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Abstract: Cytosine-rich DNA sequences are able to fold into noncanonical structures, in which semi-
protonated cytosine pairs develop extra hydrogen bonds, and these bonds are responsible for the
overall stability of a structure called the i-motif. The i-motif can be formed in many regions of the
genome, but the most representative is the telomeric region in which the CCCTAA sequences are
repeated thousands of times. The ability to reverse folding/unfolding in response to pH change
makes the above sequence and i-motif very promising components of nanomachines, extended DNA
structures, and drug carriers. Molecular dynamics analysis of such structures is highly beneficial due
to direct insights into the microscopic structure of the considered systems. We show that Amber force
fields for DNA predict the stability of the i-motif over a long timescale; however, these force fields are
not able to predict folding of the cytosine-rich sequences into the i-motif. The reason is the kinetic
partitioning of the folding process, which makes the transitions between various intermediates too
time-consuming in atomistic force field representation. Application of coarse-grained force fields
usually highly accelerates complex structural transitions. We, however, found that three of the most
popular coarse-grained force fields for DNA (oxDNA, 3SPN, and Martini) were not able to predict the
stability of the i-motif structure. Obviously, they were not able to accelerate the folding of unfolded
states into an i-motif. This observation must be strongly highlighted, and the need to develop suitable
extensions of coarse-grained force fields for DNA is pointed out. However, it will take a great deal of
effort to successfully solve these problems.

Keywords: i-motif; oxDNA; Martini; 3SPN; Amber; carbon nanotube

1. Introduction

Noncanonical DNA structures can be formed in many regions of the human genome [1–3],
but the promoter regions, as well as telomeric and centromeric structures, are the most prone to
the formation of DNA tetraplexes. The telomeric region of the human chromosome is built from
highly repetitive sequences of bases. [4] The telomeric duplex consists of guanine-rich (G-rich;
TTAGGG) and cytosine-rich (C-rich; CCCTAA) strands, and the single-stranded 3′ overhang is
also built from G-rich sequences. The G-rich sequence can form a G-quadruplex in the presence
of monovalent ions Na+ and K+ [5–7], while the C-rich strand can form an i-motif at slightly
reduced pH when the formation of semi-protonated C:C+ pairs is possible [8,9].

These noncanonical structures have been extensively studied because their importance
in biological processes is high and probably still not fully understood. The G-quadruplex
is better recognized, and its role in the suppression of telomerase activity has been con-
firmed [6–11]. The biological role of the i-motif is still not fully understood, and there are
some remarks that formation of the i-motif may lead to a similar effect as the G-quadruplex
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because it can indirectly induce G-quadruplex formation [10]. An interesting observation
was selective induction of i-motif formation by carboxylated carbon nanotubes (CNTs) [12].
However, the i-motif is identified mainly as a cellular pH indicator or component of
pH-triggered drug carriers [2,13,14].

Both noncanonical structures have been studied using molecular modeling [15–17]
and atomistic force fields, usually belonging to the Amber family [18]. These atomistic
force fields for DNA or RNA have continuously evolved since the 1990s [18]. Major
refinements included a longer simulation timescale and high-level quantum chemical
calculations, which resulted in the publication of ff99-bsc0 parametrization in 2007 [19].
That parametrization was found to be successful for the simulation of canonical DNA
structures but led to some anomalies in the case of noncanonical structures, particularly
those with loops [20]. Further major updates of Amber force fields for DNA were presented
by two groups, leading to OL15 [21] and bsc1 [22] parametrizations. It is beyond the scope
of this work to discuss these modifications in detail, but it is worth mentioning that OL15
focused on the refinements of ε/ζ and β dihedrals, while bsc1 increased the helical twist
and yielded double-stranded DNA, hairpins, and G-quadruplexes in better agreement with
experimental observations. One of the most impressive features of the Amber family of
force fields, including the relatively old bsc0 parametrization, is their ability to predict
unusual DNA structures for which parameterization was not carried out directly. These
include hairpins, triplexes, quadruplexes, Z-DNA, and Hoogsteen duplexes [19].

The computational studies of G-quadruplexes and i-motifs have focused on the folded
states, with the structural information taken from experiments; alternatively, the studies
were involved in analysis of the unfolding processes of these structures. The modeling of
folding processes starting, for example, from the coil or hairpin states has not been reported
so far. This is because the formation of such high-symmetry structures in all-atom molecular
dynamics simulations is very time-consuming, if at all possible. The problem resembles
Levinthal’s protein-folding paradox which states that “it would not be possible in a physically
meaningful time to a protein to reach the native (functional) conformation by a random search of the
enormously large number of possible structures” [23]. That paradox has been formally solved by
the statement that small energetic biases toward the target state reduce the conformational
search to realistic folding times. However, the source of those small biases in standard
unbiased computer simulations is unknown. In experiments, many factors may play a
role, including, for example, the presence of chaperons [24], which, together with entropic
factors coming from solvent, may construct the successful folding funnel.

