot Analysis (Figure 5). Subzones generated through Optimized Hot Spot
Analysis were generally more homogenous than subzones generated through unsupervised
ISODATA clustering. The more fragmented clusters generated through the unsupervised
ISODATA clustering method were likely due to the low minimum number of cells that
was set per cluster. The standard deviation may also have been easily achieved even
with a small number of cells in a cluster. The unsupervised ISODATA clustering had been
observed to be quite sensitive to clustering parameters [85,86]. Nonetheless, a t-test analysis
comparing the percentages of the total area between corresponding classes show that they
are not statistically significant (p = 1.0).
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3.3. Comparison of Redox Potential Values and NO3
− Concentrations from Classified Piezometers

Figure 7 shows the Eh and the NO3
− concentrations from the piezometers that were

classified based on the clusters generated through Optimized Hot Spot Analysis (Figure 5)
and the unsupervised ISODATA clustering (Figure 6). A separate ANOVA analysis of
the Eh and NO3

− concentrations between the clusters generated through both clustering
methods shows that the values are statistically significantly different from each other
(p < 0.001). For the clusters from Optimized Hot Spot Analysis (Figure 5), a post-hoc
Dunn’s test analysis shows that the Eh and NO3

− concentrations from the ‘hot spot’ areas
(Figure 7a,c) were significantly lower than in areas classified as ‘not significant’ and ‘cold
spot’ (p < 0.05). No significant differences were found between the values of ‘cold spot’
and ‘not significant’ areas. Similar results were also found in the statistical analyses of the
Eh and NO3

− concentrations from the classes generated through unsupervised ISODATA
clustering (Figure 7b,d). Considering their significantly lower Eh and NO3

− concentrations,
areas classified as either Class 3 or ‘hot spot’ using the aforementioned clustering methods
could be considered as NRH. As the range Eh for the Class 3 and hot spot areas was
−129 to 321 mV and −129 to 282 mV, respectively, it is possible that other reduced cations,
such as Fe2+, are present, given that nitrate is fully reduced below 100 mV [85].

Figure 7. Boxplots of (a,b) average redox potential values (Eh) and (c,d) NO3
¬- concentrations and

from each of the classes generated through (a,c) Optimized Hot Spot Analysis and (b,d) unsupervised
ISODATA clustering of EC estimates. The midline for each of the boxplots is the mean, the box edges
are the standard deviation, and the whiskers are the interquartile range (IQR) with a factor of 1.5.
The notch (i.e., narrow interval of the box) factor is 1.7, which is approximately 95% confidence in
the median. Boxplots sharing the same letter are not significantly different (p < 0.05) according to
post-hoc Dunn’s test analysis.

The lack of significant differences between the Eh and NO3
− concentrations between

classes other than ‘hot spot’ and ‘class 3′ (Figure 7) indicate that significant differences
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in the EC values may not necessarily demonstrate significant differences in the nitrate
reduction processes. It is however likely that the projected small-scale heterogeneity in
clay content and water saturation, as indicated by EC values, essentially influences the
redox conditions and NO3

− concentrations in the NRH [80,87]. Therefore, the NRH may
still be effectively delineated from the drainage subcatchments. Other than clay content,
NRH areas were also associated with high flow accumulation values which indicate the
likelihood that they have the potential to also reduce NO3

− from the incoming shallow
groundwater from the more elevated portions.

Appendix A lists the classification of the piezometer locations according to the un-
supervised ISODATA clustering and Optimized Hot Spot Analysis. A comparison of the
classifications shows that there was a 16% inconsistency between the two clustering meth-
ods (Figure 8c). Most of the inconsistencies were due to several piezometers classified as
‘Class 2′ being considered as ‘cold spots’ instead of ‘not significant’ areas through the Opti-
mized Hot Spot Analysis. Piezometers with inconsistent classifications were only observed
in D1 (Figure 8a) and D7 (Figure 8b) and were located close to the borders of the classes,
which likely indicates transition areas from one class to another. Nonetheless, the lack of
significant differences in the Eh and NO3

− concentrations between Class 1 and Class 2,
and between ‘cold spot’ and ‘not significant’ areas means that the discrepancy between
these two classifications is of minor importance in terms of delineating NRH, which is the
main focus of our work. In spite of the lack of significant differences in the Eh and NO3

−

concentrations between the non-NRH classes (Figure 7), the spatial heterogeneity in clay
and water content, as observed through significant differences in the EC values, may still
have an influence on the nitrate reduction mechanism, and should still be considered for
future studies in the area.

Figure 8. Location of piezometers (:) in drainage catchments (a) D1 and (b) D7 with discrepant
classifications based on the clusters generated through Optimized Hot Spot Analysis and unsuper-
vised ISODATA clustering method. (c) Comparison of the piezometer classifications under both
clustering methods shows that a total of 10 piezometers had discrepant classifications. No discrepant
classification was found in drainage catchment D5 and D8. For the detailed list and locations of the
piezometers and their corresponding classifications, please see Appendix A.

