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Abstract 35 

The microbial populations in the gut microbiome have recently been associated with COVID-19 36 

disease severity. However, a causal impact of the gut microbiome on COVID-19 patient health 37 

has not been established. Here we provide evidence that gut microbiome dysbiosis is associated 38 

with translocation of bacteria into the blood during COVID-19, causing life-threatening 39 

secondary infections. Antibiotics and other treatments during COVID-19 can potentially 40 

confound microbiome associations. We therefore first demonstrate in a mouse model that SARS-41 

CoV-2 infection can induce gut microbiome dysbiosis, which correlated with alterations to 42 

Paneth cells and goblet cells, and markers of barrier permeability. Comparison with stool 43 

samples collected from 96 COVID-19 patients at two different clinical sites also revealed 44 

substantial gut microbiome dysbiosis, paralleling our observations in the animal model. 45 

Specifically, we observed blooms of opportunistic pathogenic bacterial genera known to include 46 

antimicrobial-resistant species in hospitalized COVID-19 patients. Analysis of blood culture 47 

results testing for secondary microbial bloodstream infections with paired microbiome data 48 

obtained from these patients indicates that bacteria may translocate from the gut into the 49 

systemic circulation of COVID-19 patients. These results are consistent with a direct role for gut 50 

microbiome dysbiosis in enabling dangerous secondary infections during COVID-19.  51 
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Main text 52 

A better understanding of factors contributing to the pathology of coronavirus disease 2019 53 

(COVID-19) is an urgent global priority. Previous reports have demonstrated that severe 54 

COVID-19 is frequently associated with specific inflammatory immune phenotypes, 55 

lymphopenia, and a generally disproportionate immune response leading to systemic organ 56 

failure1,2. Even in mild cases, gastrointestinal symptoms are reported frequently, and recent 57 

studies reported that COVID-19 patients lose commensal taxa of the gut microbiome during 58 

hospitalization3–5. Differences in gut bacterial populations relative to healthy controls were 59 

observed in all COVID-19 patients, but most strongly in patients who were treated with 60 

antibiotics during their hospitalization4. Most recently, COVID-19 patients treated with broad 61 

spectrum antibiotics at admission were shown to have increased susceptibility to multi-drug 62 

resistant infections and nearly double the mortality rate from septic shock6,7. Furthermore, 63 

although initially estimated to be low (6.5%)8, more recent studies have detected bacterial 64 

secondary infections in as much as 12-14% of COVID-19 patients9,10. However, the causal 65 

direction of the relationship between disease symptoms and gut bacterial populations is not yet 66 

clear.  67 

Complex gut microbiota ecosystems can prevent the invasion of potentially pathogenic 68 

bacteria11,12. Conversely, when the gut microbiota incurs damage, such as through antibiotics 69 

treatment, competitive exclusion of pathogens is weakened13–15 and potentially dangerous 70 

blooms of antibiotic resistant bacterial strains can occur16,17. In immunocompromised cancer 71 

patients, blooms of Enterococcaceae and Gram-negative proteobacteria can lead to gut 72 

dominations by few or single species18–21. Such gut domination events are dangerous to these 73 

patients because they are associated with increased risk of translocation of antibiotic resistant 74 

bacteria from the gut into the blood stream18. Bacterial co-infection can also cause life-75 

threatening complications in patients with severe viral infections7,8,22; therefore, antibacterial 76 

agents were administered empirically to nearly all critically ill suspected COVID-19 patients 77 

since the incidence of bacterial superinfection was unknown early during the pandemic4,23. 78 

However, it is now known that nosocomial infection during prolonged hospitalization is the 79 

primary threat to patients with COVID-1924, rather than bacterial co-infection upon hospital 80 

admission9,25–27. Evidence from immunocompromised cancer patients suggests that 81 

indiscriminate administration of broad-spectrum antibiotics may, counter-intuitively, increase 82 
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nosocomial bloodstream infection (nBSI) rates by causing gut dominations of resistant microbes 83 

that can translocate into the blood18,28. Thus, empiric antimicrobial use, i.e. without direct 84 

evidence for a bacterial infection, in patients with severe COVID-19 may be especially 85 

pernicious because it may select for antimicrobial resistance and could promote gut 86 

translocation-associated nBSI. 87 

The role of the gut microbiome in respiratory viral infections in general29–31, and in 88 

COVID-19 patients in particular, is only beginning to be understood. Animal models of 89 

influenza virus infection have uncovered mechanisms by which the microbiome influences 90 

antiviral immunity32–34, and in turn, the viral infection was shown to disrupt the intestinal barrier 91 

of mice by damaging the gut microbiota35,36. Hence, we hypothesized that gut dysbiosis during 92 

COVID-19 may be associated with BSIs. To test this, we first determined whether SARS-CoV-2 93 

infection could directly cause gut dysbiosis independently of hospitalization and treatment. K18-94 

hACE2 mice (K18-ACE2tg mice), express human ACE2 driven by the cytokeratin-18 promoter 95 

(K18-ACE2tg mice). Although the overexpression of ACE2 prevents investigation of long term 96 

consequences of infection due to potential non-specific disease, which is a major limitation of 97 

the model, an advantage of these mice is that they develop severe respiratory disease in a virus 98 

dose-dependent manner, partially mirroring what is observed in COVID-19 patients37–40. Daily 99 

changes in fecal bacterial populations were monitored following intranasal inoculation of mice 100 

with a range of doses (10, 100, 1000, and 10000 PFU) of SARS-CoV-2 or mock-treatment (Fig. 101 

1a, Extended Data Fig. S1).  Although we detected viral RNA in the lungs of mice infected 102 

with doses as low as 100 PFU (Extended Data Fig. S1c), mice inoculated with doses lower than 103 

10000 PFU displayed minimal or no signs of disease (Extended Data Fig. S1a,b), and as 104 

expected based on this outcome, shifts in their microbiome were inconsistent (Extended Data 105 

Fig. S2). Thus, we focused on findings from the 10000 PFU inoculum. 106 

Mice infected with 10000 PFU displayed weight loss and other signs of disease around 107 

day 4 (Extended Data Fig. S1a,b, S2e,f), alongside microbiome changes characterized by a 108 

significant loss of alpha diversity (inverse Simpson index, Fig. 1b) corresponding to shifts in the 109 

bacterial community composition (Fig. 1c,d). We performed time series analyses on bacterial 110 

family abundances, contrasting their trajectories in infected (10000 PFU) and uninfected mice. 111 

This revealed that the strongest shift over time in infected mice was characterized by significant 112 

increases of Akkermansiaceae (p<0.0002 , Fig. 1d). Ranking all bacterial family trajectories by 113 
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their estimated changes over time in infected mice showed that this increase in Akkermansiaceae 114 

was accompanied by significant losses of Clostridiaceae 1, a family of obligate anaerobe 115 

bacteria, and of Erysipelotrichiaceae (Fig. 1e). These results demonstrated that SARS-CoV-2 116 

infection leads to gut microbiome dysbiosis over time in a mouse model. 117 

We then determined if this dysbiosis was also associated with intestinal defects that could 118 

enable translocation of bacteria into the blood. While several of the infected mice displayed signs 119 

of barrier dysfunction the observed differences in plasma concentrations of Fluorescein 120 

isothiocyanate (FITC)-dextran following its administration by gavage, or other markers of 121 

intestinal barrier permeability, fatty acid-binding protein (iFABP), Lipopolysaccharide-binding 122 

protein (LBP), and citrulline did not reach significance (Extended Data Fig. S3a,b). The 123 

reduced colon lengths as well as reductions in the villus lengths in the duodenum or ileum, i.e. 124 

markers of overt inflammation, that we observed were also non-significant compared with 125 

control mice (Extended Data Fig. S3c,d). However, infected mice that had incurred the most 126 

severe microbiome injury in the form of diversity loss showed the most evidence of gut 127 

permeability–the highest FITC-dextran concentrations in the blood of mice detected across all 128 

samples came from the two out of the four mice with the most extreme dysbiosis and highest 129 

levels of Akkermansiaceae, a family of mucin-degrading bacterial species (Extended Data Fig. 130 

S4). 131 

Interestingly, we also detected a significant increase in the number of mucus-producing 132 

goblet cells and a decrease in the number of Paneth cells in the ileum (but not in the duodenum) 133 

of infected mice (Fig. 2a,c and Extended Data Fig. S3e). The decrease in Paneth cells was 134 

accompanied by structural abnormalities, most notably deformed or misplaced granules (Fig. 135 

2b). These morphological abnormalities in Paneth cells were reminiscent of observations in the 136 

ileum of patients with inflammatory bowel disease (IBD) as well as in a virally-triggered animal 137 

model of IBD, where such structures were indicative of defects in packaging and secretion of the 138 

granule protein lysozyme41–43. Thus, to quantify the Paneth cell granule defect, we performed 139 

lysozyme immunofluorescence and found a significant increase in the proportion of Paneth cells 140 

displaying abnormal staining patterns compared with the controls (Fig. 2b,c). We then 141 

investigated if these physiological defects were associated with dysbiosis in the microbiome. The 142 

most severely sick mice also had the most striking shifts in their microbiome composition and 143 

the lowest microbiota diversity at the end of the experiment (Extended Data Fig. S4a,b). To 144 
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associate the observed physiological defects with microbiome dysbiosis, we plotted the numbers 145 

of goblet cells per crypt-villus unit and Paneth cells per crypt, as well as the percentage of 146 

abnormal Paneth cells against bacterial alpha diversity and the log10-relative abundance of 147 