Thus, in this work, we analyzed the stability and possible folding of a C-rich telomeric
DNA fragment into an i-motif on the microsecond timescale using the Amber family of
force fields for DNA. The intention of this analysis was not a direct observation of folding
into the i-motif but rather a confirmation that such a transition cannot occur spontaneously
despite the small size of this molecule and the very long computation time applied. We
focused on the i-motif because this structure involves a proper description of protonated
cytosines which represents, as we show, an additional difficulty in the application of coarse-
grained force fields. We also paid attention to the effect of the carboxylated single-walled
carbon nanotube as a factor which may facilitate the folding of a C-rich DNA fragment into
an i-motif because similar observations have been reported in the literature [10–12,25].

Coarse-grained force fields are usually very helpful in accelerating large-scale trans-
formations such as protein folding and micelle formation. The key point in coarse-graining
is the reduction in the number of degrees of freedom and possible conformations in the
folding pathway. Therefore, in this study we also focused on the application of these
mesoscale computing methods using the most popular coarse-grained force fields for DNA
(oxDNA [26,27], 3SPN [28,29], and Martini-DNA [30]) with the aim to obtain the folded
i-motif-like structures.

All the studied approaches failed in the generation of a successful folding pathway of
the C-rich DNA strand into an i-motif. This negative result of the performed research is
important because it highlights the unresolved problems and encourages further research
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in this direction. The solution of this problem is not easy, as it requires either an application
of adaptive sampling algorithms or a suitable extension of the coarse-grained force fields.

2. Results
2.1. Stability of I-Motif in the Amber Atomistic Force Field Representations

Both parametrizations of the Amber force field for DNA, i.e., bsc1 and OL15, were
applied to study the behavior of a C-rich DNA fragment folded into a noncanonical i-
motif structure. The analysis was focused mainly on the structural factors on a relatively
long simulation timescale up to 800 ns. Some thermodynamic factors related to bsc1
parametrization were already addressed in our previous publications but using much
shorter timescales [16,31,32]. The conclusions which were drawn from those studies were
very clear; the i-motif spatial configuration is very stable with a deep free energy well only
when half of the cytosines are protonated. Unprotonated cytosines lead to an unstable
structure which unfolds spontaneously within a short time.

The essential results of the current long simulation timescale are shown in
Figures 1 and 2, where the root-mean-square displacement (rmsd), number of hydrogen
bonds, and root-mean-square fluctuation (rmsf) are presented.
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Figure 1. (A) Root-mean-square displacement (rmsd) of i-motif spatial structure for two parametriza-
tions bsc1 and OL15 of the Amber force field. The snapshots show the structures of i-motifs in the
last simulation frames for both parametrizations. (B) The number of hydrogen bonds between C:C+

residues obtained for both parametrizations.

The plots of rmsd in Figure 1 with the initial i-motif structures as the reference states
indicate that both parametrizations predicted stable i-motif conformations throughout the
simulation. The rmsd values of ca. 3 Å are typical of thermal fluctuations. However, larger
values about 4–5 Å, as observed for OL15 parametrization, indicated some deformation
of the initial structure. Nevertheless, the rmsd in both cases did not reveal any growing
tendency; hence, the i-motif was stable.

The rmsd plots in Figure 1 indicate that both parametrizations led to slightly different
states of the i-motif structure. The OL15 generated structures slightly more different from
the reference states (obtained from NMR analysis) than bsc1. Furthermore, analysis of the
number of hydrogen bonds between C and C+ residues revealed significant differences
between these two parametrizations. The bsc1 led to a very stable value close to 18 h-bonds
which is the theoretically exact value. The OL15 revealed a significant drift of the number
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of h-bonds over time but remained close to 18. Therefore, the above observations indicate
that OL15 parametrization led to a slightly more loose structure of the i-motif than bsc1.
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Figure 2. Root-mean-square fluctuation of atomic positions within the i-motif structure obtained for
the studied parametrizations of the Amber force fields. The letters on the top show which residues
the given atomic numbers belong to. The red C letters denote the protonated cytosines.

Figure 2 shows the fluctuations of atomic positions throughout the simulation, i.e., the
root-mean-square fluctuation (rmsf). This plot informs about the mobility of individual
atoms or residues (as indicated in the top part of the figure). We can conclude that the least
mobile elements were C:C+ pairs, with the range of their fluctuations from the reference
state remaining the same. This means that both parametrizations predicted strong binding
in the semi-protonated cytosine pairs. The most mobile elements were adenine residues
localized at the bottom part of the i-motif (see insets in Figure 1A) and 3′ thymine, but
the range of their fluctuations remained the same for both parametrizations. The biggest
differences were seen for thymine and adenines localized in the body of the i-motif. These
bases were not stabilized by hydrogen bonds; thus, they revealed quite significant flexibility,
and the differences between these two parametrizations became more visible.

The general observation is that both bsc1 and OL15 parametrizations predicted stable
structures of the i-motif when built of semi-protonated C:C+ pairs. It seems that OL15
predicted a looser structure of the i-motif with larger displacement from the reference
solution NMR structure. Additionally, the predictive features of the bsc1 and OL15 force
fields must be strongly underlined; these force fields were not directly parametrized
toward noncanonical DNA structures, but they perfectly describe them without additional
assumptions or tweaking.

