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Ovarian cancer remains the most lethal gynecological malignancy. Ferroptosis, a specialized
form of iron-dependent, nonapoptotic cell death, plays a crucial role in various cancers.
However, the contribution of ferroptosis to ovarian cancer is poorly understood. Here, we
characterized the diagnostic, prognostic, and therapeutic value of ferroptosis-related genes
in ovarian cancer by analyzing transcriptomic data from TheCancerGenomeAtlas andGene
Expression Omnibus databases. A reliable 10-gene ferroptosis signature (HIC1, ACSF2,
MUC1, etc.) for the diagnosis of ovarian cancer was identified. Notably, we constructed and
validated a novel prognostic signature including three FRGs: HIC1, LPCAT3, and DUOX1.
We also further developed a risk score model based on these three genes which divided
ovarian cancer patients into two risk groups. Functional analysis revealed that immune
response and immune-related pathways were enriched in the high-risk group. Meanwhile,
the tumor microenvironment was distinct between the two groups, with more M2
Macrophage infiltration and higher expression of key immune checkpoint molecules in
the high-risk group than in the other group. Low-risk patients exhibited more favorable
immunotherapy and chemotherapy responses. We conclude that crosstalk between
ferroptosis and immunity may contribute to the worse prognosis of patients in the high-
risk group. In particular, HIC1 showed both diagnostic and prognostic value in ovarian
cancer. In vitro experiments demonstrated that inhibition of HIC1 improved drug sensitivity of
chemotherapy and immunotherapy agents by inducing ferroptosis. Our findings provide
new insights into the potential role of FRGs in the early detection, prognostic prediction, and
individualized treatment decision-making for ovarian cancer patients.
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INTRODUCTION

According to the statistics of the American Cancer Society in 2020, over 21,000 women were
diagnosed with ovarian cancer, of which nearly 14,000 women died from this disease (Siegel et al.,
2020). Despite the application of two newly developed molecularly targeted drugs, PARP inhibitors
(PARPi) and antiangiogenic agents, ovarian cancer remains the most lethal gynecologic malignancy
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(Ke et al., 2020). Due to the late diagnosis and lack of long-term
effective treatments, the 5-years survival rate of ovarian cancer is
only 47.8% (Zhang et al., 2016; Block et al., 2020). It is predicted
that the mortality rate of patients with ovarian cancer will rise
significantly by 2040 (Bray et al., 2018). Ovarian cancer with
distinct clinicopathological and molecular genetic features
exhibits a high degree of heterogeneous (Labidi-Galy et al.,
2017). Early detection of ovarian cancer has great promise to
improve clinical outcomes, however, there are few specific early
symptoms or sensitive biomarkers for the screening and
prognosis prediction of ovarian cancer by far. Thus,
identification of novel potential diagnostic and prognostic
biomarkers, as well as innovative therapeutic targets of ovarian
cancer is urgently needed to improve patient outcomes.

Ferroptosis is a newly recognized form of non-apoptotic cell
death driven by the iron-dependent catastrophic accumulation of
lipid reactive oxygen species (ROS), which is morphologically,
biochemically, and genetically distinct from traditional cell death
such as apoptosis, necrosis, and autophagy (Dixon et al., 2012).
Various signaling pathways have been confirmed participating in
ferroptosis cell death including the Hippo pathway (Yang et al.,
2019), MAPK pathway, and P53 pathway (Jiang et al., 2015;
Hattori et al., 2017). In parallel, an increasing number of
ferroptosis-related genes (FRGs) have been identified besides
two classical ferroptosis-regulated genes SLC7A11 and GPX4,
such as Nrf2, ATF4, FSP1 (Chen et al., 2017; Xie et al., 2017;
Bersuker et al., 2019; Dodson et al., 2019), etc.With the deepening
of research on ferroptosis, emerging studies revealed that
ferroptosis is implicated in a broad spectrum of human
diseases including cancer, degenerative diseases, carcinogenesis,
stroke, intracerebral hemorrhage, traumatic, brain injury,
ischemia-reperfusion injury, and kidney degeneration
(Stockwell et al., 2017). Targeting ferroptosis-related genes
(FRGs) to trigger ferroptosis cell death as novel therapeutic
approaches for cancer diagnosis and treatment has attracted
considerable attention (Liang et al., 2019). A previous study
showed that ovarian cancer stem cells were sensitive to the
ferroptosis inducer elastin in vitro and in vivo (Basuli et al.,
2017). Besides, researchers found that induce ferroptotic cell
death in ovarian cancer cells via activation of the TAZ-
ANGPTL4-NOX2 axis provided a promising therapeutic
implication (Yang et al., 2020).

Immunotherapy has shown great clinical value in the
treatment of ovarian cancer. The most recent study
demonstrated that ferroptosis was immunogenic, and
ferroptosis cancer cells in the early death stages could induce
an adaptive immune response to perform antitumor effects
(Efimova et al., 2020). One of the most typical hallmarks of
cancer is resistance to apoptosis (Hanahan and Weinberg, 2011),
thus induction of new type cell death methods and individualized
immunotherapy are becoming hotspots in tumor therapy. To
date, the significance of FRGs in diagnosis, prognosis,
immunotherapy, and chemotherapy of ovarian cancer has
been rarely studied.