Akkermansiaceae (Fig. 2d,e). Goblet cell counts per crypt-villus unit were negatively correlated 148 

with alpha diversity, and, conversely, positively correlated with Akkermansiaceae. While no 149 

statistically significant association was found between diversity, Akkermansiaceae abundance 150 

and Paneth cell counts per crypt, we observed a striking positive correlation between the 151 

percentage of abnormal Paneth cells and Akkermansiaceae, and a corresponding negative 152 

correlation with diversity. We were unable to reliably detect viral RNA in intestinal samples 153 

(Extended Data Fig. S1c), raising the possibility that systemic immune responses rather than 154 

direct cytotoxicity from local viral infection mediate these changes. Altogether, these results 155 

show that the gut microbiome dysbiosis observed in K18-hACE2 mice infected with a high dose 156 

of SARS-CoV-2 are associated with alterations in key epithelial cells, and signs of barrier 157 

permeability in the mice displaying the greatest disruption in microbiome diversity.  158 

To investigate the microbiome in COVID-19 patients, we profiled the bacterial 159 

composition of the fecal microbiome in 130 samples (Fig. 3a) obtained from SARS-CoV-2 160 

infected patients treated at NYU Langone Health (NYU, 67 samples from 60 patients) and Yale 161 

New Haven Hospital (YALE, 63 samples from 36 patients, Supplementary Table 1). Analysis 162 

of metagenomic data obtained from sequencing of the 16S rRNA genes revealed a wide range of 163 

bacterial community diversities, as measured by the inverse Simpson index, in samples from 164 

both centers (NYU: [1.0, 32.3], YALE: [1.5, 29.3], Fig. 3b); on average, samples from NYU 165 

were less diverse (-4, p<0.01, two-tailed T-test, Fig. 3c), and as reported previously, samples 166 

from patients admitted to the ICU had reduced diversity (-3.9, p<0.05, two-tailed T-test, 167 

Extended Data Fig. S5a). However, the composition in samples between the two centers did not 168 

show systematic compositional differences (Fig. 3d,e,f). On average, in both centers, members 169 

of the phyla Firmicutes and Bacteroidetes represented the most abundant bacteria, followed by 170 

Proteobacteria (Fig. 3d). The wide range of bacterial diversities was reflected in the high 171 

variability of bacterial compositions across samples (Fig. 3e,f). In samples from both centers, 172 

microbiome dominations, defined as a community where a single genus reached more than 50% 173 

of the population, were observed frequently (NYU: 21 samples, YALE: 12 samples), 174 

representing states of severe microbiome injury in COVID-19 patients (Fig. 3g, Extended Data 175 
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Fig. S5a,b). Strikingly, samples associated with a BSI, defined here as a positive clinical blood 176 

culture test result, had strongly reduced bacterial α-diversities (mean difference: -5.2, CIBEST[-177 

8.2, -2.2], Fig. 3h).  178 

The lower diversity associated with samples from 25 patients (15 NYU, 10 Yale) with 179 

BSIs led us to investigate their bacterial taxon compositions and the potential that gut dysbiosis 180 

was associated with BSI events. Importantly, BSI patients had received antibiotic treatments 181 

during hospitalization (Extended Data Fig. S6, Supplementary Table 2), which could 182 

exacerbate COVID-19 induced shifts in microbiota populations16,17,20, and may indeed be 183 

administered in response to a suspected or confirmed BSI. We noted that most BSI patients 184 

received antibiotics prior to their BSI, with 6 out of 25 patients receiving antibiotics only after 185 

detection of BSI. Principal coordinate analysis of all stool samples indicated that the BSI-186 

associated samples spanned a broad range of compositions (Fig. 3h). To identify bacterial 187 

abundance patterns that consistently distinguished BSI from non-BSI-associated samples, we 188 

performed a Bayesian logistic regression. The model estimated the association of the 10 most 189 

abundant bacterial genera with BSI cases, i.e. it identified enrichment or depletion of bacterial 190 

genera in BSI associated samples (Fig. 3i). This analysis revealed that the genus 191 

Faecalibacterium was negatively associated with BSI (OR: -0.5, CI:[-0.86, -0.15]), which was 192 

also observed when we included microbiome domination as an additional factor in the model 193 

(Extended Data Fig. S7a). However, our analysis also included stool samples that were taken 194 

only after a positive blood culture was obtained, calling into question the plausibility of gut 195 

translocation; a complementary analysis only using stool samples obtained prior or on the same 196 

day of a positive blood culture also identified Faecalibacterium as most negatively associated 197 

with BSI (Extended Data Fig. S7b). Furthermore, a higher-resolution analysis using amplicon 198 

sequencing variant (ASV) relative abundances as predictors of BSI (Extended Data Fig. S7c,d), 199 

identified an ASV of the Faecalibacterium genus as most negatively associated with BSI, in 200 

agreement with our main analysis. Faecalibacterium is an immunosupportive, short-chain fatty 201 

acid producing genus that is a prominent member of the human gut microbiome44–46, and its 202 

reduction is associated with disruption to intestinal barrier function47,48, perhaps via ecological 203 

network effects48. 204 

To evaluate the effect size of the association between Faecalibacterium and BSIs, we 205 

performed a counterfactual posterior predictive check. Using the average genus composition 206 
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found across all samples, we first computed the distribution of predicted BSI risks (Fig. 3j), and 207 

compared this risk distribution with a hypothetical bacterial composition which increased 208 

Faecalibacterium by 10% points. The predicted risk distributions associated with these two 209 

compositions differed strongly (mean difference 15%, CI: [1%, 32%], Fig. 3j). Domination 210 

states of the microbiome increase the risk for BSIs in immunocompromised cancer patients18; 211 

such dominations imply high relative abundances of single taxa, and therefore a low diversity. 212 

Consistent with this, Faecalibacterium abundance was positively correlated with diversity (R: 213 

0.55, p<10−10, Extended Data Fig. S8) in our data set and as reported previously44. 214 

We therefore next investigated a direct association between the bacteria populating the 215 

gut microbiome and the organisms identified in the blood of patients. Visualizing the bacterial 216 

composition in stool samples from patients alongside the BSI microorganisms (Extended Data 217 

Fig. S9a) suggested a correspondence with the respective taxa identified in the blood: high 218 

abundances of the BSI-causing microbes were found in corresponding stool samples. A rank 219 

abundance analysis matching the organisms identified in clinical blood cultures to the 220 

composition of bacteria in corresponding stool samples indicated enrichment of taxa belonging 221 

to the same bacterial orders as BSI causing organisms (Extended Data Fig. S9b), suggesting 222 

translocation of bacteria from the gut into the blood stream.  223 

To further investigate evidence for translocation of gut bacteria into the blood, we next 224 

performed shotgun metagenomic sequencing on a subset of BSI-associated samples with 225 

sufficient remaining material in order to match the organism identified in clinical blood cultures 226 

at the species level with reads obtained from stool samples (Fig. 3k, Supplementary Table 3). 227 

In four cases of positive blood cultures of Staphylococcus species, no reads matching the 228 

clinically identified species were detected (Supplementary Table 3). This may explain why the 229 

rank analysis suggested that Staphylococcales were not generally enriched in BSIs by 230 

Staphylococcus (Extended Data Fig. S9a,b). In all investigated cases of positive blood cultures 231 

by other organisms, the species identified in clinical blood cultures had corresponding reads in 232 

the stool samples. Furthermore, the relative abundances of matched species tended to be larger 233 

than the average abundances of matched species across all samples (Supplementary Table 3). 234 

Consistent with this, in one case of a S. aureus BSI where corresponding stool relative 235 

abundances of Staphylococcus were low, reads from shotgun sequencing did not match the 236 

genomes of isolates obtained from the same patient better than S. aureus genomes from other 237 
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isolates (Extended Data Fig. S9d). Strikingly, shotgun metagenomic reads matched the genome 238 

of isolates well in another case where relative abundances of Staphylococcus were enriched in 239 

the stool (Extended Data Fig. S9c), providing evidence that here, the same strains were found in 240 

stool and blood of the same patient. 241 

Collectively, these results reveal an unappreciated link between SARS-CoV-2 infection, 242 

gut microbiome dysbiosis, and a severe complication of COVID-19, BSIs. The loss of diversity 243 

and immunosupportive Faecalibacterium in patients with BSIs mirrored a similar loss of 244 

diversity in the most severely sick mice deliberately infected with SARS-CoV-2, and as observed 245 

by other labs and other model systems49–51. Notably, a recent study reproduced these changes in 246 

the microbiome in an antibiotics-naïve cohort52, suggesting that the viral infection causes gut 247 

dysbiosis, either through gastrointestinal infection53–57 or through a systemic inflammatory 248 

response2,4. Furthermore, the pronounced increase in Akkermansiaceae in mice was also 249 

observed in our patient samples, and has been reported previously in patients and in K18-hACE2 250 

mice49,58. However, the dysbiosis in patients with COVID-19 exceeded the microbiota shifts 251 

observed in the mouse experiments, including microbiome dominations by single taxa, which 252 

was not seen in the mouse experiments. It is possible that in our experiment, mice were 253 

sacrificed before perturbations to the gut microbial populations reached a maximum. hACE2 254 

knock-in mice, which display reduced disease37, were not tested in the scope of this study but 255 

could provide additional insights in the future. However, it is also plausible that the frequently 256 

administered antibiotic treatments that hospitalized COVID-19 patients receive exacerbated 257 

