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Abstract: Signaling in host plants is an integral part of a successful infection by pathogenic RNA
viruses. Therefore, identifying early signaling events in host plants that play an important role in
establishing the infection process will help our understanding of the disease process. In this context,
phosphorylation constitutes one of the most important post-translational protein modifications,
regulating many cellular signaling processes. In this study, we aimed to identify the processes affected
by infection with Peanut stunt virus (PSV) and its satellite RNA (satRNA) in Nicotiana benthamiana
at the early stage of pathogenesis. To achieve this, we performed proteome and phosphoproteome
analyses on plants treated with PSV and its satRNA. The analysis of the number of differentially
phosphorylated proteins showed strong down-regulation in phosphorylation in virus-treated plants
(without satRNA). Moreover, proteome analysis revealed more down-regulated proteins in PSV
and satRNA-treated plants, which indicated a complex dependence between proteins and their
modifications. Apart from changes in photosynthesis and carbon metabolism, which are usually
observed in virus-infected plants, alterations in proteins involved in RNA synthesis, transport,
and turnover were observed. As a whole, this is the first community (phospho)proteome resource
upon infection of N. benthamiana with a cucumovirus and its satRNA and this resource constitutes a
valuable data set for future studies.

Keywords: signaling; virus infection; Nicotiana benthamiana; Peanut stunt virus; plant-virus
interactions; satellite RNA; phosphoproteome; phosphoproteomics; RNA turnover; phosphorylation

1. Introduction

Viruses are among the most important causal agents of infectious diseases in animals and plants.
Plant viruses are composed of a protein coat and a nucleic acid core [1]. Their life cycle is strictly
associated with a host cell environment and uses the host’s biochemical machinery. Therefore, viruses
need hosts in order to multiply and spread, and thus they are considered as parasites [1]. Viruses,
by invading susceptible plant host cells, lead to a pathogenesis process, which results in the disturbance
of the host physiology, causing disease symptoms. The interactions between viral and plant factors
lead to engagement of many host proteins in defense responses against infectious agents [2–4].
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Peanut stunt virus (PSV) is a plant virus that belongs to the worldwide present Cucumovirus genus
(Bromoviridae family). PSV infects many legume plants, including peanut (Arachis hypogaea L.), soybean
(Glycine max (L.) Merr.), or bean (Phaseolus vulgaris L.), as well as Solanaceae species, including the
model plant Nicotiana benthamiana. PSV is a positive sense, single stranded RNA ((+)ssRNA) virus and
its genome consists of three genomic and two subgenomic strands. Additionally, certain PSV strains
contain a noncoding satellite RNA particle (satRNA) [5]. RNA1 and RNA2 encode components of the
viral replicase complex 1a and 2a, respectively. Moreover, RNA2 has an additional open reading frame
for the 2b protein, synthesized from the subgenomic RNA4A, which is known to participate in viral
movement and silencing suppression [6,7]. RNA3 is dicistronic and encodes a movement protein (3a)
and a coat protein (CP). The latter is synthesized from subgenomic RNA4 [8].

PSV-P, a well-studied PSV strain belonging to the I subgroup of PSVs [5], is associated with a
satRNA, a 393 nt (+)ssRNA molecule that depends on its helper virus for replication. SatRNAs are
divided into two groups: large satRNAs encoding a single nonstructural protein and smaller ones
(as satRNA of PSV) that do not encode functional proteins [9]. SatRNAs are able to modulate helper
virus titer (usually decrease) and symptom severity (usually attenuate), which depends on the strains
of the helper virus, the sequence of the satRNA, the host [9,10], and environmental conditions [11].
The satRNA can influence the plant metabolism, resulting in significant changes in protein levels,
including those of proteins important for photosynthetic activities and carbon metabolism [12].

Such observed changes in protein levels gave insight into the molecular mechanisms involved
in host–virus–satRNA interactions [12]. Still, however, little is known about early signaling and
the post-translational modifications (PTMs) occurring during plant virus-induced pathogenesis [13].
PTMs lead to the induction of protein structural changes, modulation of their activities, changes
in subcellular localization, stability, and interactions with other proteins and molecules [14].
Among many PTMs, phosphorylation is one of the major control mechanisms for protein activity
in plant–pathogen interactions and the best characterized PTM regulating cellular signaling
processes [15,16]. Phosphorylation of serine, threonine, and tyrosine is considered a crucial factor in the
integration and relay of signals within plant cells and one of the most abundant covalent modifications
of proteins [17]. Reversible protein phosphorylation is a major mechanism of signal transduction
that is mediated by protein kinases and protein phosphatases, thereby regulating many biological
processes [18]. Moreover, this PTM has been reported to be associated with reactions toward abiotic
and biotic factors (e.g., defense responses against pathogens) [19]. Phosphorylation changes in the
host proteome under virus infection are investigated more thoroughly in humans or animals than in
plants. Studies on signaling processes mediated by phosphorylation in plants encounter difficulties
caused by low abundance and the dynamic nature of phosphorylated proteins. However, significant
advances in mass spectrometry-based phosphoproteomics, including phosphopeptide enrichment,
detection, and quantification, as well as phosphorylation site localization [20], have recently emerged.
There are studies concerning phosphorylation as a regulator of many processes during viral infection
in plants; however, these are mainly connected with the phosphorylation status of single plant or viral
proteins [21–26]. Global changes in the plant phosphoproteome during plant virus infection remain
poorly studied [13]. Such studies are, however, highly useful to expand the understanding of the
mechanisms of plant–virus interactions.