In the present study, we comprehensively analyzed the role of
FRGs in ovarian cancer and highlights their diagnostic,
prognostic, therapeutic potential for ovarian cancer for the

first time. By using public databases, we screened consistently
dysregulated FRGs as reliable diagnostic and prognostic
biomarkers of ovarian cancer. Among these, HIC1 was found
to be of both diagnostic and prognostic value. Furthermore, a risk
prediction model related to FRGs was constructed. Functional
enrichment analysis surprisingly indicated that immune-related
processes and pathways were enriched. More importantly, we
analyzed the tumor microenvironment (TME), assessed
immunotherapy and chemotherapy response between high-risk
and low-risk groups. Finally, we performed experiments in vitro
to explore the association between HIC1 and treatment response
in ovarian cancer. Our work provided potential
chemotherapeutic and immunotherapeutic strategies due to
ferroptosis for ovarian cancer treatment.

MATERIALS AND METHODS

Data Source
ThemRNA expression profiles data for 57 ovarian cancer patients
and 12 normal samples in theGSE66957 dataset (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc�GSE66957) were downloaded
from the GEO database (https://www.ncbi.nlm.nih.gov/gds). The
transcriptome data and corresponding clinical features of 379
ovarian cancer patients were obtained from the TCGA database.
After removing the samples with incomplete clinical information,
374 ovarian cancer patients were randomly assigned to the training
set (n � 261) and validation set (n � 113) at the ratio of 7:3 for the
subsequent analyses. The data obtained from TCGA and GEO
datasets were both publicly available. Then, 288 FRGs were
downloaded from the FerrDb database (http://www.zhounan.
org/ferrdb/). After removing the overlapped genes, the
remaining 259 FRGs were used for our further analyses.

Analysis of Differentially Expressed
Ferroptosis-Related Genes
All gene expression profiles of the present study were normalized
and determined by using the scale method in the “limma” R
package. Differential gene expression analysis was performed by
comparing tumor tissues to normal tissues using the “limma”
package of R in the GSE66957 dataset. Genes that meet the
threshold of P-value < 0.05 and |log2 FC| > 1 were considered as
DEGs. Subsequently, we intersected the DEGs acquired from the
GSE66957 dataset with FRGs to get the DE-
FRGs(Supplementary Table S1).

Construction of the Least Absolute
Shrinkage and Selection Operator Model
and Receiver Operating Characteristic
Curve Analysis in the GSE66957 Dataset
The least absolute shrinkage and selection operator (LASSO)
regression arithmetic that uses regularization to improve
prediction accuracy was used to identify the feature DE-FRGs
from the 60 DE-FRGs (Friedman et al., 2010) and conducted by
“glmnet” of the R package. To distinguish patients with ovarian
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cancer from controls, the expression profile of gene signature was
extracted to construct the LASSO model by “glmnet” of the R
package. A model index for each sample of the GEO database was
further constructed using the regression coefficients obtained
from the LASSO analysis. To evaluate the diagnostic ability of
the LASSO model constructed by gene signature to identify
ovarian cancer, we performed ROC curve analysis in the
GSE66957 dataset using the pROC package.

Construction and Validation of a Prognostic
Ferroptosis-Related Gene Signature in the
TCGA Database
The FRGs associated with overall survival (OS) in ovarian cancer
were determined using univariate Cox regression analysis. Then,
a 3-gene signature was constructed with multivariate Cox
regression analysis by the R package “glmnet.” The risk score
calculating formula we used was:

ExpGene1pCoef1 + ExpGene2pCoef2 + ExpGene3pCoef3 . . .

where Coef represents the regression coefficients of genes and
Exp denotes the normalized expression values of each signature
gene. The corresponding patients in the training and validation
sets of the TCGA database were classified into high and low-risk
groups based on the median values obtained from the risk scores
calculated in the above equation. To assess the prognostic
prediction reliability of a risk scoring system constructed from
the 3-gene signature, we performed a time-dependent ROC curve
using the “survivalROC” in the R package. The OS between two
risk groups was analyzed by Kaplan-Meier analysis (K-M).
Univariate and multivariate Cox regression analyses were
carried out to determine independent prognostic predictors of
ovarian cancer patients. The nomogram and decision curve
analysis (DCA) were conducted to demonstrate the
effectiveness of this risk model.

Gene Set Enrichment Analysis and
Evaluation of Immune Microenvironment
The DEGs with p < 0.05 and |log2 FC| >1 between the high-risk
group and low-risk group were utilized to conduct GSEA based
on the cluster Profiler of R package. We performed GSEA
enrichment analysis by ranking all differential genes according
to their differential multiplicity between high and low risk groups.
The threshold for enrichment results was set to |Normalized
Enrichment score (NES)| > 1 and adjusted p-value < 0.05, and the
enrichment results were sorted by adjusted p-value, with
immune-related processes and pathways being the top
enriched pathways. Then, P-values were adjusted by using the
BH methods. Immune and stromal scores were calculated based
on the ESTIMATE algorithm and were compared between the
two risk groups (Yoshihara et al., 2013). With the CIBERSORT
algorithm, based on the LM22 gene signature file, we analyzed the
infiltration differences of 22 immune cell types between two risk
groups of ovarian cancer patients (Newman et al., 2019). The
threshold of adjusted p < 0.05 was considered significant.

Impact of Risk Scoring System on Ovarian
Cancer Patients Receiving Immunotherapy
and Chemotherapy
The expression patterns of the key immune checkpoint molecules
in the high- and low-risk groups were further analyzed (Jia et al.,
2021). Besides, the Tumor Immune Dysfunction and Exclusion
(TIDE, http://tide.dfci.harvard.edu/) algorithm and SubMap were
applied to predict the reaction to the immune checkpoint
blockade (CTLA-4, PD-1, and PD-L1) in patients with high-
and low-risk groups. Furthermore, the pRRophetic algorithm was
utilized to monitor the response of chemotherapy to the ovarian
cancer patients of TCGA database (Geeleher et al., 2014). To
identify effective drugs for the treatment of ovarian cancer, the
half-maximal inhibitory concentration (IC50) values for each
TCGA-ovarian cancer sample were obtained from the Genomics
of Drug Sensitivity in Cancer (GDSC, www.cancerrxgene.org/)
database.