Despite the discrepancy in the classification of the piezometers, both clustering meth-
ods have comparable mean EC values (compare Figures 5 and 6), range of Eh and NO3

−
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concentrations (Figure 7), and the total percentage of points/area per class (compare
Figures 5 and 6). The classification according to the Optimized Hot Spot Analysis com-
plements well the results of the unsupervised ISODATA clustering but has the additional
advantage of presenting the transitions between the borders (Figure 5), which tends to
be an issue with unsupervised ISODATA clustering [45]. Identification of these transition
areas around the boundaries, coupled with the flow accumulation data (Figure 1b–e), may
be considered when planning further sample collection and nitrogen reduction studies,
particularly in the context of estimating the location and extent of nitrate reduction pro-
cesses [88]. The layout of the subzones generated through Optimized Hot Spot analysis was
also less fragmented and more homogeneous (Figure 5) [89]. It must be stressed, however,
that the feasibility of generating comparable results between unsupervised ISODATA clus-
tering and Optimized Hot Spot Analysis could be due to the small scale and high spatial
autocorrelation and density of the EC values. Considering these additional advantages, the
use of Optimized Hot Spot Analysis is more advantageous in delineating possible NRH
areas based on the EC values.

Optimized Hot Spot Analysis, which has been gaining interest and use during the last
10 years, could be a straightforward technique to utilize available EC values derived from
EMI sensors. It is a promising clustering technique that can be used for an exploratory
delineation of NRH in other artificially drained agricultural areas.

4. Conclusions

Soil electrical conductivity (EC) values derived from the inversion of apparent elec-
trical conductivity data measured with an electromagnetic induction instrument proved
to be an effective means for identifying nitrate reduction hotspots (NRH) in artificially
drained catchments. The NRH areas may be delineated either through the use of Getis–Ord
Gi* statistics (utilized through Optimized Hot Spot Analysis) or unsupervised ISODATA
clustering of the average EC values at depths between 80 to 180 cm. The significant cluster-
ing of EC values at a small scale indicates the presence of underlying spatial heterogeneity
that promotes differences in their average redox potential (Eh) values and NO3

− concen-
trations. Areas with significantly clustered high EC values, consequently classified as
NRH areas, were associated with high flow accumulation controlled by the topography
as well as impeding clayey soil layers that likely increases the water saturation values to
induce intense nitrate reduction. Though the generated clusters align from both clustering
techniques in terms of their average EC values, Eh values, and NO3

− concentrations, Opti-
mized Hot Spot Analysis has the additional advantage of presenting the transition between
subzone borders and has less fragmented clusters. The average NO3

− concentration from
NRH areas is 2.0 ± 2.2 mg/L, which is significantly lower than the concentrations from
non-NRH areas. Approximately 26% of the drainage catchments in the study may be
considered as NRH areas, suggesting that the estimates of the nitrate removal in the vadose
zone may be underestimated at the subcatchment level. The determination of the location
and extent of the NRH would be extremely beneficial in supporting site-specific strategies
for nitrogen management across different scales.

Supplementary Materials: The average NO3
− and Eh data for the installation points are avail-

able online as Mendeley Data, accessible at http://dx.doi.org/10.17632/235yhyjjbt.1 (accessed on
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Appendix A

Table A1. Classification of the piezometers according to the classes generated both from the unsuper-
vised ISODATA clustering (ISODATA) of the average electrical conductivity (EC) values and Gi bin
values (confidence level bin) from the Optimized Hot Spot Analysis (HOTSPOT). Coordinates are in
UTM Zone 32N (ETRS89).

Piezometer X Y Installation
Depth

ISODATA
Class

Gi bin
(Confidence Level Bin)

HOTSPOT
Class

Do the Classes Match between
Two Clustering Methods?