2.2. Folding of Cytosine-Rich Sequence into I-Motif

The stability of the i-motif spatial structure observed in Figure 1 suggests that the
same C-rich DNA fragment, comprising C:C+ pairs, should spontaneously fold into an
i-motif. Experimental data concerning the lifetimes of i-motifs at various pH and elevated
temperatures suggest that melting of the i-motif takes several to several tens of seconds [4].
However, the kinetics of the reverse process has not been described, which suggests that
the formation of i-motifs at temperatures lower than the melting temperature and at acidic
pH is much faster. Molecular dynamics simulations are normally limited to nanosecond
timescales; however, in the case of small systems and the utilization of GPU computing, the
microsecond timescale is also achievable. Therefore, in this section, we present the results
of our simulations aimed at observation of spontaneous (unbiased) folding of a C-rich
telometric DNA fragment into an i-motif within the available microsecond timescale.

Looking at Figure 3, we can see that, after the initial rapid decrease in rmsd, it stabilizes
at the value of 11–12 Å. There was no visible tendency of a further decrease in the rmsd, i.e.,
approaching the structure of an i-motif. The rmsd values above 10 Å indicate that the given
structure was very far from the reference state; thus, we have to conclude that spontaneous
formation of the i-motif did not occur over the considered very long timescale reaching 4 µs.
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Moreover, the absolutely flat shape of the rmsd observed for times greater than 2.5–3 µs
suggests that the i-motif will never be formed spontaneously in the molecular dynamics
simulations carried out within, let us say, a “reasonable” time. This is somewhat surprising
because this particular system, though highly symmetric, is not very big. Nevertheless,
the kinetic partitioning mechanism [33], with the appearance of multiple, well-separated,
and structurally different conformational ensembles in the transition path, strongly slows
down the formation of the i-motif structure. Experimental data suggest that it may take
milliseconds [34], which remains too long to be effectively probed in molecular dynamics
simulations. The structures shown in Figure 3 are probably representative of many possible
intermediates located at the bottom of deep free energy wells, where spontaneous escaping
from those wells is highly unlikely. Thus, continuation of the simulation to the mentioned
millisecond timescale would, most probably, not lead to obtaining the i-motif structure.
Interestingly, in an experimental flask, the analogous processes occur easily. Unfortunately,
we cannot explain why such a paradox appears, but it is definitely similar to Levinthal’s
protein folding paradox, as mentioned in Section 1.
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Figure 3. Root-mean-square displacement (rmsd) from the ideal i-motif structure for a C-rich sequence
containing C:C+ pairs, i.e., ready to form the structured i-motif. The computations were carried out
using two parameterizations of the Amber force field, i.e., bsc1 and OL15. The snapshot in the upper
part of (A) shows the initial sequence in the random coil state, while the snapshots at the bottom are
the final structures obtained after 4 µs simulation times. (B) The number of hydrogen bonds between
C:C+ pairs during the simulation.

The structures obtained in the 4 µs simulations using both parametrizations of the
Amber force field are shown in Figure 3A. As can be seen, they were in the form of knots,
which are structurally very different from the i-motif. Furthermore, analysis of hydrogen
bonds between C:C+ residues shows that there were only 68 bonds, in contrast to the
i-motif case with 18 h-bonds. Again, some interesting differences between bsc1 and OL15
parametrizations can be observed in Figure 3. Specifically, the bsc1 led to a quite gradual
decrease in rmsd, which corresponds to folding of the initial structure into something like a
hairpin. At the same time the number of h-bonds reached 4–6 and remained almost constant
until the end of the simulation. The OL15 parametrization led to intense fluctuations of the
structure. The rmsd quickly dropped to 10 Å but increased again to 11–12 Å. The number
of h-bonds was almost zero until 1 µs and next grew to 8. Thus, the folding mechanisms of
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the C-rich DNA fragment differed significantly, but the final state was actually very similar
for both parametrizations in terms of rmsd and the number of h-bonds.

A general conclusion coming from this part of the study is that atomistic force fields
are unable to reproduce the formation of the i-motif within a microsecond timescale in an
unbiased simulation. However, in some cases, such a folding process would be beneficial
in modeling pH-dependent structural changes of various molecular structures containing
cytosine-rich DNA sequences. Moreover, successful construction of such a set of restraints
would formally correspond to the creation of a “folding funnel”, which was proposed
as a physical explanation of Levinthal’s paradox. The problem is, however, explained
by the physical sources responsible for the existence of such biasing forces in formally
unbiased simulations. However, let us try to find a set of restraints which could speed
up the formation of the i-motif in biased molecular dynamics simulations. The obvious
choice is, of course, the application of moving restraints on the distances between N3
nitrogen atoms belonging to C:C+ pairs leading to the target distance of 2.8 Å. This set of
six distances would generate hydrogen bonds responsible for the stability of the i-motif at
acidic pH. However, it quickly turned out that this was not enough since the forces acting
on these nitrogen atoms led to the formation of knots sterically blocking further folding to
a structural i-motif.