Cell Culture
IOSE80 and human ovarian cancer cell lines OVCAR5, A2780,
SKOV3, HEY, ES-2 cells were purchased from Cell Bank of
China Science Academy (Shanghai, China). IOSE80 and
OVCAR5 were maintained in 1640 medium (Hyclone,
United States). A2780, SKOV3, HEY, ES-2 A2780, SKOV3,
HEY, and ES-2 were maintained in DMEM medium (Hyclone,
United States). The medium was supplemented with 10%
FBS (Gibco, United States) and 1% penicillin/streptomycin.
Cells were incubated at 37°C in a humidified incubator
containing 5% CO2. Cell lines were authenticated using short
tandem repeat DNA profiling.

Western Blotting
Cells were seeded in 6-well plates at a density of 1.5×105 cells per
well and cultured for 24 h. Cells with or without transfection were
collected on ice in RIPA (P0013B, Beyotime Biotechnology,
Shanghai, China) and protease Inhibitor Cocktail (HY-K0010,
MCE, China). Then, samples were incubated for 30 min at 4°C
with shaking and centrifuged at 12,000 g for 30 min at 4°C, and
the supernatants were collected. Protein concentrations were
measured with a BCA protein assay kit (P0012, Beyotime
Biotechnology, Shanghai, China). Proteins were separated
using 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (P0012A, Beyotime Institute of Biotechnology,
Shanghai, China) and transferred to PVDF membrane
(Millipore, Billerica, MA, United States) before blocking
with 5% non-fat milk in TBST (Tris-buffered Saline, 0.1%
Tween-20). Membranes were incubated overnight at 4 °C in a
solution containing the following primary antibodies: HIC1
(24949-1-AP, ProteinTech, Wuhan, China, 1: 1000 dilution),
actin (66009-1-Ig, ProteinTech, Wuhan, China, 1:20,000
dilution). Subsequently, blots were incubated with an HRP-
conjugated secondary antibody (Jackson Immunoresearch,
West Grove, PA) with dilution 1:2000 for 1 h at room
temperature. Protein expression was detected with ECL
reagents (G2020, Servicebio, Wuhan, China) using the
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enhanced chemiluminescence (ECL) detection system, and
quantified by densitometry using ImageJ.

Cell Counting Kit-8 Assay
Cell viability was detected by Cell Counting Kit-8 (CK04,
Dojindo, Kumamoto, Japan). Cells seeded at 5000 cells/well
density 96-well plates, 24 h later cells were treated with
cisplatin, paclitaxel, or BMS-1 (HY-17394, HY-B0015, HY-
19991, MCE, China) for 24 h. Treatment drug
concentrations were as follows: cisplatin at doses of 0, 5,
10, 20, 40, 80 µM, paclitaxel at doses of 0, 5, 10, 20, 40, 80 nM,
BMS-1 at doses of 0, 2.5, 5, 10, 20, 40 µM. For Fer-
1(SML0583, Sigma-Aldrich, United States) or DFO(D9533,
Sigma-Aldrich, United States) treament after transfection of
HIC1 siRNAs, after transfected with siRNAs for 48 h, cells
were treated 2uM Fer-1 or 20 uM DFO for 24 h. Then, 10 µL
CCK-8 was added to each well of the 96-well plate and co-
incubated with cells for 1 h. Then, the OD values at 450 nm
were detected.

MDA, GSH, and GSSG Measurement
MDA levels were quantified by using a lipid peroxidation MDA
assay kit (A003-2-2, Nanjing Jiancheng Bioengineering Institute,
China). according to the manufacturer’s instructions. The
intracellular concentration of total GSH and oxidized
glutathione (GSSG) was measured using a GSH and GSSG
Assay Kit (S0053, Beyotime Biotechnology, China) according
to the manufacturer’s protocol. Then, use the following
formula to calculated reduced GSH concentration: [GSH] �
[total GSH]−2*[GSSG].

Transfection of siRNA and Plasmid
Cells were seeded at a density of 1.5× 105/well in 6-well plates,
and cultured to 70–80% confluent for transfection of control
siRNA, HIC1 siRNA, control plasmid (pcDNA3.1), and HIC1
overexpressing plasmid. All siRNAs were purchased from
Guangzhou RiboBio (Guangzhou, China). Plasmids were
synthesized by General Biosystems (Anhui, China).
Lipofectamine 3000 (ThermoFisher, L3000008) was used for
siRNA and plasmids transfection according to the
manufacturer’s protocol. The knockdown and overexpression
efficiency were determined by Western Blotting 48 h post-
transfection.

Statistical Analysis
All bioinformatic statistical analyses of our present study
were performed in R (version 3.6.1) software. Differences
between the high- and low-risk groups were compared with
the Wilcoxon test. All experiments were independently
repeated more than three times. Statistical analyses
of in vitro experiments were performed using
GraphPad Prism 8 software and statistical significance
was determined by Student’s t-test. All reported P values
had been passed a two-tailed test and p < 0.05
was considered as statistically significant (p, p < 0.05; pp,
p < 0.01; ppp, p < 0.001).