Here, we analyzed the proteome and phosphoproteome of N. benthamiana plants infected with PSV-P
or with PSV-P together with satRNA at five days post inoculation (dpi). Our analysis revealed strong
differences in the numbers of the phosphorylated proteins and their levels isolated from PSV-P and PSV-P
and satRNA-infected N. benthamiana. Strong down-regulation in phosphorylation in virus-treated plants
(without satRNA) was detected, whereas satRNA addition to virus inoculum caused only a slight
decrease in overall phosphorylation levels. Moreover, differentially regulated (phospho)proteins were
mostly associated with photosynthesis, carbon metabolism, and RNA processing.
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2. Results

2.1. Experimental Set-Up for Proteome and Phosphoproteome Analyses of PSV-P- or PSV-P and
satRNA-Infected N. benthamiana Plants

To gain insight into the early molecular changes associated with the response of N. benthamiana to
infection with PSV-P and PSV-P and satRNA, and into the influence of satRNA presence in the virus
inoculum, proteome and phosphoproteome analyses were performed. The fifth day post infection
(5 dpi), before the rapid rise of the virus accumulation [11], was chosen as a time point for harvesting
to reveal early signaling during virus infection. Plants were inoculated with genomic transcripts of
PSV-P, PSV-P and satRNA, and mock (inoculated with phosphate buffer–control) (Figure 1A) and
harvested at 5 dpi, when the disease symptoms were not yet visible (Figure 1B). After N. benthamiana
plants were harvested at 5 dpi, PSV-P and satRNA accumulation levels were assessed by means of
quantitative reverse transcriptase real-time polymerase chain reaction (RT-qPCR) in order to pick plants
for (phospho)proteome analyses. PSV accumulation analysis revealed higher levels or no change of
viral RNAs in PSV-P treated plants (Figure S1), which is consistent with previous data on the changes in
the proteome of N. benthamiana infected with PSV-P with or without satRNA, where a slight decrease in
viral RNA accumulation in the presence of satRNA was reported [12]. Plants in which the accumulation
level was similar (within the tested condition) were taken for (phospho)proteome analysis.
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inoculation (dpi) (B) and 21 dpi (C). Black arrows indicate infection symptoms: chlorosis and leaf 
malformations generated by PSV-P and chlorosis in PSV-P and satRNA-treated plants (C). 

Figure 1. Schematic representation of the infection strategies and resulting phenotypes. (A) N. benthamiana
plants inoculated with inoculation buffer (MOCK), inoculation buffer supplied with in vitro transcripts
of peanut stunt virus (PSV)-P genomic strands (black lines) (PSV-P), inoculation buffer supplied with
in vitro transcripts of PSV-P genomic strands and satellite RNA (black lines and red line, respectively)
(PSV-P and satRNA) (A). (B,C) N. benthamiana plants inoculated with the following: inoculation buffer
(MOCK), in vitro transcribed PSV-P genomic strands (PSV-P), and in vitro transcribed PSV-P genomic
strands and satellite RNA (PSV-P and satRNA) at 5 days post inoculation (dpi) (B) and 21 dpi (C).
Black arrows indicate infection symptoms: chlorosis and leaf malformations generated by PSV-P and
chlorosis in PSV-P and satRNA-treated plants (C).
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2.2. PSV-P and PSV-P and satRNA Infections Influence the N. benthamiana Proteome

To study the changes in the proteome in response to PSV-P or PSV-P and satRNA, we applied a
previously described workflow [27]. In total, 19,830 peptides were identified, which were assigned
to 4083 protein groups. Of these, the 2586 proteins present in at least two replicates in at least one
condition (Table S1A) were subjected to further analysis, and 93.4% of them were found to be present
in all conditions (Figure 2A). To pinpoint differentially abundant proteins between conditions in
order to detect proteins referred as PSV-P-, PSV-P and satRNA-, and satRNA-responsive, pairwise
two-sample tests (p < 0.05) between conditions were performed (Table 1, Table S1C–E). A greater
number of PSV-P-responsive proteins (111) was up-regulated, however, addition of satRNA to the
virus inoculum caused a strong increase in down-regulated satRNA-responsive proteins number (218).
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Figure 2. Summary of the data analysis. Data analysis workflow of (A) proteome, (B) phosphoproteome,
and (C) normalized phosphoproteome of N. benthamiana plants infected with PSV-P and PSV-P
and satRNA.

Table 1. Differentially regulated (phospho)proteins.

Treatment
Proteome Phosphoproteome Phosphoproteome after

Normalization

Up Down Up Down Up Down

PSV-P-responsive 111 54 4 87 2 20
PSV-P and satRNA-responsive 66 87 37 34 2 15

satRNA-responsive 56 218 84 4 19 -

N. benthamiana infected with peanut stunt virus (PSV)-P and PSV-P and satellite RNA (satRNA). PSV-P-responsive,
PSV-P and satRNA-responsive, and satRNA-responsive (phospho)proteins extracted by comparison of
(phospho)proteomes of PSV-P with MOCK, PSV-P and satRNA with MOCK, and PSV-P and satRNA with
PSV-P, respectively.
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To obtain insight into the functions and processes of proteins involved in PSV-P and
PSV-P and satRNA infection at the early stage, a gene ontology (GO) enrichment analysis
was performed using Blast2GO Basic Software. For this analysis, proteins exclusively present
(up- or down-regulated) in one condition (Table S2) were analyzed. The most enriched terms
among the down-regulated PSV-P-responsive proteins were auxin-activated and G-protein coupled
receptor signaling pathways, protein import into chloroplast stroma, regulation of chlorophyll
biosynthetic process, and chaperone-mediated protein complex assembly (Figure 3A). Whereas,
the up-regulated terms included actin cytoskeleton organization, negative regulation of signaling,
and negative regulation of cell communication (Figure 3B). On the other hand, among the PSV-P
and satRNA-responsive proteins, the most enriched GO terms were, in case of down-regulated
proteins, histidine biosynthetic process, defense response to virus, and regulation of translation-related
terms (regulation of elongation, positive regulation of translational fidelity) (Figure 3A). However,
among the up-regulated PSV-P and satRNA-responsive proteins, the most GO enriched terms were
negative regulation of endopeptidase activity, ribosome disassembly, cell wall macromolecule catabolic
process, tubulin complex assembly, photoinhibition, and microtubule-based process (Figure 3B).
Down-regulated satRNA-responsive proteins were enriched in terms associated with photosynthesis
(light harvesting in photosystem I, photosynthetic electron transport in photosystem II) and ribosomal
large subunit assembly terms (Figure 3A), whereas the enriched terms concerning the up-regulated
satRNA-responsive proteins were response to oxidative stress, cellular oxidant detoxification,
and positive regulation of ATPase activity (Figure 3B).