A better set of restraints was found after many trials, but its efficacy was still not
satisfactory. The idea was to divide the folding process into two stages. The first stage
was the formation of the loose shape of an i-motif-like structure by imposing five moving
restraints onto distances between backbone points: (1) between terminal points of the
whole chain: 13 Å, (2) and (3) between terminal points and the middle point of the chain:
20 Å, (4) between center of mass of terminal points and center of mass of points forming
the bottom of i-motif: 28 Å, and (5) between middle points of the chain and center of mass
of points forming the bottom of i-motif: 28 Å. The above set of restraints acted for some
time (0.4 ns), enabling the formation of the loose shape (Figure 4A, snapshot on the left) of
the i-motif from any initial structure. Afterward, these restraints were switched off, and
the restraints enforcing the formation of hydrogen bonds between N3 atoms of C:C+ pairs
were switched on, acting until 4 ns of simulation time. After that time, these forces were
removed, and the system was allowed to relax. The whole process is illustrated in Figure 4.

Looking at the rmsd and six distances between N3 atoms, we can conclude that the
forces imposed on the backbone points quickly led to the formation of a structure with
relatively low rsmd from the i-motif, but with distances between N3 atoms very far from
2.8 Å. In the next step, when the new forces between N3 atoms were applied, we can see
the significant reduction in those distances (some of them reached the values typical for
hydrogen bonds), but the rmsd was not improved. The corresponding structure seems to be
fairly similar to the i-motif shape. In the last step (t > 4 ns) the forces were switched off, and
the structure was allowed to relax. However, the relaxation led to significant deterioration
of the structure, as particularly seen in the distances between N3 atoms. Thus, the structure
became actually similar to those described in Figure 3, suggesting that the formation of the
i-motif is not possible on a reasonable timescale.

The conclusion is that the attempt to create a folding funnel failed. Of course, construc-
tion of a very detailed pathway involving many degrees of freedom which the system must
follow due to the bias applied will finally lead to the assumed target structure. However,
the system trajectory would then be artificial and the physical explanation of the existence
of those biasing forces would be impossible whether in a simulation or in an experiment.
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2.3. Folding of Cytosine-Rich Sequence in the Presence of a Carbon Nanotube

As already mentioned in Section 1, carboxylated single-walled carbon nanotubes were
reported as i-motif-stabilizing agents [10,12,25]. In our previous studies, we addressed
that problem but in the context of folding into an i-motif structure of unprotonated and
protonated cytosine-rich sequences [16,32,35]. A general conclusion was that the proto-
nated i-motif was stable when brought into contact with a carbon nanotube; however, the
unprotonated structure, with an initial i-motif shape, deteriorated faster in the presence of a
carbon nanotube compared to alone. Thus, the question is whether the unfolded sequence
containing C:C+ pairs is able to fold spontaneously into an i-motif in the presence of a
carboxylated single-walled nanotube. Such a mechanism is possible since the nanotube can
act as a nucleation center for achieving the hairpin structure, followed by further folding
into the tetraplex form.

Figure 5 shows the results of such studies in the form of rmsd from the i-motif structure
of the protonated cytosine-rich chain containing C:C+ pairs in a long 4 µs unbiased molec-
ular dynamics simulation (using the bsc1 parametrization). The inset in Figure 5 shows
the initial arrangement of the carboxylated nanotube and the DNA fragment. Therefore,
they were initially separated and oriented almost perpendicularly. During the simulations,
both species approached each other, and the DNA fragment started to wrap around the
nanotube. The inset on the right of Figure 5 shows the final structure obtained after 4 µs.
As can be seen, the wrapped form of the DNA fragment was the target structure, and it was
very far from the i-motif shape, as indicated by the very large values of rmsd. The rmsd
increased very quickly and reached a value of ca. 30 Å in less than 0.5 µs. This state did not
change much in further stages of calculations and corresponded to the cytosine-rich chain
wrapped around the nanotube. Thus, the carboxylated carbon nanotube did not help with
folding into an i-motif; instead, it hindered such a process since the wrapped state of DNA
seemed to be very stable.
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Figure 5. Evolution of cytosine-rich DNA fragment in contact with carboxylated carbon nanotube.
The inset on the left shows the initial arrangement of the CNT and DNA, while the inset on the right
shows the final state with DNA wrapped around the CNT. The calculations were performed using
the bsc1 parametrization for DNA.

2.4. Coarse-Grained Force Fields for DNA
2.4.1. oxDNA Model

The oxDNA coarse-grained model, developed by Ouldridge et al. [26,27], provides
a “top-down” approach in which the DNA components are treated as extended bodies,
i.e., ellipsoids, and the interaction between them is represented as a set of only several
interaction types. The model is, thus, very far from the atomistic description of the nu-
cleotides but has been shown to correctly reproduce many different processes relevant to
DNA nanotechnology, including origami nanostructures [36,37]. A further extension of the
model led to the ability to reproduce minor and major grooves within the duplex, account
for the variable ionic strength of a solution, and improve the description of the stability
and closing rates of single-stranded DNA hairpins [27].