RESULTS

Diagnostic Prediction Performance of FRGs
in Ovarian Cancer Patients
To explore the key genes for the diagnosis of ovarian cancer
patients, we performed differential gene analysis between
ovarian cancer samples and normal samples based on gene
expression profiles from the GSE66957 dataset. A total of 7771
DEGs were identified, of which 4743 genes were up-regulated
and 3028 genes were down-regulated in ovarian cancer
patients (Supplementary Table S2). Sixty FRGs of them
were differentially expressed between tumor tissues and
normal tissues (Figure 1A), which were displayed in a
heatmap (Figure 1B). Then, we extracted the expression of
DE-FRGs to construct the LASSO model based on GSE66957
dataset. As shown in Figures 1C,D, 10 feature genes were
screened out, including HIC1, LOC390705, SETD1B, ACSF2,
MUC1, KLHL24, PML, MT1G, GPT2, AKR1C1. Among these
ten genes, the expression levels of SETD1B, ACSF2, MUC1,
KLHL24, PML, MT1G, and GPT2 were higher in tumor tissues
than those in normal tissues, while HIC1, AKR1C1, and
LOC390705 were lower expressed in tumor tissues.
Subsequently, the 10-gene signature was applied to
construct a diagnostic model with the LASSO method
(Figures 1C,D). The ROC curve analysis was conducted to
estimate the validity and precision of the 10-gene signature for
the diagnosis of ovarian cancer. Surprisingly, the AUC of these
genes signatures was 1.0, demonstrating that the 10-gene
signature had the highest diagnostic significance for ovarian
cancer (Figure 1E).

Prognostic Prediction Performance of FRGs
in the Patients With Ovarian Cancer
Due to FRGs showed significant diagnostic value in patients
with ovarian cancer, we then sought to investigate their
relevance to the prognosis of ovarian cancer. We focused on
the TCGA database with its clinical information on ovarian
cancer. To screen the FRGs that would predict OS in ovarian
cancer patients, we performed univariate and multivariate Cox
regression analyses on the basis of the 60 FRGs.Finally, a 3-
gene signature associated with OS was developed, among
which HIC1, LPCAT3, and DUOX1 acted as risk factors
(HR > 1) in ovarian cancer (Figures 2A,B). Among them,
HICI was found to be a potential diagnostic factor for ovarian
cancer.

To further evaluate the prognostic value of the 3-gene
signature, a risk score of each sample in the training set and
validation set was calculated according to their coefficient
and corresponding expression. The ovarian cancer patients of
the training set and validation set were stratified into two risk
groups based on the median value of risk scores respectively,
including the high-risk group (n � 130) and the low-risk
group (n � 131) in the training set, and the high-risk group
(n � 56) and the low-risk group (n � 57) in the validation set.
The number of deaths was significantly increased with the
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increase of risk score in both train and validate cohorts
(Figures 2C,D). Kaplan-Meier survival curves
demonstrated that the risk scoring system was capable of
significantly differentiating the prognostic status of ovarian
cancer patients. Patients in the high-risk group showed an
obvious worse OS than those in the low-risk group
(Figure 2E, p < 0.05). Thereafter, the ROC curves showed
that the area under the curve (AUC) of 3-gene signature were
0.537, 0.633,0.633 and 0.622, 0.601, 0.601 at 1-,3-, and 5-years
in the training and validation set, respectively (Figure 2F). The
above evidences suggested that the risk model constructed by
the 3-gene signature had tolerable reliability in predicting OS
of ovarian cancer. The expressions of 3 signature genes
between the two risk groups were displayed in a heatmap
(Figure 2G). Surprisingly, the prognostic and diagnostic gene,
HIC1 displayed an increased expression level in the high risk

group, while it was downregulated in ovarian cancer tissues
than normal tissues.

Independent Prognostic Value of the
3-Gene Signature
Furthermore, we carried out univariate and multivariate Cox
regression analyses to determine whether the risk score was an
independent prognostic predictor for the OS of ovarian cancer
patients based on two clinicopathological features (age and stage).
In the univariate Cox regression analysis, we found that the risk
score was significantly related to the OS of ovarian cancer patients
in the TCGA cohort (Figure 3A). More importantly, the risk
score was still authenticated to be an independent predictor for
ovarian cancer based on the multivariate Cox regression analysis
(Figure 3B). The risk score was added to construct a nomogram

FIGURE 1 | Identification of DE-FRGs and construction of diagnostic signature with FRGs in GEO cohort. (A) Venn diagram for identifying DEGs between ovarian
carcinoma samples and normal ovaries that belonged to FRGs. (B) Heatmap of DE-FRGs in ovarian carcinoma samples compared with normal ovaries. (C) Coefficients
of the key prognostic FRGs in the LASSOmodel, each curve represents a gene. (D) 10-fold cross-validation for tuning parameter selection in the LASSOmodel. (E)ROC
curve analysis of the 10-FRG diagnosis signature in GSE66957 dataset. DEGs, differentially expressed genes; DE-FRGs, Differentially Expressed-ferroptosis-
related genes; FRGs, ferroptosis-related genes; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic.
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FIGURE 2 | Construction of prognostic gene signature with FRGs in TCGA cohort. (A, B) Forest plots showing the results of the univariate and multivariate Cox
regression analysis between gene expression and OS in the training set. Distribution of risk score for each patient and survival status of OC patients in the training set (C)
and validation set (D). (E) Kaplan-Meier curves for the OS of patients in the high-risk group and low-risk group in the training set (left) and validation set (right). (F) The
ROC analysis of training set (left) and validation set (right) for survival prediction by the three-gene signature. (G) Heatmap of the gene-expression profiles of the
FRGs signature in the training set (left) and validation set (right). OS, overall survival; OC, ovarian cancer.
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of 1-, 3- and 5-years survival probability (Figure 3C), and the
calibration curves were performed for the nomogram
(Figure 3D). Our results indicated that the risk model based
on the 3 FRGs could efficiently predict patient survival. DCA also
revealed that the risk score benefit was higher than the extreme
curve (Figures 3E–G). Meanwhile, risk score combined with
clinical features (stage, age) showed a better prediction effect
on the prognosis of patients. Taken together, these results

revealed that the 3-gene signature showed a significant clinical
practical value for patients with ovarian cancer.