An additional analysis to indicate the affected pathways was conducted using the KEGG (Kyoto
Encyclopedia of Genes and Genomes) Automatic Annotation Server (KAAS) tool [28], revealing the
most affected pathways by PSV-P, PSV-P and satRNA infection, and satRNA presence in virus inoculum
(Figure 4). The highest number of affected pathways concerned down-regulated satRNA-responsive
proteins, which correlated with the high number of differentially regulated proteins in this condition.
Among the affected pathways, there were ribosome (ko03010); carbon metabolism (ko01200); and
photosynthesis-related terms (photosynthesis (ko00195), photosynthesis-antenna proteins (ko00196),
and carbon fixation in photosynthetic organisms (ko00710)). The pathway related to ribosomes was
strongly down-regulated by satRNA presence in the virus inoculum; however, in PSV-P-treated plants,
more proteins related to this this pathway were up-regulated. Additionally, together with ribosome
(ko03010), carbon metabolism (ko01200), and biosynthesis of amino acids (ko01230), proteasome
(ko03050) was up-regulated in PSV-P-treated plants. Moreover, proteins related to RNA transport
(ko03013) were more down-regulated among PSV-P and satRNA-responsive proteins. Signaling
pathways such as PI3K–Akt (phosphoinositide 3-kinase–serine/threonine-specific protein kinase)
(ko04151), mitogen-activated protein kinase (MAPK) (ko04016), and mTOR (target of rapamycin)
(ko04150) were affected to a certain extent by PSV-P or PSV-P and satRNA. Nonetheless, satRNA
contributed to down-regulation of few proteins involved in these signaling pathways. Furthermore,
pathways related to plant–pathogen interaction (ko04626) were also found.
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of GO terms was analyzed separately for down-regulated (A) and up-regulated proteins (B) using
Blast2GO Basic.
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Figure 4. KEGG Automatic Annotation Server (KAAS) analysis. Analysis conducted separately
on down- and up-regulated (phospho)proteins during PSV-P and PSV-P and satRNA infection of
N. benthamiana plants using Blast2GO Pro. P—PSV-P-responsive, Ps—PSV-P and satRNA-responsive,
s—satRNA-responsive, MAPK—mitogen-activated protein kinase, TOR—target of rapamycin. Values
represent the numbers of repeated terms.

2.3. PSV-P and PSV-P and satRNA Infections Influence the N. benthamiana Phosphoproteome

In total, Ti-IMAC (Ti4+-immobilized metal affinity chromatography) enrichment followed
by LC-MS/MS (liquid chromatography-mass spectrometry/mass spectrometry) analysis led to
the detection of 1373 phosphopeptides containing 2031 phosphosites (Table S1F) located on
1060 phosphoproteins. Surprisingly, the highest number of phosphosites simultaneously detected in
two conditions was shared between mock and PSV-P and satRNA samples (636), while the number of
phosphosites that overlapped between all three conditions was lower (258) (Figure 2B). To pinpoint
proteins with a changed abundance between conditions, two-sample tests (p < 0.05) between conditions
were performed (Table 1, Table S1H–J). The majority of the PSV-P-responsive proteins (87) was
down-regulated in their phosphorylation level, whereas among the satRNA-responsive proteins,
a higher number of proteins with up-regulated phosphosites (84) was identified (Table 1).
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To reveal phosphorylation motifs in significantly regulated phosphosites, Motif-X analysis was
conducted. This analysis indicated two potential phosphorylation motifs for phosphoserine: SP
and RxxS (Figure 5). The SP motif is a common target for proline-directed kinases, which include
mitogen-activated kinases and cyclin-dependent kinases, whereas RxxS is a recognition motif for
14-3-3 proteins [29] that were also found in our data (Table S1F).
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regulated phosphosites in PSV-P- and PSV-P and satRNA-infected N. benthamiana leaves.

GO enrichment analysis was also performed using the Blast2GO Basic Software. For this analysis,
phosphoproteins exclusively present (up- or down-regulated) in one condition (Table S2) were analyzed.
This analysis demonstrated that under the biological process category, PSV-P-responsive proteins
with down-regulated phosphopeptides were assigned to the formation of the cytoplasmic translation
initiation complex, sucrose metabolism, protein autophosphorylation, and signal transduction by
protein phosphorylation, while PSV-P-responsive proteins with up-regulated phosphopeptides were
enriched in mitochondrial electron transport and proton transmembrane transport terms (Figure 6).
Regarding PSV-P and satRNA-responsive proteins with regulated phosphopeptides, the down-regulated
ones were enriched in plant-type primary cell wall biogenesis, while among the up-regulated ones,
there were jasmonic- and salicylic acid-mediated signaling pathways, nuclear-transcribed mRNA
catabolic processes, and nonsense-mediated decay. Additionally, satRNA-responsive proteins with
down-regulated phosphopeptides were enriched in mitochondrial electron transport and regulation
of ARF (ADP-ribosylation factor) protein signal transduction, whereas the up-regulated terms were
enriched in protein autophosphorylation, regulation of transport, formation of cytoplasmic translation
initiation complex, transmembrane receptor protein serine/threonine kinase signaling, and signal
transduction by protein phosphorylation.

The pathway analysis using KAAS revealed no results for proteins with up-regulated
phosphopeptides in PSV-P-treated plants and down-regulated ones in response to satRNA addition
to the virus inoculum (Figure 4). The most affected pathways associated with down-regulated
PSV-P-responsive and up-regulated satRNA-responsive proteins with regulated phosphopeptides were
amino sugar and nucleotide sugar metabolism (ko00520), carbon metabolism (ko01200), RNA transport
(ko03013), ribosome (ko03010), and photosynthesis-related pathways (carbon fixation in photosynthetic
organisms (ko00710) and antenna proteins (ko00196)). PI3K–Akt (ko04151) and mTOR (ko04150)
signaling pathways were altered likewise. Additionally, the up-regulation of phosphopeptides of
satRNA-responsive proteins also influenced pyruvate metabolism (ko00620). Moreover, infection with
PSV-P and satRNA mostly influenced mRNA surveillance (ko03015) and RNA degradation (ko03018).
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Figure 6. GO enrichment for biological process for phosphoproteins. Data from PSV-P- or PSV-P and
satRNA-infected N. benthamiana plant phosphoproteins. The distribution of GO terms was analyzed
separately for down-regulated (A) and up-regulated proteins (B) using Blast2GO Basic.