It is, therefore, reasonable to check if the oxDNA model is able to reproduce the
stability of i-motifs or to speed up their formation on a coarse-grained scale. For that
purpose, we prepared the input files for oxDNA simulations starting from the all-atom pdb
file. The mapping of atomic coordinates to oxDNA beads can be performed using several
tools, including easy-to-use web services such as TacoxDNA [38] and oxView [39]. Both
services, however, failed to properly handle the names of protonated cytosines, and we had
to either rename them (and, thus, lose information about their protonated state) or obtain
input files with the protonated cytosines skipped. In the latter case, the oxDNA binary
could not work with such incomplete input files.

The oxDNA simulation can be carried out using molecular dynamics or the Monte
Carlo method. Additionally, oxDNA2 offers the inclusion of a more realistic sequence-
dependent stacking interaction, which is achieved by differentiating between the AA and
TT stacking interaction strengths. It is also possible to impose an external force onto
nucleotides using so-called “mutual traps”. The use of mutual traps can highly decrease
the simulation time required by the folding of strands into target structures (e.g., DNA
origami or DNA hairpins). Thus, we performed simulations of the i-motif according to
these two approaches; the SD model used the sequence-dependent approach, while the
EF model used the external forces between C:C+ pairs, which should form h-bonds within
the i-motif. Of course, we had to treat the six protonated cytosines C+ within the i-motif as
normal unprotonated ones due to the limitations of oxDNA parametrization. The obtained
results are presented in Figure 6.
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Figure 6. Root-mean-square displacement (rmsd) of the analyzed sequences from the initial i-motif
structure obtained using Monte Carlo simulations according to the oxDNA2 model. (A) The initial
stage up to 10,000 MC steps using the two approaches to base pairing, i.e., SD—sequence-dependent
approach and EF—mutual traps between C:C+ pairs. Part (B) The whole simulation involving 108

MC steps. The inset in (B) shows the final structure after 108 steps for the SD approach, while the
inset on the right of (A) shows the final structure obtained from EF approach. The rmsd values
were calculated using the ideal i-motif structure (inset on the left of (A)) as a reference, and each
configuration was aligned and best-fitted to the initial configuration. The trajectories of the oxDNA
simulation were remapped into cartesian coordinates of the center of mass of the backbone and base
beads using the tool traj2xyz.py provided in the oxDNA distribution package.

Observation of the simulation trajectories quickly led to the conclusion that the oxDNA
model could not predict i-motif stability whether using the SD or the EF approach. As
shown in Figure 6A the i-motif structure deteriorated continuously, and, within several
thousands of MC steps, it became a random coil state. However, the difference between the
SD and EF approaches is clear. The long-term behavior differed in terms of the rmsd values,
which is not surprising since the EF model introduced artificial forces to keep the distances
between C and C+ at ca. 10 Å. This, however, does not mean that the hydrogen bonds were
preserved, but the whole structure was indeed more compact. Thus, the final conclusion is
that the oxDNA coarse-grained model could not help in formation of noncanonical DNA
structures in computer simulations.

2.4.2. 3SPN Model

The three sites per nucleotide (3SPN) model proposed by Knotts et al. [28] represents a
top-down approach for the description of nucleotides. In 3SPN, three sites are mapped onto
the full atomistic representation of each base, sugar, and phosphate, and water is treated
implicitly through Langevin dynamics [40]. In a further extension of the model, explicit
ions were added [29], and the local molecular structure of the system under investigation
was believed to be consistent with results from detailed atomistic representations.

In our exercises, we utilized the lammps [41] implementation of the 3SPN model
distributed in the USER-3SPN package. The mapping of the all-atom configuration of the
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i-motif was achieved using the dedicated python tool pdb2cg_dna.py. Additionally, we
generated a single-stranded DNA fragment with the same sequence as the i-motif but in
a coiled state. Both models were subjected to MD simulations using an approach with
explicit ions. It should be noted that the pdb2cg_dna.py tool was not able to handle the
protonated cytosine residues. Thus, as before, in order to proceed, we switched to standard
residue names, but lost information about the protonated state of these cytosine residues.

The obtained simulation results were analyzed mainly in terms of structural factors,
using the rmsd with the i-motif structure as the reference. Figure 7 shows these results
together with a graphical representation of the initial and the effective structures. As
clearly seen in Figure 7A, the i-motif structure was unstable within the 3SPN representation.
Within less than 0.5 ns, it completely deteriorated, as can be deduced from the rmsd values
of approximately 15–20 Å. The inset in Figure 7A shows the initial i-motif structure in
the 3SPN representation, while the inset in Figure 7B shows its state after about 2 ns of
simulation. Figure 7B describes the results of the second exercise, which checked if the
relevant fragment of single-stranded DNA was able to fold into an i-motif form over a
longer timescale. As can be seen, the rmsd was very far from the reference value; thus, the
conclusion is that this DNA fragment did not have the ability to form an i-motif within the
3SPN coarse-grained representation.

Molecules 2022, 27, x FOR PEER REVIEW 10 of 18 
 

 

2.4.2. 3SPN Model 

The three sites per nucleotide (3SPN) model proposed by Knotts et al. [28] represents 

a top-down approach for the description of nucleotides. In 3SPN, three sites are mapped 

onto the full atomistic representation of each base, sugar, and phosphate, and water is 

treated implicitly through Langevin dynamics [40]. In a further extension of the model, 

explicit ions were added [29], and the local molecular structure of the system under inves-

tigation was believed to be consistent with results from detailed atomistic representations. 