Functional Enrichment Analyses in the
TCGA Database
To elucidate the underlying biological characteristics related to
the risk score, GSEA were performed on the basis of the DEGs

FIGURE 3 | Independent prognostic value of the risk score based on the 3-gene signature. Forest plot of univariate (A) and multivariate (B) Cox proportional
hazards regression analysis. (C) A nomogram based on risk score and clinical indicators for predicting 1-, 3-, and 5-year OS of ovarian cancer patients in TCGA cohort.
(D) Calibration plot of nomogram for predicting probabilities of 1-year, 3-year, and 5-year OS of patients. The dotted line indicates actual survival. (E–G) Decision curve
analysis shows the expected net benefits at 1- (E), 3- (F), and 5-year (G) based on the nomogram prediction at different threshold probabilities in the TCGAdataset.
None: assume an event will occur in no patients (horizontal solid line); All: assume an event will occur in all patients (green dash line). OS, overall survival.
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between the high-risk group and low-risk group in both training
and validation sets. The detailed information of GSEA results was
exhibited in Supplementary Tables S3–S6. Results of GSEA
showed that several immune-related biological processes (BP),
such as immune response-activating cell surface receptor
signaling pathway, immune response-activating signal
transduction, immune response-regulating cell surface receptor
signaling pathway, immune response-regulating signaling
pathway, positive regulation of cytokine production, regulation
of immune effector process were enriched in the high-risk group
(Figures 4A–C, p < 0.05). In addition, we identified that the
DEGs were also involved in many immune-related KEGG
pathways, including the T cell receptor signaling pathway,
Th17 cell differentiation NF-κB signaling pathway, Chemokine

signaling pathway, Cytokine-cytokine receptor interaction, and
HIF-1 signaling pathway (Figure 4D, p < 0.05). Generally, these
results implied that ovarian cancer patients in the high- and low-
risk groups posses distinct immune characteristics.

Analysis of the Tumor Microenvironment
Between the Two Risk Groups
Consistent with our results, emerging evidence had revealed that
the immunity displayed an important role in the pathogenesis of
ovarian cancer (Menderes et al., 2016). To further explore
whether the risk score correlates with the characteristics of
TME, we compared the ESTIMATE scores, Stromal scores,
and Immune scores of the two risk groups by using the

FIGURE 4 |GSEA analysis in TCGA dataset. (A) The enriched gene sets in GO-BP category by the DEGs between the two risk groups. (B) The enriched gene sets
in GO-CC category by the DEGs between the two risk groups. (C) Enriched gene sets in GO-MF category by the DEGs between the two risk groups. (D) Enrichment plot
of the DEGs between the high- and low-risk groups using GSEA-KEGG. Each line representing one particular gene set with unique color, and up-regulated genes
located in the left approaching the origin of the coordinates, by contrast the down-regulated lay on the right of x-axis. Only gene sets with adjusted p < 0.05 were
considered significant. And only several leading gene sets were displayed in the plot. GSEA, gene set enrichment analysis; GO, Gene Ontology; BP, biological process;
CC, cellular component; MF, molecular function; DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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ESTIMATE algorithm. The results indicated that the ESTIMATE
scores (p � 0.0074) and Stromal scores (p � 2.2e-06) had
significant differences between the high-risk and low-risk
groups, while Immune scores showed no significant differences
between the two risk groups (Figures 5A–C). Moreover, the
distribution of immune infiltration cells between the two risk
groups of ovarian cancer patients was investigated based on the
CIBERSORT algorithm, the relative percentage of 22 immune
cells in each sample were exhibited in barplot (Figure 5D). The
22 immune cell proportions of ovarian cancer patients in the
high- and low-risk groups were displayed the Violin plot,
which revealed that the high-risk group showed higher
Macrophages M2 infiltration. (Figure 5E, p < 0.05). In
addition, the correlations between the DE-FRGs and
22 tumor-immune cells were analyzed by Spearman analysis
(Figure 5F). These results suggested that there was a certain

difference in the TME between the high- and low-risk groups,
and possibly in the response to immunotherapy.

Assessment of Response to
Immunotherapy and Chemotherapy in
Patients With High- and Low-Risk Groups
Previous studies have shown that immune checkpoint molecules
have multiple clinical implications in the course of
immunotherapy for tumor patients (De Felice et al., 2015;
Odunsi, 2017). Therefore, we determined potential associations
between the expressions of key immune checkpoint molecules
and two risk groups. Intriguingly, the expressions of all immune
checkpoint molecules in the high-risk group were greater than
that of another group, except for CD47 (Figure 6A, p < 0.05),
suggesting that high-risk ovarian cancer patients might be more