2.4. A Normalized N. benthamiana Phosphoproteome upon PSV-P and PSV-P and satRNA Infections

In order to pinpoint the significantly deregulated phosphopeptides under virus infection,
phosphopeptide intensities were normalized to the protein intensities [27]. This is necessary as
changes in phosphopeptide abundance may result from true phosphorylation changes (kinase
or phosphatase activity) or changes in overall (phospho)protein abundance [27]. This analysis
retained 267 phosphosites that were located on 156 phosphoproteins (Figure 2C). Analogous to
the non-normalized phosphoproteome results, the highest number of phosphosites simultaneously
detected in two conditions is shared by mock and PSV-P and satRNA samples (104), while the
number of phosphosites that were common between the three conditions was lower (68) (Figure 2C).
Two-sample comparisons revealed a greater number of down-regulated phosphoproteins than
up-regulated phosphoproteins in both PSV-P- and PSV-P and satRNA-treated plants (Table 1,
Table S1K–M). Similar to the phosphoproteomic results, normalization confirmed that the addition
of satRNA into the virus inoculum led only to the up-regulation of phosphorylation, and no
down-regulated phosphosites were found to be statistically significant.

Proteins exclusively present (up- or down-regulated) in one condition (Table S2) were submitted to
GO enrichment analysis. Some of the GO terms, for example, carbohydrate metabolic process-related
terms (disaccharide and hexose), mitochondrial electron transport, tricarboxylic acid cycle, and signal
transduction by protein phosphorylation, matched the phosphoproteome enrichment analysis
results without normalization for the corresponding deregulated comparisons. However, some
other terms were obtained. Additional terms for PSV-P-responsive proteins with down-regulated
phosphopeptides were classified as the organonitrogen compound biosynthetic process and the cell
surface receptor signaling pathway (Figure 7), whereas PSV-P and satRNA-responsive proteins with
down-regulated phosphopeptides were enriched in the following processes: proteasome-related terms
(proteasome assembly and proteasome-mediated ubiquitin-dependent protein catabolic process),
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thylakoid membrane organization, and nonphotochemical quenching. Meanwhile, up-regulated
phosphoproteins were enriched in regulating translational initiation.
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Figure 7. GO enrichment for biological process for phosphoproteins after normalization to protein
levels. The distribution of GO terms was analyzed separately for down-regulated (A) and up-regulated
proteins (B) using Blast2GO Basic.

The KAAS analysis confirmed the pathways analyzed for the phosphoproteome without
normalization to protein levels (Figure 4). However, in the case of PSV-P and satRNA-responsive
proteins with down-regulated phosphopeptides, additional pathways regulated by phosphorylation
were detected, such as oxidative phosphorylation (ko00190) and those related to proteasome (ko03050).

2.5. Evaluation of Correlation between Gene Expression and (Phospho)Protein Level

To assess if gene expression contributed to the observed changes in the (phospho)proteome,
19 genes for proteins that may be involved in pathogenesis or defense processes obtained from both
proteomic and phosphoproteomic analyses were selected for analysis. ERG3 (elicitor-responsive
protein 3) was found to play a role in plant defense signaling, where ERG3 transcript levels were
greatly enhanced by treatment of rice with a fungal elicitor and a Ca2+-ionophore [30]. BIP (binding
immunoglobulin protein, heat shock 70 kDa protein) and PR2B (glucan endo-1,3-β-glucosidase) belong
to the stress response-associated proteins [3,31]. Another group of proteins that play essential roles in
plant-host defense are Argonaute proteins (AGO1B and AGO4). They participate in post-transcriptional
gene silencing, a process that is activated in response to the presence of double-stranded RNAs
(dsRNAs) in plants [32]. Finally, increased activity of PPC1 (phosphoenolpyruvate carboxylase 1) was
shown to correlate with the development of viral infection and reduction of photosynthesis [33].



Int. J. Mol. Sci. 2018, 19, 3223 11 of 23

Our RT-qPCR analysis results showed that the direction of the changes in transcript level does
not always correlate with protein level, and protein or transcript level does not always correlate with
phosphoprotein level (Table 2). Mostly, for phosphoproteins that were statistically significant, their
corresponding proteins were not found to be altered. The differences in the direction of the changes
may result from transcription or translation efficiency, post-transcriptional or translational regulation,
or mRNA or protein degradation.

Table 2. Validation of the proteomic (light grey) and phosphoproteomic (grey) data by gene expression
levels analysis (quantitative reverse transcriptase real-time polymerase chain reaction—RT-qPCR).

Validation Proteomics Phosphoproteomics

Gene Expression P(H1) Result Protein Level Result Phosphorylation Level Result

PSV-P-responsive

BIP 1.131 0.085 1.384 UP
ERG3 0.997 0.941 2.970 UP
MCA 0.949 0.133 1.552 UP

BSL3-like 1.108 0.015 UP 1.040 2.461 UP
FBP2like 1.151 0.117 0.788 0.062 DOWN

PMI1 1.284 0.005 UP 1.213 0.313 DOWN
PPC1 1.249 0.012 UP 0.975 0.152 DOWN
RS6 0.833 0.010 DOWN 3.340 UP 0.275 DOWN

TPR-like1320 1.122 0.106 1.283 UP 0.250 DOWN
TSJT1 0.722 0 DOWN 1.073 0.282 DOWN

PSV-P and satRNA-responsive

BIP 1.469 0 UP 1.279 UP
GRP2 1.221 0 UP 1.204 UP
PR2B 0.580 0.018 DOWN 0.300 DOWN

AGO1B 1.166 0.004 UP 1.268 0.556 DOWN
EIF5 1.200 0 UP 1.300 2.069 UP
ECT5 1.109 0.012 UP 1.053 0.507 DOWN

RPN10 0.956 0.118 1.330 0.397 DOWN
RS6 0.903 0.062 2.848 UP 0.312 DOWN

TPR-like1320 1.122 0.130 1.223 0.616 DOWN

satRNA-responsive

AGO4 1.169 0.002 UP 0.757 DOWN
ERG3 1.446 0 UP 0,359 DOWN
GRP2 1.162 0.002 UP 1.299 UP
PR2B 1.202 0.345 0.201 DOWN
PSB 1.207 0 UP 0.839 DOWN

FBP2like 0.914 0.309 1.369 12.957 UP
PGM1 0.980 0.682 0.850 3.042 UP
PMI1 0.849 0.012 DOWN 0.771 3.285 UP
PPC1 0.897 0.222 0.835 5.959 UP
TSJT1 1.148 0.001 UP 0.813 3.957 UP

The results UP or DOWN indicate the direction of statistically important changes. Expression as well as protein and
phosphorylation levels values represent fold changes.