D1-013-3 568,950.29 6,205,760.41 135 3 3 99% hotspot MATCH
D1-099-2 568,955.31 6,205,749.16 65 3 3 99% hotspot MATCH
D1-099-3 568,955.35 6,205,749.61 125 3 3 99% hotspot MATCH
D1-100-2 568,978.96 6,205,754.65 135 3 3 99% hotspot MATCH
D1-100-3 568,979.10 6,205,754.98 165 3 3 99% hotspot MATCH
D1-102-2 568,925.47 6,205,778.52 115 3 3 99% hotspot MATCH
D1-102-3 568,925.68 6,205,778.99 145 3 3 99% hotspot MATCH
D1-104-2 568,935.25 6,205,739.34 105 2 0 not significant MATCH
D1-104-3 568,935.25 6,205,739.81 145 2 0 not significant MATCH
D1-105-2 568,965.24 6,205,739.08 105 3 3 99% hotspot MATCH
D1-105-3 568,965.36 6,205,739.62 165 3 3 99% hotspot MATCH
D1-106-2 568,962.35 6,205,772.23 105 3 3 99% hotspot MATCH
D1-106-3 568,962.45 6,205,772.60 155 3 3 99% hotspot MATCH
D1-178-2 568,999.84 6,206,013.51 125 2 −1 90% cold spot FALSE
D1-179-2 568,990.00 6,206,013.48 125 2 −1 90% cold spot FALSE
D1-180-3 568,979.90 6,206,013.46 125 2 −2 95% cold spot FALSE
D1-181-2 569,019.47 6,206,013.24 85 2 0 not significant MATCH
D1-181-3 569,019.81 6,206,013.23 125 2 0 not significant MATCH
D1-182-2 569,009.52 6,206,013.36 85 2 −1 90% cold spot FALSE
D1-182-3 569,009.79 6,206,013.38 125 2 −1 90% cold spot FALSE
D1-183-2 568,990.22 6,205,995.22 125 2 0 not significant MATCH
D1-184-2 568,978.06 6,205,994.69 125 2 0 not significant MATCH
D1-185-2 569,000.79 6,205,994.37 125 2 0 not significant MATCH
D1-186-2 568,999.83 6,206,003.34 125 2 0 not significant MATCH
D5-006-3 567,286.31 6,205,268.42 165 3 3 99% hotspot MATCH
D5-034-2 567,276.79 6,205,277.85 85 3 3 99% hotspot MATCH
D5-034-3 567,276.74 6,205,278.11 135 3 3 99% hotspot MATCH
D5-034-4 567,276.77 6,205,278.42 165 3 3 99% hotspot MATCH
D5-035-2 567,285.91 6,205,277.96 85 3 3 99% hotspot MATCH
D5-036-2 567,295.93 6,205,278.05 125 3 3 99% hotspot MATCH
D5-036-3 567,295.95 6,205,278.46 165 3 3 99% hotspot MATCH
D5-037-2 567,231.93 6,205,209.67 85 3 3 99% hotspot MATCH
D5-037-3 567,231.86 6,205,209.39 155 3 3 99% hotspot MATCH
D5-038-3 567,230.43 6,205,301.69 135 2 0 not significant MATCH
D5-039-3 567,222.71 6,205,189.34 165 2 0 not significant MATCH
D5-040-2 567,232.94 6,205,189.70 85 2 0 not significant MATCH
D5-040-3 567,232.87 6,205,189.31 135 2 0 not significant MATCH
D5-041-2 567,242.74 6,205,189.28 125 2 0 not significant MATCH
D5-042-2 567,209.70 6,205,293.77 105 1 0 not significant MATCH
D5-042-3 567,209.76 6,205,294.20 155 1 0 not significant MATCH
D5-043-3 567,211.24 6,205,218.80 145 3 3 99% hotspot MATCH
D5-052-3 567,137.41 6,205,325.90 155 2 0 not significant MATCH
D5-053-2 567,167.57 6,205,293.15 125 2 0 not significant MATCH
D5-053-3 567,167.53 6,205,293.54 155 2 0 not significant MATCH
D5-054-3 567,137.45 6,205,293.54 155 2 0 not significant MATCH
D5-055-3 567,137.68 6,205,353.54 155 2 0 not significant MATCH
D5-068-3 567,295.85 6,205,292.79 165 3 0 not significant MATCH
D5-170-3 567,243.01 6,205,200.79 125 3 1 90% hotspot MATCH
D7-023-3 567,103.75 6,204,929.55 135 2 −2 95% cold spot FALSE
D7-024-3 567,083.62 6,204,929.60 165 2 −1 90% cold spot FALSE
D7-025-3 567,093.59 6,204,929.46 125 2 −1 90% cold spot FALSE
D7-026-3 567,093.38 6,204,909.05 145 2 −3 99% cold spot FALSE
D7-027-3 567,093.28 6,204,939.42 145 2 0 not significant MATCH
D7-028-3 567,093.52 6,204,919.47 145 2 −3 99% cold spot FALSE
D7-029-3 567,093.64 6,204,871.98 155 1 −3 99% cold spot MATCH
D8-016-3 566,615.97 6,204,308.57 165 1 −3 99% cold spot MATCH
D8-017-3 566,615.75 6,204,288.56 165 1 −3 99% cold spot MATCH
D8-066-3 566,586.07 6,204,289.16 165 1 −3 99% cold spot MATCH
D8-173-3 566,711.53 6,204,315.16 155 1 −3 99% cold spot MATCH
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Table A1. Cont.

Piezometer X Y Installation
Depth

ISODATA
Class

Gi bin
(Confidence Level Bin)

HOTSPOT
Class

Do the Classes Match between
Two Clustering Methods?

D8-174-3 566,721.62 6,204,315.55 145 1 −3 99% cold spot MATCH
D8-175-2 566,579.78 6,204,259.84 135 1 −3 99% cold spot MATCH
D8-175-3 566,580.03 6,204,259.92 165 1 −3 99% cold spot MATCH
D8-176-2 566,701.34 6,204,315.01 105 1 −3 99% cold spot MATCH
D8-176-3 566,701.67 6,204,315.02 155 1 −3 99% cold spot MATCH
D8-177-3 566,540.17 6,204,249.21 165 1 −3 99% cold spot MATCH
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