FIGURE 5 | Correlation between the 3-gene signature risk score and immune status. (A–C) The differences of Stromal scores, Immune scores and ESTIMATE
scores in two risk groups. (D) Barplot showed the composition of 22 immune cells in each patient from the high-risk and low-risk groups analyzed by CIBERSORT. (E)
The Violin plot showed the ratio differentiation of 22 immune cells between OC samples with high or low risk scores, andWilcoxon rank sumwas used for the significance
test. (F) Heatmap showing the correlation between 22 kinds of immune cells and the DE-FRGs, the asterisk in each tiny box indicating the p value of correlation
between two kinds of parameters. The shade of each tiny color box represented corresponding correlation value between two parameters, and Spearman coefficient
was used for significance test. ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data; DE-FRGs, Differentially
Expressed-ferroptosis-related genes.
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likely to benefit from immunotherapy. The risk score showed
correlations with these key immune checkpoint molecules
(Figure 6B; CD276: Cor � 0.4401, CD28: Cor � 0.3807).
Then, the Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm and SubMap were applied to predict the clinical
response to immune checkpoint blockade (CTLA-4, PD-1, and
PD-L1) in different subgroups. TIDE showed that the responses
to immune checkpoint blockade were comparable between the

FIGURE 6 | Treatment response prediction of chemotherapy and immunotherapy in the high-risk and low-risk ovarian cancer patients. (A) Comparison of the
expressions of the immune checkpoint molecules between the low- and high-risk groups. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (B)Circle plot illustrating the
association between risk score and main immune checkpoint molecules. (C) Immunotherapy response prediction of ovarian cancer patients in the low- and high-risk
groups based on TIDE analysis. (D) Immunotherapeutic responses to anti-CTLA-4 and anti-PD-1 treatments in high- and low-risk patients. (E) IC50 values of 8
typical or potential therapeutic agents for ovarian cancer in the Genomics of Drug Sensitivity in Cancer database for low- and high-risk groups.
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high- and low-risk groups (Figure 6C, p = 0.9056). Interestingly,
the ovarian cancer patients of the low-risk group with low
expression of immune checkpoint molecules were more likely
to be more sensitive to respond to anti-PD-1 therapy (Figure 6D,
Bonferroni corrected p < 0.05).

To understand the chemotherapy further comprehensively,
the pRRophetic algorithm was used to estimate the response of
chemotherapy to the patients of TCGA database. According to
the IC50 available in the GDSC database for each TCGA sample,
we observed that 59 chemo drugs (Supplementary Figure S1)
had significant differences in estimated IC50 between the high-
risk group and low-risk group, and the patients of the low-risk
group were more sensitive to all of these chemotherapies
including the most commonly used chemotherapeutic drugs,
cisplatin, and paclitaxel, as well as several other potential
therapeutic agents (Figure 6E).

Inhibition of HIC1 Improved Drug Sensitivity
of Chemotherapy and Anti-PD1 Therapy via
Inducing Ferroptosis in Ovarian Cancer
Cells
Having found that the FRG, HIC1, exhibited both diagnostic and
prognostic value in ovarian cancer. On the basis of this thought-
provoking finding, we attempted to explore how HIC1 impacts
ferroptosis in ovarian cancer, and whether it relates to treatment
responses to chemotherapy and immunotherapy. Our results
showed that the expression of HIC1 was lower in ovarian
cancer cell lines (ES-2, OVCAR5, HEY, A2780, and SKOV3)
as compared to that in the normal ovarian cell line (IOSE80).
While, A2780, OVCAR5 showed higher expression of HIC1 than
HEY, ES-2, and SKOV3 cells (Figure 7A). Then, HIC1 high
expressed cell-A2780, and HIC1 low expressed cell-HEY, were

FIGURE 7 | Inhibition of HIC1 improved drug sensitivity of chemotherapy and anti-PD1 therapy via inducing ferroptosis in ovarian cancer cells. (A) HIC1 expression
in five ovarian cancer cell lines (ES-2, OVCAR5, HEY, A2780, and SKOV3) and the human normal ovarian epithelial cell line IOSE80 was detected by Western Blotting.
A2780 cells were transfected with negative control siRNA or HIC1 siRNA and then GSH content, GSSG content, the ratio of GSH/GSSG (B–D) and MDA content (E)
were assessed. HEY cells were transfected with empty vector or HIC1 expression plasmid, then GSH content, GSSG content, the ratio of GSH/GSSG (F–H) and
MDA content (I) were detected. (J) A2780 cells were treated 2 μM Fer-1 or 20 μM DFO for 24 h after transfected with negative control siRNA or HIC1 siRNAs, then cell
viability was evaluated by CCK8 assays. Cell viability was evaluated by CCK8 assays in A2780 cells with or without HIC1 knockdown and HEY cells with or without HIC1
overexpression after treatment with different concentration of cisplatin (K), paclitaxel (L), or BMS-1 (M) for 24 h, respectively.
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used to perform the following experiments. We genetically
downregulated or upregulated HIC1 expression in A2780 and
HEY cells. The efficiency of HIC1 knockdown and
overexpression was verified (Supplementary Figure S2). As is
shown in Figure 7, HIC1 knockdown in A2780 cells significantly
reduced GSH/GSSG ratio (Figures 7B–D) and improved MDA
content (Figure 7E). On the contrary, the opposite results were
observed for HIC1 overexpression in HEY cells (Figures 7F–I).
In addition, we found that cell death induced by HIC1
knockdown could be reversed by ferroptosis inhibitors,
ferrostatin-1 and DFO (Figure 7J). The above results suggests
that inhibition of HIC1 induced ferroptosis. Consequently, we
tested whether HIC1 affects the drug sensitivity of conventional
chemotherapy and anti-PD1 agents in ovarian cancer cells. The
results showed that inhibition of HIC1 made A2780 cells were
more sensitive to cisplatin (Figure 7K), paclitaxel (Figure 7L),
and BMS-1 (Figure 7M). While overexpression of HIC1 in HEY
cells resulted in drug resistance to those agents.