2.6. Analysis of Protein–Protein Interaction Networks in PSV-P and PSV-P and satRNA-Infected
N. benthamiana

To investigate possible interactions between PSV-P- or PSV-P and satRNA-responsive proteins and
phosphorylated proteins normalized to proteome data and to cluster sub networks into several KEGG
groups, STRING (search tool for recurring instances of neighbouring genes) analysis was performed.
At the early stage of the PSV-P infection process, most interacting (phospho)proteins were involved in
ribosome, carbon fixation in photosynthetic organisms, RNA transport, biosynthesis of amino acids,
amino sugar and nucleotide sugar metabolism, spliceosome, and proteasome (Figure 8). Whereas
in PSV-P and satRNA N. benthamiana plants at 5 dpi, the interacting (phospho)proteins were mostly
involved in ribosome; biosynthesis of amino acids; RNA transport; and, in contrast to PSV-P-infected
plants, RNA degradation (Figure 9).
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3. Discussion

Our previous studies on PSV-G strain- and PSV-G and satRNA-infected N. benthamiana
transcriptomes showed that in the PSV-G-infected plants, more of the differentially expressed genes
(DEGs) associated with phosphorylation were found to be down-regulated compared with PSV-G and
satRNA-infected plants, where the number of up-regulated DEGs associated with this category was
considerably higher [34]. This result indicates that phosphorylation may be one of the most significant
process connected to satRNA influence on plant defense mechanisms against PSV infection.

3.1. PSV-P and PSV-P and satRNA Infections Influenced N. benthamiana Signaling Pathways

Phosphorylation is one of the most important post-translational modifications for cell signaling.
The pathogenesis process may lead to disturbances in intra- and inter-celllular communication;
therefore, the changes in signaling pathways caused by PSV-P and PSV-P and satRNA were analyzed.
In our studies, KAAS analysis indicated an involvement of deregulated proteins and phosphoproteins
in PI3K–Akt, MAPK, and mTOR signaling pathways in PSV-P and PSV-P and satRNA-treated
plants. A comparison between PSV-P-, PSV-P and satRNA-, and mock-infected plants showed strong
down-regulation of protein phosphorylation levels in PSV-P-treated plants, whereas satRNA presence
in virus inoculum led to up-regulation in phosphorylation. GO enrichment analysis revealed that
only in PSV-P-infected N. benthamiana, a decrease in processes connected with signaling and cell
communication processes at the proteome level was found. In contrast, at the phosphosphoproteome
level, protein autophosphorylation and signal transduction were found. Specifically, down-regulation
of auxin-activated signaling pathways at the proteome level was detected in the aforementioned
condition. A study on the Rice dwarf virus P2 protein showed that auxin signaling plays an active role
in antiviral defense that needs to be repressed by the virus in order to attain productive infection [35].
Another term, the G-protein coupled signaling pathway, was also a down-regulated term at the
proteome level. Studies concerning G-protein coupled signaling in response to different pathogen
elicitors in N. benthamiana indicated that G-proteins positively regulated defense-related genes in plant
defense signaling [36]. Moreover, among PSV-P-responsive phosphoproteins, the down-regulated
term “cell surface receptor signaling pathway” was found, with which receptor-like protein kinases
(RLK) are associated. RLKs in plants function as a central processing units, accepting parallel input
signals and converting them into appropriate output signals that lead to changes in metabolism, gene
expression, or development [37]. RLKs were found to be involved in plant defense [38].

Viruses have developed multiple mechanisms to activate TOR signaling in favor of viral
translation. One such strategy resulted in stimulation of the PI3K–AKT pathway upstream of the
TOR kinase [39]. In our proteome and phosphoproteome data, the TOR signaling pathway was also
affected by PSV-P and PSV-P and satRNA infections. There are different requirements for activation of
TOR signaling, as was shown in studies on Watermelon mosaic virus (WMV) and Turnip mosaic virus
(TuMV). Silencing of the TOR gene in Arabidopsis thaliana severely altered WMV accumulation, while
TuMV accumulation was only slightly delayed [40]. Also, MAPK (mitogen-activated protein kinase)
signaling pathways, found to be affected in this study (KAAS analysis), are of importance for plant
defense. MAPK cascades were found to be involved in signaling pathways by which signals generated
by biotic/abiotic stimuli are transduced into intracellular responses [41]. It was shown that some
of the components of the MAPK cascade function as positive regulators of PVX-PVY (Potato virus
X-Potato virus Y)-induced cell death. Nevertheless, ameliorated cell death induced by PVX-PVY in the
MAPK(K)-silenced plants did not facilitate virus accumulation in systemically infected leaves [42].

In case of the PSV-P and satRNA-treated plants, where lower levels of viral RNAs were observed,
proteins involved in jasmonic (JA) and salicylic acid (SA) pathways were found to be up-regulated
in the phosphoproteome data. Among proteins detected in our study, the regulator of nonsense
transcripts 2 (UPF2, Niben101Scf01035g06018.1), required for nonsense-mediated decay, was also
previously found to be involved in stress response in Arabidopsis exposed to wounding and infection by
Pseudomonas syringae [43]. Additionally, the nonsense-mediated decay pathway is a highly conserved
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mRNA surveillance pathway able to detect and degrade some viral RNAs [44,45]. Nonsense-mediated
decay may be meaningful for the PSV-P and satRNA pathogenesis in N. benthamiana, as our STRING
analysis of the (phospho)proteome also marked few interacting proteins involved in RNA degradation.
Integration of all of these pathways might have led to the attenuation of multiplication of PSV-P
and satRNA.