In our exercises, we utilized the lammps [41] implementation of the 3SPN model dis-

tributed in the USER-3SPN package. The mapping of the all-atom configuration of the i-

motif was achieved using the dedicated python tool pdb2cg_dna.py. Additionally, we 

generated a single-stranded DNA fragment with the same sequence as the i-motif but in 

a coiled state. Both models were subjected to MD simulations using an approach with 

explicit ions. It should be noted that the pdb2cg_dna.py tool was not able to handle the 

protonated cytosine residues. Thus, as before, in order to proceed, we switched to stand-

ard residue names, but lost information about the protonated state of these cytosine resi-

dues. 

The obtained simulation results were analyzed mainly in terms of structural factors, 

using the rmsd with the i-motif structure as the reference. Figure 7 shows these results 

together with a graphical representation of the initial and the effective structures. As 

clearly seen in Figure 7A, the i-motif structure was unstable within the 3SPN representa-

tion. Within less than 0.5 ns, it completely deteriorated, as can be deduced from the rmsd 

values of approximately 15–20 Å . The inset in Figure 7A shows the initial i-motif structure 

in the 3SPN representation, while the inset in Figure 7B shows its state after about 2 ns of 

simulation. Figure 7B describes the results of the second exercise, which checked if the 

relevant fragment of single-stranded DNA was able to fold into an i-motif form over a 

longer timescale. As can be seen, the rmsd was very far from the reference value; thus, the 

conclusion is that this DNA fragment did not have the ability to form an i-motif within 

the 3SPN coarse-grained representation. 

 

Figure 7. (A) Root-mean-square displacement (rmsd) of the analyzed structure from the ideal i-motif 

form in 3SPN representation (inset). (B) The rmsd from the ideal i-motif form but calculated for the 
Figure 7. (A) Root-mean-square displacement (rmsd) of the analyzed structure from the ideal i-motif
form in 3SPN representation (inset). (B) The rmsd from the ideal i-motif form but calculated for the
single-stranded DNA fragment in the ideal coiled form. The snapshot in (B) shows the average final
structure obtained from both (A,B) runs.

2.4.3. Martini-DNA Model

Martini is probably the most popular general purpose coarse-grained force field [42].
Developed originally for lipid systems [43], it quickly became extended to all major groups
of molecules, including DNA and RNA [30]. The mapping of an all-atom configuration
into CG is quite standardized in Martini, as every four nonhydrogen atoms are merged
into a single bead, while rings are merged into three atom fragments. In the particular
case of DNA, the backbone is modeled using three beads by mapping the phosphate to
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one and the sugar to two beads. The bases are modeled as three-bead rings or four-bead
rings. The model also assumes special bead parameters for modeling small and almost
planar base pairs, while external forces are applied to include hydrogen bonding between
complementary bases in double-stranded DNA. The model was tested and compared to
results from atomistic force fields in the case of various single-stranded DNA fragments [30].

Preparation of input scripts for the i-motif was completed as described below. The
fully atomistic structure of i-motif was used as the input for the martinize-dna.py python
script with the ss (single-stranded) option for dnatype switch. The script, as usual, did not
recognize protonated residues and skipped them in the output structure. Therefore, we
had to rename the protonated cytosines as standard ones in order to proceed further, but
lost the information about the protonated state of these bases. Next, the coarse-grained
representation of the i-motif was used for the simulation box generation and solvation with
water and ions.

Because the Martini parametrization is rather detailed and very likely to reproduce
the stability of noncanonical DNA forms, we also checked the stability of the noncanonical
DNA fragment complementary to the i-motif, i.e., the G-quadruplex. This structure does
not require protonation of bases but only the presence of monovalent cations such as
Na+. Indeed, we checked in our previous studies that the all-atom representation of the
G-quadruplex was absolutely stable using the atomistic Amber bsc1 force field [44,45].
Thus, the all-atom pdb structure of G-quadruplex 2F8U, published by Dai et al. [46], was
subjected to coarse-graining using the martinize-dna.py script with the same ss option for
dnatype switch.

Molecular dynamics simulations of both the i-motif and the G-quadruplex in Martini
representation were carried out using gromacs [47] with standard settings for such calcula-
tions taken from the associated tutorials. The results of the simulations are presented in
Figure 8 as the rmsd from the ideal coarse-grained form of the i-motif or G-quadruplex,
plotted as a function of the simulation time.

Analysis of the results obtained using Martini led to clear conclusions. Specifically,
neither of the noncanonical forms was stable in the Martini coarse-grained representation.
In both cases, the initial structures deteriorated spontaneously within short times. Another
conclusion is that the accepted loss of information about the protonation of the six cytosine
residues in the i-motif was not the key reason for the failure of the Martini model. This is
because deterioration also occurred for the G-quadruplex structure in which the mapping
of the atomic structure into a coarse-grained one was straightforward without a loss of
information on any factor.