SARS-CoV-2 induced microbiome perturbations. Additionally, unlike the controlled 258 

environment experienced by laboratory mice, hospitalized patients are uniquely exposed to 259 

antimicrobial-resistant infectious agents present on surfaces and shed by other patients.  260 

Despite these limitations of the mouse model, we observed that SARS-CoV-2 infection 261 

led to alteration of intestinal epithelial cells with established roles in intestinal homeostasis and 262 

gastrointestinal disease59,60.  Microbiome ecosystem shifts are likely both cause and consequence 263 

of these epithelial cell alterations, since epithelial secretions are predicted to affect overall 264 

community structure disproportionately strongly61,62. For example, disruption of Paneth cell-265 

derived antimicrobials including lysozyme are sufficient to impact microbiome composition63–65, 266 

and, conversely, Akkermansia, which was increased in infected mice, can have epithelium 267 

remodeling properties66. 268 
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Our observation that the type of bacteria that entered the bloodstream was enriched in the 269 

associated stool samples is a well characterized phenomenon in cancer patients18, especially 270 

during chemotherapy induced leukocytopenia when patients are severely 271 

immunocompromised16,44. COVID-19 patients are also immunocompromised and frequently 272 

incur lymphopenia, rendering them susceptible to secondary infections67. Our data suggests 273 

dynamics in COVID-19 patients may be similar to those observed in cancer patients: BSI-274 

causing organisms may translocate from the gut into the blood, potentially due to loss of gut 275 

barrier integrity, through tissue damage downstream of antiviral immunity rather than 276 

chemotherapy. Consistent with this possibility, soluble immune mediators such as TNFa and 277 

interferons produced during viral infections, including SARS-CoV-2, damage the intestinal 278 

epithelium to disrupt the gut barrier, especially when the inflammatory response is sustained as 279 

observed in patient with severe COVID-1943,68,69. Indeed, blood plasma in severely sick COVID-280 

19 patients are enriched for markers of disrupted barrier integrity and higher levels of 281 

inflammation markers70, suggesting microbial translocation. Our data supports this model with 282 

direct evidence because we were able to match sequencing reads from stool samples to genomes 283 

of species detected in the blood of patients. 284 

One limitation of our data is temporal ordering of samples. Occasionally stool samples 285 

were collected after observation of BSI, and this mismatch in temporal ordering is counter 286 

intuitive for gut-to-blood translocation and a causal interpretation of our associations. However, 287 

the reverse direction, that blood infection populates and changes the gut community, is unlikely 288 

for the organisms identified in the blood, and if our associations were not causal, we would 289 

expect no match between BSI organisms and stool compositions.  290 

Taken together, our findings support a scenario in which gut-to-blood translocation of 291 

microorganisms following microbiome dysbiosis, a known issue for chronic conditions such as 292 

cancer, leads to dangerous BSIs during COVID-19. We suggest that investigating the underlying 293 

mechanism behind our observations will inform the judicious application of antibiotics and 294 

immunosuppressives in patients with respiratory viral infections and increase our resilience to 295 

pandemics. 296 

 297 

Materials and Methods 298 

Bioethics statement 299 
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The collection of COVID-19 human biospecimens for research has been approved by the 300 

NYUSOM Institutional Review Board under il8-01121 Inflammatory Bowel Disease and Enteric 301 

Infection at NYU Langone Health. The data presented in this study were also approved by Yale 302 

Human Research Protection Program Institutional Review Boards (FWA00002571, protocol ID 303 

2000027690). Informed consent was obtained from all enrolled patients. 304 

 305 

Mouse experiments 306 

Cells & virus 307 

Vero E6 (CRL-1586; American Type Culture Collection) were cultured Dulbecco’s Modified 308 

Eagle’s Medium (DMEM, Corning) supplemented with 10% fetal bovine serum (FBS, Atlanta 309 

Biologics) and 1% nonessential amino acids (NEAA, Corning). SARS-CoV-2, isolate USA-310 

WA1/2020 19 (BEI resources #NR52281), a gift from Dr. Mark Mulligan at the NYU Langone 311 

Vaccine Center was amplified once in Vero E6cells. All experiments with SARS-CoV-2 were 312 

conducted in the NYU Grossman School of Medicine ABSL3 facility in accordance with its 313 

Biosafety Manual and Standard Operating Procedures, by personnel equipped with powered air-314 

purifying respirators.  315 

 316 

Mice  317 

Heterozygous K18-hACE2 C57BL/6J mice (strain: 2B6.Cg-Tg(K18-ACE2)2Prlmn/J) were 318 

obtained from The Jackson Laboratory. Several were paired with C57BL/6J mice to generate 319 

additional heterozygous mice for subsequent experiments and the remaining were used to 320 

perform initial experiments. Animals from the same breeder pool (i.e., littermates) were 321 

randomly assigned and housed in cages according to the experimental groups and fed standard 322 

chow diets. Cage bedding was mixed prior to infection in a subset of experiments to further 323 

reduce possible cage effect. All animal studies were performed according to protocols approved 324 

by the NYU School of Medicine Institutional Animal Care and Use Committee (IACUC 325 

n°170209 and 180802) and in the ABSL3 facility of NYU Grossman School of Medicine (New 326 

York, NY), in accordance with its Biosafety Manual and Standard Operating Procedures. 12-327 

week-old or 24-week-old K18-hACE2 males were administered either 10-10000 PFU SARS-328 

CoV-2 diluted in 50µL PBS (Corning) or 50µL PBS (non-infected, 0) via intranasal 329 

administration under xylazine-ketamine anesthesia (AnaSedR AKORN Animal Health, 330 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2021.07.15.452246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452246
http://creativecommons.org/licenses/by-nc-nd/4.0/


KetathesiaTM Henry Schein Inc). Viral titer in the inoculum was verified by plaque assay in 331 

Vero E6 cells. Following infection, mice were monitored daily for weight loss, temperature loss 332 

and signs of disease. A disease score was calculated as the sum of scores obtained for each of the 333 

following criteria: ruffled fur (no= 0, yes=1), hunched back (no=0, slightly=1, exacerbated=2), 334 

heavy breathing (no=0, yes=1), altered mobility (no=1, reduced activity=1, no mobility=2). Stool 335 

samples were collected and stored at -80°C. 336 

 337 

Measurement of viral load 338 

Whole lungs and 1cm of proximal duodenum, terminal ileum and proximal colon were collected 339 

five-to seven days after infection. Intestinal pieces were wash with PBS and all organs were 340 

transferred in Eppendorf tubes containing 500μl of PBS and a 5mm stainless steel bead (Qiagen) 341 

and h C57BL/6J mice omogenized using the Qiagen TissueLyser II. Homogenates were cleared 342 

for 5 min at 5,000 × g, and the viral supernatant or nasal wash was diluted 4X in TRIzol reagent 343 

(Invitrogen) and frozen at -80°C for titration by qRT-PCR. RNA was extracted from the TRIzol 344 

homogenates using chloroform separation and isopropanol precipitation, followed by additional 345 

purification using RNeasy spin columns with DNase treatment according to the manufacturer’s 346 

instructions (Rneasy Mini Kit; RNAse-Free DNase Set; QIAGEN). RNA was reverse-347 

transcribed using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). 348 

qPCR was performed using Applied Biosystems TaqMan RNA-to-CT One-Step Kit (Fisher-349 

Scientific), 500nM of the primers (Fwd 5’-ATGCTGCAATCGTGCTACAA-3’, Rev 5’-350 
GACTGCCGCCTCTGCTC-3’) and 100nM of the N probe (5’-/56-351 
FAM/TCAAGGAAC/ZEN/AACATTGCCAA/3IABkFQ/-3’). Serial dilutions of in-vitro transcribed 352 

RNA of the SARS-CoV-2 Nucleoprotein (generated as previously described71) were used to 353 

generate a standard curve and calculate copy numbers per ug of RNA in the samples.  354 

 355 

Microscopy 356 

5cm of proximal duodenum, distal ileum and entire colon were flushed with 10% acetate 357 

buffered formalin (Fisher scientific), cut open along the length, pinned on black wax and fixed 358 

with formalin for 72hrs at RT. 2 cm strips of intestinal tissues were embedded in low melting 359 

point agarose (Promega) to enrich for well-oriented crypt-villus units. Paraffin embedding, 360 

sectioning, and staining were performed by the NYU Experimental Pathology Research 361 
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Laboratory. 5um sections were stained with hematoxylin and eosin (H&E) and imaged using 362 

brightfield wholeslide scanning. Lysozyme staining was performed using anti-lysozyme 363 