An additional group of differentially regulated proteins in our proteomic analysis is 14-3-3
proteins, a eukaryotic-specific protein family binding to phosphopeptides. They act as sensors for
phosphorylated motifs, but also undergo phosphorylation. They are involved in primary metabolism,
signal transduction, cell cycle control, apoptosis, and stress responses, among others [46]. They are also
indicated to play a role in plant immune responses. These 14-3-3 proteins were identified as putative
key regulators of the response to Tomato yellow leaf curl virus infecting tomato plants [47].

3.2. PSV-P and PSV-P and satRNA Manipulate Primary Metabolism

During PSV-P-plant interactions, photosynthesis, carbon fixation, and other processes related to
chloroplasts were strongly down-regulated, mostly at the proteome level. However, in the presence
of satRNA, more proteins with decreased levels were found, implying that this small particle presence
contributes to changes in the plant metabolism during viral infection. Photosynthesis or other processes
associated with chloroplasts were reported to be affected by numerous viruses including Cucumber mosaic
virus (CMV), PSV, or Tobacco mosaic virus (TMV), suggesting a common phenomenon [11,12,48,49]. Usually,
viruses decrease photosynthetic activity, but satRNA presence strengthens the down-regulating effect,
which was shown in PSV-P and satRNA-infected N. benthamiana proteomic studies [12].

Our results showed that amino acid biosynthesis was also affected by PSV-P and PSV-P and
satRNA infections (both by up- and down-regulated proteins, to a lesser extent at the phosphoproteome
level). However, the satRNA presence in the virus inoculum caused stronger down-regulation.
Histidine biosynthesis was down-regulated at the proteomic level in PSV-P and satRNA-infected
plants. Changes, up- and down-regulation, in processes associated with amino acid metabolism were
reported in multiple studies. Infections with Squash mosaic virus or Tobacco rattle virus caused an
increase in amino acid biosynthesis or content [50,51]. However, in some other studies, the levels of
certain enzymes connected with amino acid metabolism were observed to be decreased, for example,
upon Papaya meleira virus (PMeV) infection [52].

The levels of proteins associated with translation and ribosomes were strongly influenced by
PSV presence in this and our previous studies [34]. At the proteomic level, satRNA caused a decrease
in proteins connected with translation-associated terms, for example, regulation of elongation and
ribosomal large subunit assembly, while at the phosphoproteome level, proteins connected with
translation initiation were up-regulated in phosphorylation. Translation initiation and elongation
factors were differentially regulated during infection with many viruses, for example, PMeV and
Sugarcane mosaic virus (SCMV) [13,52]. Additionally, levels of diverse ribosomal proteins varied
during infection with Beet necrotic yellow vein virus (BNYVV) or SCMV [53,54]. Among many
ribosomal proteins, 40S ribosomal protein S6 (RPS6, Niben101Scf01293g03017.1), which was found
to be the strongly up-regulated protein and down-regulated in phosphorylation under PSV-P or
PSV-P and satRNA infection in our analysis, has attracted significant attention. The protein level and
phosphorylation status of RPS6 were examined in N. benthamiana plants infected with CMV, TMV,
TuMV, Turnip crinkle virus, and Potato virus A. All of the viruses were able to induce the accumulation of
the protein. However, no obvious changes in phosphorylation level of RPS6 after infection with these
viruses were observed. Possibly because the experimental system that was used might have lacked
sufficient sensitivity or resolution to detect changes in phosphorylation [26], as RPS6 in most cases
of human or animal viral infections was strongly dephosphorylated within hours after infection [55].
Therefore, the lower accumulation level of PSV-P and satRNA in N. benthamiana plants may be
associated with down-regulation of biosynthesis of amino acids, as well as with ribosomes, causing
down-regulation of translation activity of viral proteins.
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3.3. N. benthamiana Plants Respond with Changes in the Level and Phosphorylation Status of Stress
Response-Associated Proteins

An important part of the plant’s reaction to biotic and abiotic factors is a set of stress-responsive
proteins. Reactive oxygen species (ROS) and ROS-scavenging enzymes (enzymes that control ROS)
belong to this group of proteins. At the proteomic level, in response to satRNA presence, the levels
of proteins such as superoxide dismutases (SOD), peroxidases, and thioredoxins were up-regulated
and associated with oxidative stress and cellular oxidant detoxification terms. Likewise, SOD and
peroxidase levels were found to be present at higher levels in plants infected with pepper mild mottle
virus (PMMoV) or BNYVV [53,56].

Another group of stress-responsive proteins is chaperones and related proteins, which are
frequently identified in plant-virus proteomic studies. The chaperone-mediated protein complex
was the GO enriched term among down-regulated proteins in PSV-P-treated plants, while among
satRNA-responsive proteins, a heat shock protein was detected in the proteome analysis. Plants
infected by various plant viruses express cytosolic Hsp70 proteins at elevated levels, indicating that
Hsp70 could play an important role during viral infections. However, proteome studies of PSV-P-
and PSV-P and satRNA-infected N. benthamiana after symptom occurrence revealed different forms of
Hsp70 with one elevated and the other less abundant in response to satRNA [12,31,57].

Some proteins induced by pathogen attack have been classified as pathogenesis-related (PR)
proteins. There are many classes of PR proteins and a few have been identified in our proteomic
analysis in PSV-P and satRNA-treated plants. High up-regulation and GO enrichment of proteins
involved in negative regulation of endopeptidase activity and cell wall macromolecule catabolic
process were detected. A group of proteinase inhibitors (PR-6), connected with the first term, are
differentially regulated during infection with CMV or PMeV [52,58]. Whereas to the latter term,
a group of chitinases (PR-3, 4, 8, and 11) was assigned in our study. There were cases when proteins
with chitinase activity were up-regulated during PMMoV or RBDSV infections, but also they tended to
be down-regulated at the protein level [56,59]. Another PR protein, glucan endo-1,3-β-glucosidase B
(PR-2) was found to be less abundant among satRNA-responsive proteins, while in most other studies,
PR-2 proteins were more abundant [60,61]. The difference between PR-2 levels in plants infected with
PSV-P and PSV-P and satRNA might result from lower accumulation of viral genomic strands during
PSV-P and satRNA infection, and this was supported by the enrichment of down-regulated ‘defense
response to virus’ GO term.