DISCUSSION

Aberrant regulation of cell death programs plays a pivotal role in
tumorigenesis and tumor development. As we know, resistance to
apoptosis is a hallmark of cancer (Frank et al., 2019; Koren and
Fuchs, 2021). Thus, over the past decades, scholars committed to
identifying and clarifying the regulatory mechanism of
nonapoptotic death forms to improve the diagnosis and
treatment of cancer. As a newly identified type of regulated
cell death (RCD), ferroptosis attracted increasing attention for
its critical role in numerous diseases including cancer. Ovarian
cancer is a highly heterogeneous tumor with substantial somatic
mutations, accounting for the highest mortality rate among all
gynecological malignancies (Yang et al., 2017). Our previous
work indicated that ferroptosis inducer erastin synergistically
induced ovarian cancer cell death with cisplatin which
manifested that targeting ferroptosis in ovarian caner offers
therapeutic perspectives (Cheng et al., 2021). In this regard,
we speculated that FRGs may be involved in the oncogenesis
and development of OC. In the present study, we systemically
investigated the clinical relations, TME features, and treatment
response of ferroptosis patterns in OC.

Based on the data from GEO and TCGA databases, we
constructed a novel FRGs signature for the diagnosis and
prognosis of OC, respectively. Here, a 10-FRG diagnostic
signature was constructed, including HIC1, LOC390705,
SETD1B, ACSF2, MUC1, KLHL24, PML, MT1G, GPT2, and
AKR1C1. According to previous reports, LOC390705 was found
to be downregulated, while KLHL24 and GPT2 were upregulated
in erastin treated in HT-1080 cells and SETD1B was enriched in
GPX4 inhibitor ML162-resistant cells (Dixon et al., 2014; Dixon
et al., 2015). Besides, HIC1 (Zhang et al., 2019) MUC1 (Hasegawa
et al., 2016), PML (Saint-Germain et al., 2017), MT1G (Sun et al.,
2016), and AKR1C1 (Dixon et al., 2014; Gagliardi et al., 2019)
were proved to act as suppressors and ACSF2 as driver of
ferroptosis (Dixon et al., 2012). Our diagnostic models based
on these 10 genes showed high sensitivity and specificity, which

may contribute to the early diagnosis of ovarian cancer. More
importantly, we identified a 3-FRG (HIC1, LPCAT3, DUOX1)
signature to predict the prognosis of OC patients. Meanwhile,
these 3 FRGs were applied to construct a prognostic risk model, of
which predictive capacity was proved to be reliable. Ovarian
cancer patients were stratified into high-risk and low-risk
subgroups according to the risk score calculated by the
signature. Patients in the high-risk group showed a shorter OS
and a worse prognosis. Above all, we had developed robust FRGs
signatures for diagnosis as well as predicting the outcome of OC
patients.

Unexpectedly, the ferroptosis-related gene, HIC1, was proved
to possess both diagnostic and prognostic value for OC patients in
our work. Our results showed that HIC1 was down-regulated in
ovarian cancer patients, but had increased expression level in the
high-risk group patients with poorer outcome. We speculate the
opposite action of HIC1 in affecting tumor initiation and patient
outcome may due to the context-specific manner by HIC1 in
regulating biological process through different mechanisms.
Recently, a similar pattern of results was obtained in gastric
cancer (GC) that INPP4Bmay play dual roles as an oncogene and
tumour suppressor gene in different conditions. INPP4B was
found to be expressed lower in GC tissues compared with
nontumour tissues. Contradictorily, GC patients with high
expression of INPP4B had a better prognosis in the well
differentiated tissue grade and early clinical stage but had a
poor prognosis in the worse tissue grade and advanced clinical
stage (Wu et al., 2021). HIC1 (Hypermethylated in cancer 1) is
known as a tumor-suppressor gene, which is implicated in many
canonical processes of cancer such as cell growth, cell survival,
cell migration, and motility. Its expression was commonly
silenced or down-regulated due to the CpG island
hypermethylation in various malignancies (Rood and Leprince,
2013)including colon cancer (Janeckova et al., 2015), breast
cancer (Wang et al., 2018), and prostate cancer (Hao et al.,
2017). A prior study showed that the combined detection of
HIC1 with another tumor suppressor gene, HOXA9, possessed
great potential for the recognition of ovarian cancer (Singh et al.,
2020). Additionally, HIC1 expression was found to be silenced
only in triple-negative breast cancer (TNBC) compared with
other molecular subtypes of breast cancer, HIC1 contributed
to reduced cell migration, invasion and metastasis in triple-
negative breast cancer (TNBC) cells (Cheng et al., 2014). To
elucidate the interaction of HIC1 and ferroptosis in clinical
prognostic significance for ovarian cancer, we carried out
in vitro experiments. On the one hand, we confirmed that
expression of HIC1 was reduced in ovarian cancer cells
compared to normal ovarian cells. On the other hand, our
results illustrated that knockdown of HIC1 improved drug
sensitive of chemotherapy and immunotherapy by inducing
ferroptosis, which suggest a potential role for HIC1 in the
treatment of OC through meditating ferroptosis. Meanwhile,
we found that compared to empty vector, overexpression of
HIC1 reduced drug sensitivity of cisplatin, paclitaxel and
BMS-1. We speculate that this phenomenon was mainly due
to the three agents may induce ferroptosis in varying extents.
However, a previous research considered HIC1 was a ferroptosis
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driver gene for HIC1 stimulated ferroptosis through regulating
GSH synthesis, and subsequently leading to inhibition of tumor
growth in liver cancer (Zhang et al., 2019). The inconsistent
results reflected that regulation of ferroptosis by HIC1 appeared
to be cancer-type dependent.