(ab108508, Abcam) and DAPI immunostaining and analyzed using a Zeiss AxioObserver.Z1 364 

with Axiocam 503 Mono operated with Zen Blue software. 50 small intestinal villi per mouse 365 

were measured for villi length. Goblets cell were quantified from 50 villus-crypt units (one villus 366 

+ half of the 2 surrounding crypts) per mouse. Paneth cells numbers and lysozyme staining 367 

patterns were quantified from 50 crypts per mouse. Previously defined criteria were used to 368 

quantify the proportion of Paneth cells displaying abnormal lysozyme staining43. Mean values 369 

were calculated for each mouse and used as individual data points.  370 

 371 

Measurement of intestinal permeability  372 

Mice were fasted for 4hrs before oral gavage with 200uL of fluorescein isothiocyanate (FITC)-373 

dextran (3-5 kDa, Sigma-Aldrich) dissolved in sterile PBS (60mg/ml). After 4 hrs, mice were 374 

euthanized and blood was collected by cardiac puncture. FITC-dextran in plasma was quantified 375 

using a plate reader (excitation, 485 nm; emission, 530 nm). Citrulline, intestinal fatty acid-376 

binding protein, and lipopolysaccharide (LPS)-binding protein were quantified in the plasma by 377 

enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s instructions 378 

(MyBioSource, CA).  379 

 380 

Time series analyses of bacterial family abundances 381 

We log10-transformed bacterial relative abundances adding a pseudo count to fill zeros (2*10-6, 382 

as done before). We then analyzed the time series with the following model that included fixed 383 

effects for the intercepts and slopes of the treatment (i.e. indicator variables for uninfected (0 384 

PFU), and infected (10000PFU), and random effects per cage and per mice to account for cage 385 

effects and repeated measurements from the same individual mouse, respectively. The model 386 

was implemented in the R programming language using the lmer function of the lme4 library 387 

with the following model formula: 388 

log$! 	~	1 + PFU	 + 	time: PFU	 +		 (1|cage) 	+	(time|mouseid) 389 

 390 

Human study  391 

Study population and data collection 392 
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This study involved 96 patients with laboratory-confirmed SARS-CoV-2 infection. SARS-CoV-393 

2 infection was confirmed by a positive result of real-time reverse transcriptase-polymerase 394 

chain reaction assay on a nasopharyngeal swab. 60 patients were seen at NYU Langone Health, 395 

New York, between January 29, 2020 – July 2, 2020. In order to be eligible for inclusion in the 396 

study, stool specimens needed to be from individuals >18 years of age. Data including 397 

demographic information, clinical outcomes, and laboratory results were extracted from the 398 

electronic medical records in the NYU Langone Health clinical management system. Blood and 399 

stool samples were collected by hospital staff. OmnigeneGut kits were used on collected stool. In 400 

parallel, 36 patients were admitted to YNHH with COVID-19 between 18 March 2020 and 27 401 

May 2020 as part of the YALE IMPACT cohort described at length elsewhere2. Briefly, 402 

participants were enrolled after providing informed consent and paired blood and stool samples 403 

were collected longitudinally where feasible for duration of hospital admission. No statistical 404 

methods were used to predetermine sample size for this cohort. Demographic information of 405 

patients was aggregated through a systematic and retrospective review of the EHR and was used 406 

to construct Supplementary Table 1. Symptom onset and etiology were recorded through 407 

standardized interviews with patients or patient surrogates upon enrolment in our study, or 408 

alternatively through manual EHR review if no interview was possible owing to clinical status at 409 

enrolment. The clinical data were collected using EPIC EHR and REDCap 9.3.6 software. At the 410 

time of sample acquisition and processing, investigators were blinded to patient clinical status. 411 

 412 

DNA extraction and bacterial 16S rRNA sequencing 413 

For bacterial DNA extraction 700µL of SL1 lysis buffer (NucleoSpin Soil kit, Macherey-Nagel) 414 

was added to the stool samples and tubes were heated at 95°C for 2h to inactivate SARS-CoV-2. 415 

Samples were then homogenized using the FastPrep-24TM instrument (MP Biomedicals) and 416 

extraction was pursued using the NucleoSpin Soil kit according to the manufacturer’s 417 

instructions. DNA concentration was assessed using a NanoDrop spectrophotometer. Samples 418 

with too low DNA concentration were excluded. DNA from human samples was extracted with 419 

PowerSoil Pro (Qiagen) on the QiaCube HT (Qiagen), using Powerbead Pro (Qiagen) plates with 420 

0.5mm and 0.1mm ceramic beads. For mouse samples, the variable region 4 (V4) of the 16S 421 

rRNA gene was amplified by PCR using primers containing adapters for MiSeq sequencing and 422 

single-index barcodes. All PCR products were analyzed with the Agilent TapeStation for quality 423 
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control and then pooled equimolar and sequenced directly in the Illumina MiSeq platform using 424 

the 2x250 bp protocol. Human samples were prepared with a protocol derived from 72, using 425 

KAPA HiFi Polymerase to amplify the V4 region of the 16S rRNA gene. Libraries were 426 

sequenced on an Illumina MiSeq using paired-end 2x250 reads and the MiSeq Reagent Kitv2. 427 

 428 

Bioinformatic processing and taxonomic assignment 429 

Amplicon sequence variants (ASVs) were generated via dada2 v1.16.0 using post-QC FASTQ 430 

files. Within the workflow, the paired FASTQ reads were trimmed, and then filtered to remove 431 

reads containing Ns, or with maximum expected errors >= 2. The dada2 learn error rate model 432 

was used to estimate the error profile prior to using the core dada2 algorithm for inferring the 433 

sample composition. Forward and reverse reads were merged by overlapping sequence, and 434 

chimeras were removed before taxonomic assignment. ASV taxonomy was assigned up to genus 435 

level using the SILVAv.138 database with the method described in 73 and a minimum 436 

boostrapping support of 50%. Species-level taxonomy was assigned to ASVs only with 100% 437 

identity and unambiguous matching to the reference. 438 

 439 

Shotgun metagenomic sequencing 440 

DNA was quantified with Qiant-iT Picogreen dsDNA Assay (Invitrogen). Libraries were 441 

prepared with a procedure adapted from the Nextera Library Prep kit (Illumina), and sequenced 442 

on an Illumina NovaSeq using paired-end 2x150 reads (Illumina) aiming for 100M read depth. 443 

DNA sequences were filtered for low quality (Q-Score < 30) and length (< 50), and adapter 444 

sequences were trimmed using cutadapt. Fastq files were converted a single fasta using shi7. 445 

Sequences were trimmed to a maximum length of 100 bp prior to alignment. DNA sequences 446 

were taxonomically classified using the MetaPhlAn2 analysis tool 447 

(http://huttenhower.sph.harvard.edu/metaphlan2). MetaPhlAn2 maps reads to clade-specific 448 

marker genes identified from ~17,000 reference genomes and estimates clade abundance within a 449 

sample from these mappings.  450 

 451 

Mapping shotgun reads to whole genome sequences of clinical isolates 452 

Quality-controlled reads were re-classified using Kraken2 (Minikraken2 v2 database, available 453 

on https://ccb.jhu.edu/software/kraken2/index.shtml). Reads that were classified by Kraken2 as 454 
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Staphylococcus aureus (or a strain thereof) were further mapped using Bowtie2 separately to 455 

each of a collection of Staphylococcus aureus isolates. The collection was composed of all NCBI 456 

RefSeq assemblies as of 11/17/2021, in addition to Staphylococcus aureus isolates that were 457 

isolated from our subjects. Bowtie2 mapped reads were then further filtered, keeping only reads 458 

that mapped without mismatches. A neighbor-joining (NJ) tree was produced from this 459 

collection of genomes using Snippy (https://github.com/tseemann/snippy). 460 

 461 

Compositional analyses 462 

α-Diversity  463 

We calculated the inverse Simpson (IVS) index from relative ASV abundances (p) with N ASVs 464 

in a given sample, 9:; = 	 "
∑ $!"#
!