3.4. PSV-P and PSV-P and satRNA Infection Results in Changes in RNA Processing

Plant viruses utilize the host replication machinery for their efficient replication. Viruses have
developed means to modulate host cellular processes to their own advantages; however, hosts also
exploited antiviral defense mechanisms [62]. Our study revealed changes in several processes connected
with RNA synthesis, transport, and turnover (mRNA surveillance pathway, RNA degradation,
and spliceosome), which demonstrates that PSV-P, a (+)ssRNA virus, affected N. benthamiana
RNA-based processes. Most of these processes were discussed above, except the spliceosome.
The spliceosome is a protein complex participating in splicing. Alternative splicing was found to play
an important role in plant antiviral responses concerning a few individual resistance genes [63,64].
Splicing mutants of the translation initiation factor eIF4E in tomato were shown to be immune against
Potato virus Y and Pepper mottle virus [65].

In conclusion, we provide the first global insight into the early signaling mechanisms associated
with PSV pathogenesis, which will be valuable for further studies.
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4. Materials and Methods

4.1. Plant and Virus Materials

N. benthamiana plants were grown in controlled conditions in separate greenhouse chambers
with 14 h light/10 h dark in 21 ◦C day/16 ◦C night cycles. Six four-leaf-stage seedlings per condition
were carborundum-dusted and rub-inoculated with 10 µg of PSV-P infectious clones, alone or in
combination with 1 µg of satRNA-P infectious clone (obtained as previously described [12]), in 0.05 M
phosphate buffer, pH 7.5. Mock-inoculated (0.05 M phosphate buffer, pH 7.5) plants were used as
controls. Plant material (all leaves including the inoculated ones) was harvested at five days post
inoculation (dpi) and subjected to further (phospho)proteomic analyses.

4.2. RT-qPCR for Viral Genomic RNAs and N. benthamiana Transcripts Analyses

Samples for RT-qPCR for viral genomic RNAs and N. benthamiana transcripts analyses and
reactions setups were prepared as described in Protocol S1.

Detection of PSV-P and satRNA-P was done by means of RT-qPCR as described in Protocol
S1. For comparison of accumulation of PSV-P genomic RNAs and satRNA-P, the primer pairs for
amplification of RNA 1 (PSVq1), RNA 2 (PSVq2a and PSVq2b), RNA 3 (PSVq3a and PSVqCP),
and satRNA (PARNA) listed in Table S3 were used. The levels of viral RNAs were normalized to
the levels of EF1α and β-actin mRNAs by amplification with primers NbEF1aF/R and NbActA/2,
respectively (Table S3). For each set of primers, the standard curve was obtained from a series of
10-fold dilutions of the respective templates. Plasmids containing PSV-P infectious clones and PCR
products of EF1α and β-actin were used to generate standard curves for viral and satellite RNAs
detection primers, and EF1α and β-actin primers, respectively [12]. Relative RNA accumulation was
calculated by dividing the number of copies of viral RNA or satRNA by the β-actin and EF1α copy
numbers. Based on the PSV-P genomic strands accumulation levels, out of six infected plants of similar
size and virus accumulation level, three of them were used for subsequent analysis.

Validation of gene expression for chosen transcripts from (phospho)proteome data was done
on the pooled samples of the inoculated leaves and the ones above, which were collected at 5 dpi.
Plant material for the analysis was prepared as for the assessment of virus accumulation level. cDNA
preparation and RT-qPCR reactions were performed as described above. Primers of analyzed genes of
chosen transcripts (Table S4) were designed using Primer3 software [66]. Tested genes were normalized
to EF1α and β-actin genes expressions with NbEF1aF/R and NbActA/2 primers (Table S3). The reaction
results were analyzed using the Relative Expression Software Tool V.2.0.13 (Qiagen, Hilden, Germany).

4.3. Protein Extraction

Protein extraction was performed as described previously [67] with some modifications. Briefly,
1 g of finely ground plant material was suspended in homogenization buffer containing 50 mM
Tris-HCl buffer (pH 8), 30% sucrose, 5 mM EDTA, and 1 mM DTT in Milli-Q water and appropriate
amounts of the cOmpleteTM Protease Inhibitor mixture (Roche, Basel, Switzerland) and the PhosSTOP
Phosphatase Inhibitor mixture (Roche). After sonication and removal of cell debris by centrifugation
at 4 ◦C for 15 min at 2500 g, a methanol/chloroform precipitation was carried out on the supernatants
described previously. Protein pellets were dissolved in 8 M urea. Carbamidomethylation of cysteines
was carried out in the presence of 15 mM tris(carboxyethyl)phosphine (TCEP, Pierce) and 30 mM
iodoacetamide (Sigma-Aldrich, St. Louis, MO, USA). Samples were diluted to 1 M urea using 50 mM
TEAB. Two milligrams of protein material was digested with 10 µg of MS Grade Endoproteinase-Lys-C
(Wako Chemicals GmbH, Neuss, Germany) for 4 h, followed by an overnight digestion with 30 µg of
trypsin (Promega, Madison, WI, USA) at 37 ◦C. The digest was acidified to pH ≤ 3 with trifluoroacetic
acid (TFA) and desalted using SampliQ C18 SPE cartridges (Santa Clara, CA, Agilent Technologies),
according to the manufacturer’s guidelines. The desalted peptides were fully dried in a vacuum
centrifuge and then dissolved in 500 µL of loading solvent (80% (v/v) acetonitrile, 6% (v/v) TFA),
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from which 100 µL was kept for proteome analysis, while 400 µL was processed further with
phospho-enrichment using MagReSyn® Ti-IMAC (ReSyn Biosciences, Edenvale, Gauteng, South
Africa) as described previously [68]. Samples were vacuum dried and re-dissolved in 30 µL 2% (v/v)
acetonitrile and 0.1% (v/v) TFA prior to LC-MS/MS analysis.