Notably, GSEA of the low- and high-risk group constructed
based on the 3 differentially expressed FRGs revealed that
immune-related processes and pathways achieved high
enrichment scores in the high-risk groups. Moreover, TME
(tumor microenvironment) analysis of OC patients indicated
that ESTIMATE score which respresents tumor purity was
significantly higher in the high-risk group. As is known to all,
the TME is of major importance in tumor immunity, which is
considered to be critical for tumor cell fate determination.
Tumor-associated macrophages (TAMs) were important
components of the tumor immune microenvironment,
including M1-and M2-polarized macrophages, which function
as anti-tumoral and pro-tumoral, respectively (Cheng et al.,
2018). A recent study has shown that H2O2 induced
autophagy-dependent ferroptotic cell death drives tumor-
associated macrophage to polarize into M2 phenotype via
improving extracellular KRASG12D release, which promotes
human pancreatic ductal adenocarcinoma progression (Dai
et al., 2020). In line with this, current research exhibited that
OC patients in the high-risk group had increased infiltration level
of M2 macrophages as compared to that in the low-risk group.

To date, therapeutic options remain limited in OC with high
rates of recurrence and chemoresistance. Immunotherapy
represents one of the next frontiers in cancer. Previously
published studies have shown that ferroptosis was closely
related to tumor immunotherapy (Lang et al., 2019; Wang
et al., 2019). Immune checkpoint blockade, as one of the most
impactful classes of immunotherapy, has also drawn increasing
attention from researchers engaged in ferroptosis (Stockwell and
Jiang, 2019). But until now, only a limited number of patients
exhibit a durable clinical benefit from immune checkpoint
blockade. PD-1/PD-L1 and CTLA-4 are the best characterized
and most clinically studied immune checkpoints so far (Chae
et al., 2018; Martí i Líndez et al., 2019). Interestingly, our
investigation of response to treatment with checkpoint-
blocking antibodies targeting CTLA-4 and PD-1/PD-L1 in the
two subgroups illustrated that patients in the low-risk group with
low expression of immune checkpoint molecules were more likely
to be sensitive to anti-PD1 therapy. Indeed, in clinical practice,
quite a few PD-L1 positive patients respond poorly to the PD-1/
PD-L1 treatment, while some patients with negative PD-L1 have
a surprising response to treatment (Li et al., 2021). We speculate
that the mechanism of action of immune checkpoint inhibitors is
complicated, but not simply targeting immune checkpoint.

Among the 3 gene signatures, HIC1, LPCAT3, and DUOX1 in
our prognostic model, HIC1 is the most investigated gene
correlated with cellular immune function. A previous study
identified HIC1 as a regulator of intestinal immune responses
under homeostatic and inflammatory conditions and hinted a
critical role for HIC1 in the pathogenicity of T cells (Burrows
et al., 2017). In line with this, another study revealed that HIC1
participated in human iTreg cell differentiation via binding to the

promoters of transcription factors required for Th1/2/17 cell
development and repressed their transcription, which
suggested that HIC1 may play an important role in intestinal
homeostasis by maintaining Treg cell suppressive ability to
sustain tolerance to innocuous antigens (Ubaid Ullah et al.,
2018). Despite the role of HIC1 in cellular immunity, whether
the other two genes in our risk model regulates immune function
remians unknown. Coincidentally, the most recent studies
discovered that the anti-tumor function of the immune system
may associated with ferroptosis. In a recent research aimed at
exploring whether ferroptotic cancer cells are immunogenic
demonstrated that early stage ferroptotic cancer cells induced
by RSL3 were efficiently engulfed by bone marrow-derived
dendritic cells (BMDCs) and were able to promote BMDCs
maturation and activation. Moreover, early ferroptotic cancer
cells in a tumor prophylactic vaccination model showed effective
vaccination activity in immune-competent mice. This study
provides evidence to support that ferroptotic cancer cells in the
early death stages can acts as effective inducers of an adaptive
immune response (Efimova et al., 2020). Another study revealed
that CD8+ T cells released interferon-gamma (IFNγ) promoted
ferroptosis-specific lipid peroxidation in tumor cells via
downregulating the expression of SLC3A2 and SLC7A11, and in
turn, increased ferroptosis contributes to the anti-tumor efficacy of
immunotherapy. The study also proved that ferroptosis inducer in
conjunction with checkpoint blockade synergistically enhanced T
cell-mediated anti-tumor immunity and ferroptosis in the
preclinical model (Wang et al., 2019). Findings discussed above
along with our results raised the question of whether immune cells
provide a linkage in ferroptosis regulated by the three prognostic
genes, HIC1, LPCAT3, and DUOX1 in ovarian cancer, this issue
deserves further investigation.

In summary, we comprehensively elucidated the role of
novel FRGs signature in diagnosis and prognosis in ovarian
cancer for the first time. Specifically, a 10-gene signature
(HIC1, ACSF2, MUC1, etc.) was developed for the diagnosis
of ovarian cancer with high sensitivity using LASSO regression.
Meanwhile, we constructed a novel prognostic signature
consisting of three FRGs (HIC1, LPCAT3, DUOX1), The three
FRG-based risk score model was capable of distinguishing
ovarian cancer patients with significantly different outcomes,
and the risk score was the independent prognostic factor.
Function analyses highlighted the tight correlation between
the risk score and tumor immunity in ovarian cancer. Besides,
the diagnostic and prognostic gene, HIC1, may represent a
potential therapeutic target for ovarian cancer. Our work
provides new insight into early detection, prognostic
prediction, and guiding individualized treatment of patients
with ovarian cancer.
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