The Martini representation also offers an extension of the force field using the concept
of an “elastic network” [48]. This approach allows maintaining the canonical form of double-
stranded DNA, but is also implemented for single-stranded DNA. Such an approach can
formally reproduce any spatial form if the parameters of the elastic network are adequately
tuned. However, we were mainly interested in the predictive features of the default settings
which, for single-stranded DNA fragments, could be invoked using the “ss” or “ss-stiff”
options in dnatype switch for single-stranded DNA when running the martinize-dna.py
script. Therefore, the atomistic i-motif structure was subjected to coarse-graining while
also using the concept of a stiff elastic network according to an analogous procedure to
that described before. Furthermore, the G-quadruplex structure was subjected to coarse-
graining with the option of a stiff elastic network applied. The obtained models for both
noncanonical single-stranded DNA fragments were subjected to MD simulations, but the
G-quadruplex model failed at the very beginning due to numerical instabilities. We, thus,
conclude that the concept of stiff elastic networks applied to the spatial and densely packed
G-quadruplex structure was physically incorrect. The same was probably true for the
i-motif model; however, in this case, the calculations went smoothly. Nevertheless, the
obtained results were not reliable, as shown in Figure 9.
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Figure 8. The rmsd determined for the i-motif (A) and G-quadruplex (B) in Martini coarse-grained
representation. The snapshots on the left are the initial reference structures of both noncanonical
DNA fragments, while the snapshots on the right are the corresponding structures at the end of
the simulation.

As shown in Figure 9, the i-motif structure survived the whole 1000 ns simulation time
period, which could suggest that the applied model correctly reproduced the noncanonical
DNA form. However, looking at the values of rmsd (~0.5 Å) and their fluctuation, it is clear
that the behavior of the model was unphysical. Simply, the rmsd never exceeded 0.5 Å,
which is well below the 2–3 Å typical of thermal fluctuations in the atomistic model (See
Figure 1). Moreover, the fluctuation of rmsd was very small, meaning that the structure was
almost frozen. Thus, the stiff elastic network model generated an unphysical trajectory, and
the apparent stability of the spatial structure of i-motif was a result of the strong external
forces which overshadowed the true dynamics.

Figure 9B, in turn, addressed another problem, i.e., the ability of the C-rich telomeric
single-stranded DNA sequence to fold into an i-motif within the applied stiff elastic net-
work model. The starting structure was the (CCCTAA)n sequence in the form of a single
helix/coil. The results of the calculations presented in Figure 9B led to the conclusion
that the spatial structure of the chain did not change significantly (rmsd ~2Å), while the
structure did not fold into an i-motif, hairpin, or even a random coil, which is a fast process
even in fully atomistic simulations.

We, therefore, conclude that none of the studied coarse-grained models of DNA were
able to correctly reproduce the i-motif structure. The results were either a maintenance of
its shape or a reproduction of the spontaneous and fast folding of a coil/hairpin/random
coil into the i-motif structure. The above conclusion seems to be trivial because none of
these coarse-grained models were parametrized toward noncanonical DNA structures.
However, the atomistic force fields (bsc1 or OL15) were able to correctly describe the
structure of the i-motif despite not being parameterized toward such structures. Thus, the
predictive features of the current parametrizations of the coarse-grained models are not
good. However, the coarse-grained models seem to be tunable, and further optimization of
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their parameters can finally lead to next-generation models able to either reproduce the
stability of noncanonical DNA forms or to observe the spontaneous folding to these forms.
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good. However, the coarse-grained models seem to be tunable, and further optimization 

of their parameters can finally lead to next-generation models able to either reproduce the 

stability of noncanonical DNA forms or to observe the spontaneous folding to these forms. 

Figure 9. (A) The rmsd for the i-motif structure obtained using the stiff elastic network approach
in a Martini coarse-grained model. (B) The rmsd for the same sequence of single-stranded DNA
but starting from the ideal helix/coil form. The snapshots on the left show the starting/reference
structures, while the snapshots on the right show the final structures at the end of the simulations.

3. Materials and Methods

The calculations were carried out according to two different approaches; the first was
based on ab all-atom representation of the C-rich DNA fragment and focused on long-term
simulations of spontaneous folding into the i-motif, whereas the second approach was
based on the application of various coarse-grained models of DNA and an analysis of their
ability to reproduce the spatial form of the i-motif with possible acceleration of the folding
process. These two approaches utilized different methodologies and computational tools.

The all-atom simulations were based on the application of the Amber force field for
DNA which is, as already discussed, available with two different parametrizations: bsc1 and
OL15. The C-rich DNA was taken and adopted from the sequence d[CCCTA25mCCCTA2CC
CUA2CCCT] published by Phan et al. [4,49] (pdb ID 1EL2). The pdb structure 1EL2 was
modified by replacing 5mC with C and U with T, where C is cytosine, U uracil, and T is
thymine. Because we were focused on the semi-protonated pairs C:C+, half of the cytosines
were additionally replaced by their protonated counterparts. Hence, the C-rich i-motif
sequence analyzed in this study was as follows: 5′–(CCCTAA)3CCCT–3′. It should be
noted that a similar approach for the generation of an i-motif sequence was previously
adopted by Smiatek et al. [15].