4.4. Mass Spectrometry

LC-MS/MS analysis was performed as previously described [27]. For details, see Supporting
Information (Protocol S2).

4.5. (Phospho)Proteomic Data Analysis

The database search (using the N. benthamiana proteome downloaded from SolGenomics database
containing 57,140 protein entries) [69] and data analysis were performed using MaxQuant v.1.5.4.1 [70]
and Perseus 1.5.6.0 (available in the MaxQuant package), respectively, as described previously [27].
For phosphoproteome data, only phosphosites with localization probabilities larger than 0.75 were
retained for further analysis. Two-sample tests between conditions were performed with a cut-off
p-value of 0.05. All MS proteomics data have been deposited to the ProteomeXchange Consortium
(http://www.ebi.ac.uk/pride/archive/) via the PRIDE partner repository [71,72] with the dataset
identifier PXD010675. Normalization of phosphoproteome data was done as described previously [27].

4.6. Motif-X Analysis

The Motif-X algorithm was used to extract statistically overrepresented amino acid motifs
surrounding the phosphosites identified in the two-sample tests (p-value < 0.05) [73]. The sequence
window was limited to 13 amino acids, and foreground peptides were pre-aligned with the phosphosite
in the center. All phosphoproteins identified in the experiment were used as the background database.
The occurrence threshold was set at the minimum of 20 peptides, and the p-value threshold was
set at <10−6.

4.7. Functional Annotation of Differentially Expressed Genes and Pathway Analysis

Proteins and phosphoproteins, which differed between non-infected plants and those infected
with PSV-P or PSV-P and satRNA-P, were pinpointed as statistically different (p-value < 0.05)
and were uploaded to the Blast2GO Pro software [74] as queries in blastx searches against the
NCBI nucleotide collection (nr) (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_
TYPE=BlastSearch&LINK_LOC=blasthome) and InterPro databases [75]. Mapping, annotation,
and classification into functional categories were carried out using default settings in Blast2GO Pro.
Annex-based gene ontology (GO) augmentation enhanced annotations. Thereafter, KAAS, the KEGG
Automatic Annotation Server [28], was used to classify particular (phospho)proteins into appropriate
processes and pathways by analyzing obtained results to which KEGG enzyme codes were assigned
against data obtained from the KEGG pathway database.

Additionally, GO enrichment was performed using Blast2GO Basic with default settings. Proteins;
phosphoproteins and phosphoproteins normalized to protein levels, the levels of which were
significantly changed (p-value < 0.05); and unique (phospho)proteins that were found exclusively as
PSV-, PSVsat-, and sat-responsive were used for further analysis. Protein sequences of all identified
proteins or phosphoproteins were loaded in Blast2GO software and blasted against the NCBI nr protein
sequence database of green plants (Viridiplantae) with default settings. Afterwards, the results were
examined for GO annotation followed by Fisher’s exact test (p < 0.05) to extract enriched GO terms.

4.8. STRING Analysis of Protein–Protein Interaction Networks

Protein–protein interaction networks were constructed based on STRING analysis (https://string-
db.org) [76]. Sequences of differentially regulated and unique PSV-P- and PSV-P and satRNA-responsive

http://www.ebi.ac.uk/pride/archive/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://string-db.org
https://string-db.org
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proteins and phosphoproteins (normalized to proteins levels), for which the level significantly changed
in our data sets, were used as input. Solanum tuberosum L. was set as reference organism. The minimum
required interaction score was set as high confidence (>0.700) and the active interaction sources were
chosen as follows: textmining, experiments, databases, co-expression, gene fusion, and co-occurrence.
The results were visualized using Cytoscape (version 3.6.0) [77] with S. tuberosum ID numbers converted
to N. benthamiana ID numbers from SolGenomics database [69].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/
10/3223/s1. Figure S1: Accumulation level analysis of PSV-P RNAs and satRNA in N. benthamiana plants
infected with PSV-P and PSV-P and satRNA; Table S1: Lists of reproducibly quantified (phospho)proteins,
differentially regulated PSV-P-, PSV-P and satRNA-, and satRNA-responsive proteins, and uniquely identified
(phospho)proteins between conditions; Table S2: (Phospho)proteins found exclusively in one of the conditions
during pairwise comparisons; Table S3: Primers used for virus and satellite detection/accumulation measurements
by RT-qPCR; Table S4: Primers used for validation of chosen transcripts from (phospho)proteomic results; Protocol
S1: Samples preparation and RT-qPCR procedures; Protocol S2: Mass spectrometry procedure.
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5. Obrępalska-Stęplowska, A.; Budziszewska, M.; Pospieszny, H. Complete nucleotide sequence of a Polish

strain of Peanut stunt virus (PSV-P) that is related to but not a typical member of subgroup I. Acta Biochim. Pol.
2008, 55, 731–739. [PubMed]

6. Netsu, O.; Hiratsuka, K.; Kuwata, S.; Hibi, T.; Ugaki, M.; Suzuki, M. Peanut stunt virus 2b cistron plays a
role in viral local and systemic accumulation and virulence in Nicotiana benthamiana. Arch. Virol. 2008, 153,
1731–1735. [CrossRef] [PubMed]

7. Ding, S.-W.; Anderson, B.J.; Haase, H.R.; Symons, R.H. New overlapping gene encoded by the cucumber
mosaic virus genome. Virology 1994, 198, 593–601. [CrossRef] [PubMed]

8. Mushegian, A.; Koonin, E. Cell-to-cell movement of plant viruses. Arch. Virol. 1993, 133, 239–257. [CrossRef]
[PubMed]

9. Simon, A.E.; Roossinck, M.J.; Havelda, Z. Plant virus satellite and defective interfering RNAs:
New paradigms for a new century. Annu. Rev. Phytopathol. 2004, 42, 415–437. [CrossRef] [PubMed]

10. Liao, Q.; Zhu, L.; Du, Z.; Zeng, R.; Feng, J.; Chen, J. Satellite RNA-mediated reduction of cucumber mosaic
virus genomic RNAs accumulation in Nicotiana tabacum. Acta Biochim. Biophys. Sin. 2007, 39, 217–223.
[CrossRef] [PubMed]
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