. 465 

Principal Coordinate Analyses  466 

Bray-Curtis distances were calculated from the filtered ASV table using QIIME 1.9.1 and 467 

principal components of the resulting distance matrix were calculated using the scikit-learn 468 

package for the Python programming language, used to embed sample compositions in the first 469 

two principal coordinates. 470 

 471 

Average compositions and manipulation of compositions 472 

To describe the average composition of a set of samples we calculated the central tendency of a 473 

compositional sample 74. For counter factual statistical analyses that require changes to a 474 

composition, e.g. an increase in a specific taxon, we deployed the perturbation operation (⊕), 475 

which is the compositional analogue to addition in Euclidean space74. A sample x containing the 476 

original relative taxon abundances is perturbed by a vector y,  477 

 478 
where SD represents the D-part simplex. 479 

 480 

Bayesian t-test  481 

To compare diversity measurements between different sample groups, e.g. different clinical 482 

status, we performed a Bayesian estimation of group differences (BEST, 75) , implemented using 483 
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the pymc3 package for the Python programming language; with priors (∼) and deterministic 484 

calculations (=) to assess differences in estimated group means as follows: 485 

g1 ∼ Normal(µ = 15,σ = 15)  486 

g2 ∼ Normal(µ = 15,σ = 15)  487 

σg1 ∼ Uniform(low = 1e−4,high = 30)  488 

σg2 ∼ Uniform(low = 1e−4,high = 30)  489 

ν ∼ Exponential(1/15) + 1 490 

λ1 = σg1-2  491 

λ2 = σg2-2 492 

G1 ∼ StudentT(nu = ν, mu = g1, lam = λ1) 493 

G2 ∼ StudentT(nu = ν, mu = g2, lam = λ2) 494 

∆ = G1 − G2 495 

Bayesian inference was performed using “No U-turn sampling”76. Highest density intervals 496 

(HDI) of the posterior estimation of group differences (∆) were used to determine statistical 497 

certainty (***: 99% HDI >0 or <0, **: 95%HDI, *:90% HDI). The BEST code was implemented 498 

following the pymc3 documentation.  499 

 500 

Cross-validated logistic regression to associate BSI cases with ASV composition 501 

We first removed ASVs with low prevalence (present in fewer than 5% of all samples), and low 502 

abundances (maximum observed relative abundance <0.01) leaving 269 ASVs. We then scaled 503 

the ASV relative abundances between 0 and 1 (min-max scaling) and performed logistic 504 

regressions, relating ASV abundances to BSI status (1: BSI, 0: non-BSI) using the 505 

sklearn.linear_model. LogisticRegressionCV module for the Python programming language with 506 

an L1 (lasso) penalty, iterating over a range of regularization strengths ([0.01,0.1, 1., 10., 100., 507 

1000.]) using the “liblinear” solver. We retained the inferred ASV association coefficients with 508 

non-zero values for each tested regularization strength to visualize the cross-validation path. 509 

 510 

Bayesian logistic regression  511 

We performed a Bayesian logistic regression to distinguish compositional differences between 512 

infection-associated samples and samples from patients without secondary infections. We 513 

modeled the infection state of patient sample i, yi with a Binomial likelihood: 514 
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yi ∼ Binomial(n = 1, p = p)  515 

p = inverse logistic(α + Xiβ) 516 

α ∼ Normal(µ = 0, σ = 1)  517 

β ∼ Normal(µ = 0, σ = 1) 518 

Where prior distributions are indicated by ∼; α is the intercept of the generalized linear model, β 519 

is the coefficient vector for the log10-relative taxon abundances Xi in sample i or, in some cases, 520 

the binary indicator variable for gut microbiome domination. 521 

 522 

  523 
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Data Availability 524 

The raw sequencing data have been deposited on the Sequencing Reads Archive (SRA), and SRA 525 

accession numbers are available for two bioprojects corresponding to the mouse sequencing data 526 

PRJNA745367 (Supplementary Table 4) and the human stool samples PRJNA746322 527 

(Supplementary Table 5).  528 
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Figures  529 
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Fig. 1. SARS-CoV-2 infection causes gut microbiome alterations in mice. a Timelines of 532 

fecal microbiota composition measured by 16S rRNA gene sequencing in mice infected with 0 or 533 

104 PFU of SARS-CoV-2 ; time of infection=Day 1. Bars represent the composition of the 15 534 

most abundant bacterial families per sample, blocks of samples correspond to an individual 535 

mouse’s time course (x-axis label indicate experiment id, PFU, and mouse id). b α-diversity 536 

(inverse Simpson index) per infection group in the beginning (tstart) and at the end (tend) of the 537 

experiment (n.s.: non-significant, **: p<0.01, one-tailed, paired t-test). c Principal coordinate 538 

plot of bacterial compositions in samples from the start (top) and end (bottom) of the experiment. 539 

d log10-relative family abundances at the final time point; boxplots show median and 540 

interquartile ranges, whiskers extend to 1.5 times max- and min- quartile values, n.s.: not 541 

significant; *: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001; Wilcoxon rank-sum 542 

tests. e Regression coefficients of the estimated changes in family abundances per day in mice 543 

infected with 104 PFU obtained from linear mixed effects models with varying effects per mouse 544 

and per cage (only significant coefficient results shown, abbreviations and colors as per the 545 

bacterial family legend). 546 

 547 

  548 
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Fig. 2 SARS-CoV-2 infection causes abnormalities in the gut epithelium of mice. a. 550 

Representative H&E-stained section of the ileum depicting crypt-villus axes from K18-hACE2 551 

mice on day 5-6 post intranasal inoculation with 10000 PFU SARS-CoV-2 or mock treatment. 552 

Green arrows indicate goblet cells, scale bars correspond to 25µm. Bottom panels show high 553 

magnification images of the indicated crypt with black arrowheads pointing at Paneth cells, scale 554 

bars correspond to 10µm. b. Representative anti-lysozyme immunofluorescence images of the 555 

ileal crypt (two images per group). White and orange doted circles delineate normal and 556 

abnormal Paneth cells, respectively. Abnormality is characterized by distorted, depleted, or 557 

diffuse lysozyme distribution patterns in Paneth cells. Lysozyme = red, DAPI = blue, scale bars 558 

correspond to 10�m. c. Quantification of goblet cell number per villus (left), Paneth cells per 559 

crypt (middle) based on H&E staining, and frequency of normal versus abnormal Paneth cell 560 

lysozyme distribution pattern based on the immunofluorescence staining as depicted in b. Dots 561 

represent the mean cell number per crypt-villus unit in each mouse, 50 units were counted per 562 

mouse. Results were pooled from 3 independent experiments with n=3-5 mice per group for each 563 

experiment. Boxplots indicate median and interquartile ranges (ns=non-significant, p>0.05; **, 564 

p<0.01; ***, p<0.001; ****, p<0.0001 Mann-Whitney U-test).  d. Correlation of Goblet cell 565 

number per villus (left, Pearson correlation r=-0.48, p=0.015), Paneth cells per crypt (middle, 566 

r=0.14, p-value=0.483) and frequency of abnormal Paneth cell lysozyme distribution pattern 567 

(right, r=-0.5528, p=0.014) for the mice shown in c with α-diversity (inverse Simpson) of the gut 568 

microbiome measured at the last day before sacrifice. e. Correlation of Goblet cell number per 569 

villus (left, r=0.63, p<0.001), Paneth cells per crypt (middle, r=-0.29, p=0.149) and frequency of 570 

abnormal Paneth cell lysozyme distribution pattern (right, r=0.65, p-value=0.003) for the mice 571 

shown in c with log10-relative abundances of Akkermansia in fecal samples from the last day 572 

before sacrifice; lines: univariate linear regression, shaded region: 95% CI. 573 

 574 
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Fig. 3. The dysbiotic gut microbiome in COVID-19 in patients from NYU Langone Health 576 

(n=60) and Yale New Haven Hospital (n=36) is associated with secondary bloodstream 577 

infections. a Bacterial family composition in stool samples (Yale, n = 63 samples; NYU, n = 67) 578 

identified by 16S rRNA gene sequencing; bars represent the relative abundances of bacterial 579 

families; red circles indicate samples with single taxa >50%. Samples are sorted by center and 580 

bacterial α-diversity (inverse Simpson index, b). c α-diversity in samples from NYU Langone 581 

Health and Yale New Haven Hospital; **p<0.01, two-sided T-test. d Average phylum level 582 

composition per center. e-g Principal coordinate plots of all samples shown in a, labeled by center 583 

(e), most abundant bacterial family (f) and domination status of the sample (g), and BSI status; 584 

inset: boxplot of inverse Simpson index diversity by BSI (h). i Coefficients from a Bayesian 585 

logistic regression with most abundant bacterial genera as predictors of BSI status. j 586 

Counterfactual posterior predictions of BSI risk based on bacterial composition contrasting the 587 

predicted risk of the average composition across all samples (red) with the risk predicted from a 588 

composition where Faecalibacterium was increased by 10% (blue). k shotgun metagenomic reads 589 

matched the species identified in clinical blood cultures in 70% of all investigated cases; the 590 

histogram shows the distribution of log10-ratios of relative abundances of matched species in 591 

corresponding stool samples to their corresponding mean abundances across all samples. 592 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2021.07.15.452246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452246
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgments 593 

We thank René Niehus for helpful discussions on the implementation of the various Bayesian 594 

analyses. We thank the NYU Langone’s Genome Technology Center, the NYU Langone’s 595 

Experimental Pathology Research Laboratory and the NYU Langone’s Microscopy Laboratory 596 

supported in part by NYU Langone Health’s Laura and Isaac Perlmutter Cancer Center Support 597 

(grant P30CA016087) from the National Cancer Institute Langone and by the NIH S10 598 

OD021747 grant for use of their instruments and technical assistance. We also thank the Office 599 

of Science & Research High-Containment Laboratories at NYU Grossman School of Medicine 600 

for their support in the completion of this research. 601 

 602 

Yale IMPACT Team 603 

Abeer Obaid, Alice Lu-Culligan, Allison Nelson, Anderson Brito, Angela Nunez, Anjelica 604 