The all-atom molecular dynamics calculations were carried out using gromacs [47]
software, and input files corresponding to the bsc1 and OL15 parametrizations were
generated using the tleap program from the AmberTools16 package [50]. The conversion
of Amber input files into gromacs files was achieved using the acpype script [51]. The
simulation boxes contained ca. 15,000 molecules of water and suitable amounts of Na+ and
Cl− ions in order to neutralize the backbone charge and produce an ionic strength of the
solution close to 0.15 M. The simulations were carried out at constant temperature (310 K)
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and constant pressure (1 atm), with periodic boundary conditions applied in all directions.
The dimensions of the simulation box were ca. 7 × 7 × 10 nm. The electrostatic interactions
were summed using the particle mesh Ewald approach.

In calculations involving the carbon nanotube, the methodology was slightly more
complex. First, the structure of the carboxyl-functionalized CNT was generated using a
self-designed script. The force field topology for functionalized CNT was generated using
the antechamber program from the AmberTools16 and the acpype script, and the force field
type was set to the general Amber force field (gaff) [52,53]. The partial charges on atoms
comprising carboxyl groups were calculated using the RED Server Development service,
which produces so-called resp charges [54]. We assumed that all 19 COOH groups (ca. 2%
of the total number of C atoms) were non-protonated in the considered conditions. This is
justified by the relatively large pKa of COOH groups linked to the CNT sidewall [55]. The
nanotube chirality was (10,0); therefore, its diameter was ca. 7.5 Å, and the CNT length
was ca. 100 Å. However, due to the periodicity applied to its structure, it was effectively
infinitely long.

In calculations involving coarse-grained models of DNA, the methodology was ad-
justed to a given computational protocol. Accordingly, in the case of the oxDNA model,
the calculations were carried out using standalone oxDNA software [26,27]. The prepa-
ration of input scripts and the analysis of output trajectories were performed using the
oxView [39] service and TacoxDNA [38] web service. In the case of the 3SPN model of
DNA, we utilized its lammps [41] implementation, whereas, for the Martini model, we
applied gromacs software. Details and important settings related to running simulations
with those coarse-grained models were provided in Section 2.4. The input files for all
simulation variants are provided in Supplementary Materials.

4. Conclusions

The noncanonical i-motif DNA structure (and partly G-quadruplex) was studied in
the context of its stability and possible formation using several computational approaches
to DNA modeling. The atomistic representation of the i-motif within the Amber force
field was successful. This means that the spatial structure of i-motif was intact over a
relatively long timescale for both bsc1 and OL15 parametrizations. However, we found that
fluctuations of either the atomic coordinates or the number of hydrogen bonds between
C:C+ pairs differed significantly depending on the parameterization type. Generally, bsc1
led to a more static structure than OL15 in terms of rmsd and the number of hydrogen
bonds. However, neither of the studied parametrizations was able to reproduce folding
of the telomeric C-rich sequence into an i-motif. The 4 µs long unbiased simulations led
to structures folded into knots or hairpins but equally far from the i-motif in terms of
rmsd. Attempts to accelerate the formation of the i-motif using biased dynamics with
moving restraints also failed, since the enforced i-motif-like structures were more prone
to deterioration than to improving the spatial structure toward i-motif symmetry. The
application of carboxylated carbon nanotubes as nucleation centers for folding of the C-rich
sequence into an i-motif also failed, despite the literature data suggesting that carbon
nanotubes can induce the formation of an i-motif in various conditions.

Further studies oriented mainly toward the application of coarse-grained force fields
for DNA to study i-motif formation and stability led to further interesting conclusions.
Specifically, the very popular oxDNA model was revealed to be unable to maintain the
spatial structure of i-motif, and fast deterioration of the initial structure was observed.
Obviously, the oxDNA model was unable to reproduce the folding of the C-rich sequence
into the i-motif. Very similar behavior was revealed for the 3SPN coarse grained model,
presenting deterioration of the structured i-motif and no ability to fold into an i-motif. The
Martini model of DNA was applied to the i-motif and G-quadruplex, and it was found that
both noncanonical forms were unstable in the Martini parametrization. The application of
a stiff elastic network approach in the Martini representation of the i-motif led to rather
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nonphysical behavior with very low rmsd fluctuations and a frozen state of the i-motif
spatial structure.

Generally, we can conclude that there are no good tools for modeling i-motif formation
in molecular dynamics simulations. Atomistic force fields are not robust enough to effec-
tively probe the whole configurational space and spontaneously find the configuration of
the i-motif. The coarse-grained force fields are not able to adequately map the protonated
nucleic acids into their beads. Furthermore, the coarse-grained force fields in their standard
representations are not able to properly describe Hoogsteen hydrogen bonds or stacking
interactions in the case of noncanonical forms. However, the coarse-grained force fields
usually provide an option for extension of their capabilities. Thus, it is strongly needed
to perform an update of the current coarse-grained parametrizations in order to equip
them with the ability to describe noncanonical DNA forms and to observe folding of the
corresponding DNA sequences into noncanonical structures.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules27154915/s1: The input files for all simulation variants,
mentioned under Data and Software Availability, are provided.
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