Martin, Annie Watkins, Bertie Geng, Chaney Kalinich, Christina Harden, Codruta Todeasa, Cole 605 

Jensen, Daniel Kim, David McDonald, Denise Shepard, Edward Courchaine, Elizabeth B. White, 606 

Eric Song, Erin Silva, Eriko Kudo, Giuseppe DeIuliis, Harold Rahming, Hong-Jai Park, Irene 607 

Matos, Jessica Nouws, Jordan Valdez, Joseph Fauver, Joseph Lim, Kadi-Ann Rose, Kelly 608 

Anastasio, Kristina Brower, Laura Glick, Lokesh Sharma, Lorenzo Sewanan, Lynda Knaggs, 609 

Maksym Minasyan, Maria Batsu, Mary Petrone, Maxine Kuang, Maura Nakahata, Melissa 610 

Campbell, Melissa Linehan, Michael H. Askenase, Michael Simonov, Mikhail Smolgovsky, 611 

Nicole Sonnert, Nida Naushad, Pavithra Vijayakumar, Rick Martinello, Rupak Datta, Ryan 612 

Handoko, Santos Bermejo, Sarah Prophet, Sean Bickerton, Sofia Velazquez, Tara Alpert, Tyler 613 

Rice, William Khoury-Hanold, Xiaohua Peng, Yexin Yang, Yiyun Cao & Yvette Strong 614 

 615 

Author contributions 616 

LBR performed the mouse experiments with help from MGN, AMVJ. CZ performed mouse 617 

microbiome analyses with help from LBR, MV and KC. MV, JEA and JS prepared the samples 618 

from NYU. MV, JEA prepared the clinical data from NYU with help from JG, EW, BS. JK 619 

provided the data from Yale with help from ACM and the IMPACT team, AIK and AI. JS 620 

designed and performed the analyses with CZ, and help by GAH and APS. JS and KC designed 621 

the research question with support from VJT and BS. JS and KC wrote the manuscript with help 622 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2021.07.15.452246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452246
http://creativecommons.org/licenses/by-nc-nd/4.0/


by LBR, MV and CZ. All other authors contributed materials, scientific feedback and 623 

commented on the manuscript. 624 

 625 

Funding 626 

This work was in part funded by NYU Grossman School of Medicine startup research funds and 627 

NIH/NIAID DP2 award (DP2AI164318) to JS, and the Yale School of Public Health and the 628 

Beatrice Kleinberg Neuwirth Fund, as well as NIH grants to KC (DK093668, AI121244, 629 

HL123340, AI130945, AI140754, DK124336), a Faculty Scholar grant from the Howard Hughes 630 

Medical Institute (KC), Crohn’s & Colitis Foundation (KC), Kenneth Rainin Foundation (KC), 631 

Judith & Stewart Colton Center of Autoimmunity (KC). Further funding was provided by grants 632 

from the NIH/NIAID to MD (R01AI143639 and R21AI139374), from the NIH to MV 633 

(5T32AI100853), by Jan Vilcek/David Goldfarb Fellowship Endowment Funds to AMVJ, by 634 

The G. Harold and Leila Y. Mathers Charitable Foundation to MD, and by NYU Grossman 635 

School of Medicine Startup funds to MD and KAS, and the NYU Grossman School of Medicine 636 

COVID-19 seed research funds to VJT, and funds from the NYU Langone Health Antimicrobial-637 

Resistant Pathogens Program to BS, AP, and VJT. KC and VJT also receive support from NIH 638 

grant OT2HL161847. MN was supported by the American Heart Association Postdoctoral 639 

Fellowship 19-A0-00-1003686. IMPACT received support from the Yale COVID-19 Research 640 

Resource Fund. AI and DRL are Investigators of the Howard Hughes Medical Institute. AIK 641 

received support from the Beatrice Kleinberg Neuwirth Fund, Bristol Meyers Squibb Foundation 642 

and COVID-19 research funds from the Yale Schools of Public Health and Medicine.  643 

 644 

Conflicts 645 

KC has received research support from Pfizer, Takeda, Pacific Biosciences, Genentech, and 646 

Abbvie; consulted for or received an honoraria from Puretech Health, Genentech, and Abbvie; 647 

and holds U.S. patent 10,722,600 and provisional patents 62/935,035 and 63/157,225. JS is 648 

cofounder of Postbiotics Plus Research LLC. 649 

   650 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2021.07.15.452246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452246
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bibliography 651 

 652 
1. Fajgenbaum, D. C. & June, C. H. Cytokine Storm. N. Engl. J. Med. 383, 2255–2273 (2020). 653 
2. Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. 654 

Nature 584, 463–469 (2020). 655 
3. Zuo, T. et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of 656 

Hospitalization. Gastroenterology 159, 944–955.e8 (2020). 657 
4. Yeoh, Y. K. et al. Gut microbiota composition reflects disease severity and dysfunctional 658 

immune responses in patients with COVID-19. Gut 70, 698–706 (2021). 659 
5. Gu, S. et al. Alterations of the gut microbiota in patients with coronavirus disease 2019 or 660 

H1N1 influenza. Clin. Infect. Dis. 71, 2669–2678 (2020). 661 
6. Nori, P. et al. Bacterial and fungal coinfections in COVID-19 patients hospitalized during 662 

the New York City pandemic surge. Infect. Control Hosp. Epidemiol. 42, 84–88 (2021). 663 
7. Grasselli, G. et al. Hospital-Acquired Infections in Critically Ill Patients With COVID-19. 664 

Chest (2021). doi:10.1016/j.chest.2021.04.002 665 
8. Yu, D. et al. Low prevalence of bloodstream infection and high blood culture contamination 666 

rates in patients with COVID-19. PLoS One 15, e0242533 (2020). 667 
9. Langford, B. J. et al. Bacterial co-infection and secondary infection in patients with 668 

COVID-19: a living rapid review and meta-analysis. Clin. Microbiol. Infect. 26, 1622–1629 669 
(2020). 670 

10. Shafran, N. et al. Secondary bacterial infection in COVID-19 patients is a stronger predictor 671 
for death compared to influenza patients. Sci. Rep. 11, 12703 (2021). 672 

11. Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated 673 
resistance to Clostridium difficile. Nature 517, 205–208 (2015). 674 

12. Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal 675 
pathogens. Nat. Rev. Immunol. 13, 790–801 (2013). 676 

13. Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut microbiota. J. Clin. 677 
Invest. 124, 4212–4218 (2014). 678 

14. Shimasaki, T. et al. Increased Relative Abundance of Klebsiella pneumoniae 679 
Carbapenemase-producing Klebsiella pneumoniae Within the Gut Microbiota Is Associated 680 
With Risk of Bloodstream Infection in Long-term Acute Care Hospital Patients. Clin. Infect. 681 
Dis. 68, 2053–2059 (2019). 682 

15. Kim, S., Covington, A. & Pamer, E. G. The intestinal microbiota: Antibiotics, colonization 683 
resistance, and enteric pathogens. Immunol. Rev. 279, 90–105 (2017). 684 

16. Morjaria, S. et al. Antibiotic-Induced Shifts in Fecal Microbiota Density and Composition 685 
during Hematopoietic Stem Cell Transplantation. Infect. Immun. 87, (2019). 686 

17. Niehus, R. et al. Quantifying antibiotic impact on within-patient dynamics of extended-687 
spectrum beta-lactamase resistance. Elife 9, (2020). 688 

18. Taur, Y. et al. Intestinal domination and the risk of bacteremia in patients undergoing 689 
allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55, 905–914 (2012). 690 

19. Taur, Y. et al. Reconstitution of the gut microbiota of antibiotic-treated patients by 691 
autologous fecal microbiota transplant. Sci. Transl. Med. 10, (2018). 692 

20. Liao, C. et al. Compilation of longitudinal microbiota data and hospitalome from 693 
hematopoietic cell transplantation patients. Sci. Data 8, 71 (2021). 694 

21. Peled, J. U. et al. Microbiota as Predictor of Mortality in Allogeneic Hematopoietic-Cell 695 
Transplantation. N. Engl. J. Med. 382, 822–834 (2020). 696 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2021.07.15.452246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452246
http://creativecommons.org/licenses/by-nc-nd/4.0/


22. McCullers, J. A. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat. 697 
Rev. Microbiol. 12, 252–262 (2014). 698 

23. Wang, D. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel 699 
Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020). 700 

24. Westblade, L. F., Simon, M. S. & Satlin, M. J. Bacterial coinfections in coronavirus disease 701 
2019. Trends Microbiol. 29, 930–941 (2021). 702 

25. Sepulveda, J. et al. Bacteremia and Blood Culture Utilization during COVID-19 Surge in 703 
New York City. J. Clin. Microbiol. 58, (2020). 704 

26. Lansbury, L., Lim, B., Baskaran, V. & Lim, W. S. Co-infections in people with COVID-19: 705 
a systematic review and meta-analysis. J. Infect. 81, 266–275 (2020). 706 

27. Sieswerda, E. et al. Recommendations for antibacterial therapy in adults with COVID-19 - 707 
an evidence based guideline. Clin. Microbiol. Infect. 27, 61–66 (2021). 708 

28. Zhai, B. et al. High-resolution mycobiota analysis reveals dynamic intestinal translocation 709 
preceding invasive candidiasis. Nat. Med. 26, 59–64 (2020). 710 

29. Haak, B. W. et al. Impact of gut colonization with butyrate-producing microbiota on 711 
respiratory viral infection following allo-HCT. Blood 131, 2978–2986 (2018). 712 

30. Deriu, E. et al. Influenza Virus Affects Intestinal Microbiota and Secondary Salmonella 713 
Infection in the Gut through Type I Interferons. PLoS Pathog. 12, e1005572 (2016). 714 

31. Yildiz, S., Mazel-Sanchez, B., Kandasamy, M., Manicassamy, B. & Schmolke, M. Influenza 715 
A virus infection impacts systemic microbiota dynamics and causes quantitative enteric 716 
dysbiosis. Microbiome 6, 9 (2018). 717 

32. Steed, A. L. et al. The microbial metabolite desaminotyrosine protects from influenza 718 
through type I interferon. Science 357, 498–502 (2017). 719 

33. Abt, M. C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral 720 
immunity. Immunity 37, 158–170 (2012). 721 

34. Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A 722 
virus infection. Proc. Natl. Acad. Sci. USA 108, 5354–5359 (2011). 723 

35. Sencio, V. et al. Influenza infection impairs the gut’s barrier properties and favors secondary 724 
enteric bacterial infection through reduced production of short-chain fatty acids. Infect. 725 
Immun. (2021). doi:10.1128/IAI.00734-20 726 

36. Wang, J. et al. Respiratory influenza virus infection induces intestinal immune injury via 727 
microbiota-mediated Th17 cell-dependent inflammation. J. Exp. Med. 211, 2397–2410 728 
(2014). 729 

37. Winkler, E. S. et al. SARS-CoV-2 Causes Lung Infection without Severe Disease in Human 730 
ACE2 Knock-In Mice. J. Virol. 96, e0151121 (2022). 731 

38. Yinda, C. K. et al. K18-hACE2 mice develop respiratory disease resembling severe 732 
COVID-19. PLoS Pathog. 17, e1009195 (2021). 733 

39. Zheng, J. et al. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 734 
mice. Nature 589, 603–607 (2021). 735 

40. Golden, J. W. et al. Human angiotensin-converting enzyme 2 transgenic mice infected with 736 
SARS-CoV-2 develop severe and fatal respiratory disease. JCI Insight 5, (2020). 737 

41. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and 738 
human intestinal Paneth cells. Nature 456, 259–263 (2008). 739 

42. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease 740 
gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010). 741 

43. Matsuzawa-Ishimoto, Y. et al. Autophagy protein ATG16L1 prevents necroptosis in the 742 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2021.07.15.452246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452246
http://creativecommons.org/licenses/by-nc-nd/4.0/


intestinal epithelium. J. Exp. Med. 214, 3687–3705 (2017). 743 
44. Schluter, J. et al. The gut microbiota is associated with immune cell dynamics in humans. 744 

Nature 588, 303–307 (2020). 745 
45. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy 746 

in melanoma patients. Science 359, 97–103 (2018). 747 
46. Diefenbach, C. S. et al. Microbial dysbiosis is associated with aggressive histology and 748 

adverse clinical outcome in B-cell non-Hodgkin lymphoma. Blood Adv. 5, 1194–1198 749 
(2021). 750 

47. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium 751 
identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 752 
105, 16731–16736 (2008). 753 

48. Wrzosek, L. et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence 754 
the production of mucus glycans and the development of goblet cells in the colonic 755 
epithelium of a gnotobiotic model rodent. BMC Biol. 11, 61 (2013). 756 

49. Seibert, B. et al. Mild and Severe SARS-CoV-2 Infection Induces Respiratory and Intestinal 757 
Microbiome Changes in the K18-hACE2 Transgenic Mouse Model. Microbiol. Spectr. 9, 758 
e0053621 (2021). 759 

50. Sencio, V. et al. Alteration of the gut microbiota following SARS-CoV-2 infection 760 
correlates with disease severity in hamsters. Gut Microbes 14, 2018900 (2022). 761 

51. Sokol, H. et al. SARS-CoV-2 infection in nonhuman primates alters the composition and 762 
functional activity of the gut microbiota. Gut Microbes 13, 1–19 (2021). 763 

52. Zhang, F. et al. Prolonged Impairment of Short-Chain Fatty Acid and L-Isoleucine 764 
Biosynthesis in Gut Microbiome in Patients With COVID-19. Gastroenterology 162, 548–765 
561.e4 (2022). 766 

53. Gaebler, C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639–644 767 
(2021). 768 

54. Park, S.-K. et al. Detection of SARS-CoV-2 in Fecal Samples From Patients With 769 
Asymptomatic and Mild COVID-19 in Korea. Clin. Gastroenterol. Hepatol. 19, 1387–770 
1394.e2 (2021). 771 

55. Xiao, F. et al. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology 772 
158, 1831–1833.e3 (2020). 773 

56. Cheung, K. S. et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus 774 
Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis. 775 
Gastroenterology 159, 81–95 (2020). 776 

57. Lamers, M. M. et al. SARS-CoV-2 productively infects human gut enterocytes. Science 369, 777 
50–54 (2020). 778 

58. Cao, J. et al. Integrated gut virome and bacteriome dynamics in COVID-19 patients. Gut 779 
Microbes 13, 1–21 (2021). 780 

59. Klag, T., Stange, E. F. & Wehkamp, J. Defective antibacterial barrier in inflammatory bowel 781 
disease. Dig. Dis. 31, 310–316 (2013). 782 

60. Ramanan, D. & Cadwell, K. Intrinsic defense mechanisms of the intestinal epithelium. Cell 783 
Host Microbe 19, 434–441 (2016). 784 

61. Schluter, J. & Foster, K. R. The evolution of mutualism in gut microbiota via host epithelial 785 
selection. PLoS Biol. 10, e1001424 (2012). 786 

62. McLoughlin, K., Schluter, J., Rakoff-Nahoum, S., Smith, A. L. & Foster, K. R. Host 787 
selection of microbiota via differential adhesion. Cell Host Microbe 19, 550–559 (2016). 788 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2021.07.15.452246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452246
http://creativecommons.org/licenses/by-nc-nd/4.0/


63. Fernandez-Castañer, M. et al. Evaluation of B-cell function in diabetics by C-peptide 789 
determination in basal and postprandial urine. Diabete Metab 13, 538–542 (1987). 790 

64. Yu, S. et al. Paneth Cell-Derived Lysozyme Defines the Composition of Mucolytic 791 
Microbiota and the Inflammatory Tone of the Intestine. Immunity 53, 398–416.e8 (2020). 792 

65. Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial 793 
ecology. Nat. Immunol. 11, 76–83 (2010). 794 

66. van der Lugt, B. et al. Akkermansia muciniphila ameliorates the age-related decline in 795 
colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1-/Δ7 796 
mice. Immun. Ageing 16, 6 (2019). 797 

67. Wang, L. et al. An observational cohort study of bacterial co-infection and implications for 798 
empirical antibiotic therapy in patients presenting with COVID-19 to hospitals in North 799 
West London. J. Antimicrob. Chemother. 76, 796–803 (2021). 800 

68. Labarta-Bajo, L. et al. Type I IFNs and CD8 T cells increase intestinal barrier permeability 801 
after chronic viral infection. J. Exp. Med. 217, (2020). 802 

69. Karki, R. et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue 803 
Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell 804 
184, 149–168.e17 (2021). 805 

70. Giron, L. B. et al. Plasma Markers of Disrupted Gut Permeability in Severe COVID-19 806 
Patients. Front. Immunol. 12, 686240 (2021). 807 

71. Xie, X. et al. An Infectious cDNA Clone of SARS-CoV-2. Cell Host Microbe 27, 841–808 
848.e3 (2020). 809 

72. Gohl, D. M. et al. Systematic improvement of amplicon marker gene methods for increased 810 
accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949 (2016). 811 

73. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid 812 
assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 813 
73, 5261–5267 (2007). 814 

74. Pawlowsky-Glahn, V., Egozcue, J. J. & Tolosana-Delgado, R. Modelling and analysis of 815 
compositional data. (John Wiley & Sons, Ltd, 2015). doi:10.1002/9781119003144 816 

75. Kruschke, J. K. Bayesian estimation supersedes the t test. J. Exp. Psychol. Gen. 142, 573–817 
603 (2013). 818 

76. Homan, M. D. & Gelman, A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in 819 
Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014). 820 

 821 
  822 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2021.07.15.452246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452246
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supporting Information823 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2021.07.15.452246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452246
http://creativecommons.org/licenses/by-nc-nd/4.0/


 824 
 825 

Extended Data Fig. S1 SARS-CoV-2 infection in K18-hACE2 mice. 826 

a-b. Following inoculation with 0, 10, 100, 1000 or 10000 PFU of SARS-CoV-2 or mock 827 

infection, mice were monitored daily for weight loss (a) and signs of disease quantified by a 828 

composite score based on ruffled fur, hunched back, heavy breathing and absence of mobility 829 

(b). Median and interquartile range determined for each group at each time point are depicted. 830 

Results are pooled from 1-3 independent experiments. For each group, the total number of mice 831 

is indicated. c. Viral burden in lung or intestinal tissue of K18-hACE2 mice was analyzed at 5-6 832 

days after infection with 100, 1000, 10000 PFU of SARS-CoV-2 or mock infection by qRT-833 

PCR. Dots represent the copy number of N RNA per µg of RNA calculated for each mouse. 834 

Results were pooled from 1 (100 and 1000 PFU doses) or 2 (mock and 10000 PFU) independent 835 

experiments with n=2-5 mice per group for each experiment. The median and interquartile range 836 

are depicted for each experimental group. The dotted line depicts the limit of detection. 837 
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 838 

 839 
 840 

Extended Data Fig. S2 Inconsistent microbiomes dynamics in mice with lower infection 841 

doses. a Bars represent bacterial family compositions in stool samples collected from mice over 842 

time, mouse time courses grouped as indicated by boxes. b bacterial alpha diversity in first (tstart) 843 
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and last (tend) samples collected. c principal coordinate plots of bacterial compositions in first and 844 

last samples colored by infection dose (in PFU). d bacterial family abundances by infection dose 845 

at the final sample collected. E diversity, weight and temperature z-scores (calculated from all 846 

data points) over time per mouse as shown in a and Fig. 1. F untransformed diversity, weights 847 

and temperatures relative to the beginning of the experiment. 848 

 849 
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 851 

 852 

Extended Data Fig. S3 Some intestinal parameters are not modified during SARS-CoV-2 853 

infection. K18-hACE2 mice were analyzed on day 5-6 post intranasal inoculation with 10000 PFU 854 

SARS-CoV-2 or mock treatment. a. Quantification of fluorescence intensity in the blood following 855 

oral administration of FITC-dextran. B. Intestinal fatty acid-binding protein (iFABP), LPS-binding 856 

protein (LBP), and citrulline concentration in plasma. C. Quantification of colon length. d. 857 

Quantification of villus length in the duodenum (left) and ileum (right) based on H&E staining. E. 858 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2021.07.15.452246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452246
http://creativecommons.org/licenses/by-nc-nd/4.0/


Quantification of goblet cell number (left) and Paneth cell number (middle) per crypt-villus unit 859 

in the proximal duodenum based on H&E staining and calculation of goblet cell per Paneth cell 860 

ratio based on these quantifications (right). Individual mice, represented by the circles as well as 861 

the median and interquartile ranges are depicted. In d, e, each circle shows the mean for each 862 

mouse of the cell number counted per crypt-villus unit on 50 units. Results were pooled from 2 863 

(for a) or 3 independent experiments with n=3-5 mice per group for each experiment. Significant 864 

differences were determined using the Mann-Whitney U test (ns=non-significant, p > 0.05; **, 865 

p < 0.01; ***, p < 0.001; ****, p  < 0.0001).   866 
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 867 
 868 

Extended Data Fig. S4 Strongest gut dysbiosis is correlated with markers of defects in the 869 

intestinal barrier and epithelium. A Reproduction of Fig. 1 showing bacterial compositions in 870 

mice infected with 104 PFUs, highlighting four mice time courses of mice with lowest diversity 871 
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and highest disease scores at the end of the experiment (b). c-d Correlations between alpha 872 

diversity (c) (inverse Simpson) and log10 relative Akkermansia abundances (d) at the end of the 873 

experiment with epithelium phenotypes and gut barrier integrity markers measured in the blood 874 

of mice (data from mice highlighted in a with circles in corresponding colors, lines: linear 875 

regression, shaded region: 95%CI).  876 

 877 

 878 
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 879 

 880 
Extended Data Fig. S5 a Samples from patients requiring ICU transfer have lower diversity on average (p=0.005, Wilcoxon rank-881 

sum); bars as in Fig. 1 with ICU status of patients and domination state of samples indicated. b Genus abundances in samples with a 882 

single genus >50% relative abundance. 883 

 884 
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 885 
Extended Data Fig. S6 Patients with a positive clinical blood culture result (BSI) received 886 

antibiotics, prior or on the day of blood culture results (cross symbol: first recorded antibiotic 887 

administration, blue: sequenced stool sample, diamond: positive blood culture result (BSI)). 888 

 889 
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 890 
Extended Data Fig. S7 a Posterior coefficient estimates from a Bayesian logistic regression 891 

regressing log10 relative abundances of the top 10 most abundant bacterial genera on BSI status 892 
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using only BSI cases with associated stool samples taken prior or on the day of a confirmed 893 

positive blood culture. b Posterior coefficient estimates from a Bayesian logistic regression 894 

regressing log10 relative abundances of the top 10 most abundant bacterial genera on BSI status 895 

with domination status of the microbiome as an additional predictor (domination: >50% of the 896 

composition by one taxon). c ASVs associated with samples from patients with BSI. Coefficients 897 

from a cross-validated, L1-penalized logistic regression correlating the binary outcome (BSI) 898 

with log10-transformed relative ASV abundances. d Cross-validation paths; for all regularization 899 

strengths (L1-penalty) used, a Faecalibacterium ASV was most negatively associated with BSI-900 

positive samples.901 
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 902 
 903 

Extended Data Fig. S8 Faecalibacterium relative abundance is positively correlated with 904 

bacterial alpha diversity. Log10 transformed relative abundances of the genus 905 

Faecalibacterium in stool samples from patients are correlated with the inverse Simpson 906 

diversity index; line from linear regression, shaded region: 95%CI.907 
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 908 
Extended Data Fig. S9 Bacteria in stool of COVID-19 patients match taxa identified  blood 909 

cultures. a Organisms identified in blood cultures together with bars representing the bacterial 910 
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family compositions in stool samples; multiple samples belonging to the same patient grouped 911 

by a white box. Two samples with matching whole genome sequenced (WGS) blood isolates 912 

indicated. b Rank analysis of abundance patterns in stool samples from different BSI categories; 913 

a filled circle indicates the calculated rank of the focal BSI category (row) in terms of the 914 

corresponding taxon stool abundance relative to samples from other BSI categories (Lact: 915 

Lactobacillales, Enbct: Enterobacterales; Pseu: Pseudomonadales, Bact: Bacteroidales, Staph: 916 

Staphylococcales. Only 5 out of 7 BSI categories are shown because fungal BSIs and the 917 

uninfected category have no corresponding bacterial stool abundances). c,d left: neighbor-joining 918 

tree constructed from all NCBI RefSeq assemblies of Staphylococcus aureus genomes in 919 

addition to isolates that were isolated from subjects highlighted in a. right: counts of perfect read 920 

matches of shotgun metagenomic reads from stool samples, red: stool sample sequencing read 921 

matches to WGS of isolates from the same patient, black: matches to other genomes. 922 
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Supplementary Table 1: Clinical characteristics of patients with confirmed COVID-19 at 923 

NYU Langone Health and Yale New Haven Hospital 924 

 925 
  926   NYU, N = 60 YALE, N = 36 

Age (years) 51 ±  17.5 62.52 ± 19.72  

Sex (F | M) 42% | 58% 39% | 61%  

Hospital course and Outcomes     

ICU Admission 53% 65% 

Pneumonia 42% 77% 

Diarrhea 13% 32% 

Intubation 36% 41% 

Sepsis 23% 18% 

Encephalopathy 12% 3% 

Death 5% 21% 

Length of stay (median, IQR) 37 (10-86) 27 (11-35.25) 

Risk Factors      

Cancer within 1 year 7% 4% 

Chronic Heart Disease 18% 36% 

Hypertension 38% 64% 

Chronic Lung Disease 7% 20% 

Immunosuppression 17% 4% 
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Supplementary Table 2: Clinical characteristics of COVID-19 patients at NYU Langone 927 

Health and Yale New Haven Hospital with and without positive blood culture results (BSI). 928 

 929 
  BSI, N = 26 non-BSI N = 53 
Hospital course and Outcomes     
ICU Admission 69% 64% 
Pneumonia 73% 53% 
Diarrhea 31% 64% 
Intubation 58% 36% 
Sepsis 35% 21% 
Encephalopathy 19% 6% 
Death 15% 9% 
Length of stay (median, IQR) 59 (23-91.5) 22 (6-51) 
 930 
 931 

 932 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2021.07.15.452246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452246
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 3: Shotgun metagenomic reads mapped to species identified in clinical blood cultures. Dark grey shading: 933 

no sequencing reads from stool samples matched the species identified in clinical blood samples, light grey shading: species of the 934 

same genus but not the same species had non-zero read counts in stool samples. The relative abundance of identified species were 935 

contrasted with their mean abundances (log10 ratio). 936 

 937 

938 
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Supplementary Table 4: SRA accession numbers for the bioproject PRJNA745367 939 

 corresponding to the mouse sequencing data.  940 

(Excel sheet) 941 

 942 

Supplementary Table 5: SRA accession numbers for the bioproject PRJNA746322 943 

corresponding to the human stool samples sequencing data.  944 

(Excel sheet) 945 

 946 
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