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Deregulated calcium
signaling in blood cancer:
Underlying mechanisms and
therapeutic potential

Tracey Immanuel1, Jixia Li1,2, Taryn N. Green1,
Anna Bogdanova3,4 and Maggie L. Kalev-Zylinska1,5*

1Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University
of Auckland, Auckland, New Zealand, 2Department of Laboratory Medicine, School of Medicine,
Foshan University, Foshan City, China, 3Red Blood Cell Research Group, Institute of Veterinary
Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland, 4Zurich Center for Integrative
Human Physiology, University of Zurich, Zürich, Switzerland, 5Haematology Laboratory, Department of
Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
Intracellular calcium signaling regulates diverse physiological and pathological

processes. In solid tumors, changes to calcium channels and effectors via

mutations or changes in expression affect all cancer hallmarks. Such changes

often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or

mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is

similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in

the introduction. We describe different Ca2+-toolkit components and summarize

the unique relationship between extracellular Ca2+ in the endosteal niche and

hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood

cells is discussed, with the demonstration of changes in red blood cell disorders.

This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto

the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+

channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector

proteins across all types of hematologic neoplasms. This includes an overview of

genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid

cancers as recorded in publically available cancer databases. The data we

compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+

responsive pathways are altered in hematologic cancers. Some of these alterations

may have genetic basis but this requires further investigation. Most changes in the

Ca2+-toolkit do not appear to define/associate with specific disease entities but

may influence disease grade, prognosis, treatment response, and certain

complications. Further elucidation of the underlying mechanisms may lead to

novel treatments, with the aim to tailor drugs to different patterns of deregulation.
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To our knowledge this is the first review of its type in the published literature. We

hope that the evidence we compiled increases awareness of the calcium

signaling deregulation in hematologic neoplasms and triggers more clinical

studies to help advance this field.
KEYWORDS

Calcium signaling, calcium homeostasis, blood cells, lymphoma, myeloproliferative
neoplasms, red cell abnormalities, leukaemia, cancer biological pathways
1 Introduction

The deregulation of signaling by calcium ions (Ca2+) has

been extensively studied in solid tumors (1, 2). Changes to Ca2+

channels and effectors via mutations or changes in expression

affect many functional capabilities responsible for cancer

growth, invasion, and metastasis (2–5). The function of the

endoplasmic reticulum (ER), the main site of Ca2+ storage in a

cell, and Ca2+ transfer from the ER to mitochondria, the main

regulation point for apoptotic cell death, are often deregulated in

solid tumors (6, 7). Our review presents the rapidly

accumulating data that this deregulation appears similar in

many types of blood cancer. Therapeutic opportunities

targeting Ca2+ signaling are emerging for disorders such as

leukemia, lymphoma, and myeloproliferative neoplasms

(MPN) (8–11), but this information is not yet widely known.

Therefore, to increase awareness, we provide an outline of core

findings that demonstrate deregulation of Ca2+ signaling in

blood cancer. Research in this field has accelerated enormously

in recent years, therefore, despite our great efforts, this review is

unlikely to be complete. Nevertheless, we hope our compilation

of data makes the subject of abnormal Ca2+ signaling in blood

cancer more widely known. To our knowledge, this is the first

review of this type in the published literature.
1.1 Unique relationship between
extracellular Ca2+ and hematopoietic
stem cells

Ca2+ signaling regulates many cellular processes, including

gene expression, cell proliferation, motility, apoptosis, enzyme

activity, and cytoskeletal dynamics, all of which are crucial to

supporting normal cell differentiation including of hematopoietic

stem cells (HSCs) (12–14). Specific effects of Ca2+ signaling are

achieved through a tight control of intracellular Ca2+ homeostasis.

At the resting state, cytosolic Ca2+ concentrations are maintained

at very low levels: ∼50–100 nM in most cells and reported to be as

low as 20–30 nM in HSCs (15). This contrasts with high

extracellular Ca2+ concentrations of ~1.5 mM in most fluids,
02
including in blood plasma and bone marrow interstitial space

(16). On the background of this high extracellular-intracellular

Ca2+ gradient, precisely regulated spatio-temporal increases in

cytosolic Ca2+ levels trigger signaling events (17).

The bone marrow environment provides a unique

extracellular context for Ca2+ signaling. High Ca2+ levels in the

endosteal niche have been shown to assist homing of HSCs

through their calcium-sensing receptor (18). Nevertheless, it

remains unclear if low or high Ca2+ concentrations are

required to support HSC quiescence, both were shown to

apply (14, 15, 19, 20). A recent study demonstrates that there

is heterogeneity in Ca2+ levels between bone marrow cavities,

depending on the level of bone resorption, but unexpectedly, no

sharp gradient towards the endosteal niche was observed (16).

HSCs reside in locations with higher extracellular Ca2+ levels

compared to the serum and to the overall Ca2+ levels in the bone

marrow. With aging, there is a significant increase in

extracellular Ca2+ levels in the bone marrow associated with

clonal expansion of activated HSCs. It has been proposed that

deregulated Ca2+ homeostasis may be involved in leukemic

transformation of HSCs, but experimental validation is

required (21). In support, changes in Ca2+ homeostasis

influence cancer stem cell properties in other cancer types (22).
1.2 Principles of intracellular
calcium signaling

Cytoplasmic free Ca2+ levels are maintained by Ca2+ buffer

systems (23) and modulated by a system of molecules re-

distributing Ca2+ between the intracellular stores (the ER,

mitochondria, Golgi apparatus and lysosomes), taking Ca2+ in

from the extracellular space, or extruding it from the cell (12).

Various channels, exchangers and pumps regulate Ca2+ levels in

cells, including in blood cells. The collective involvement of these

molecules, often referred to as a Ca2+-signaling toolkit (13, 24), is

shown in Figure 1 (with molecular details described in the

figure legend).

In this review, we wish to highlight the role of ER as the main

site of Ca2+ storage in almost any cell, as this functionality is
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FIGURE 1

Overview of intracellular calcium homeostasis. Calcium homeostasis is maintained by the influx and efflux of Ca2+ through calcium channels and pumps
located on the plasma membrane, as well as membranes of organelles such as the endoplasmic reticulum (ER), the Golgi apparatus, mitochondria, and
endo-lysosomes. The cytoplasm, extracellular space, and each organelle have unique resting Ca2+ concentrations that have been indicated. Extracellular
Ca2+ is transported into the cytosol through different channels such as transient receptor potential (TRP) channels, purinergic receptor (P2X) channels,
nicotinic acetylcholine receptor (nAChR) channels, Piezo mechanosensitive channels, ionotropic glutamate receptor channels (e.g. N-methyl-D-aspartate
receptors, NMDARs), and voltage-gated calcium (Cav) channels. Ca

2+ is removed from the cytosol to the extracellular space by plasma membrane calcium
ATPase (PMCA) efflux pumps and sodium-calcium exchangers (NCX). Activation of cell surface transmembrane receptors with tyrosine-based activation
motifs (RTK e.g. B-cell and T-cell receptors) or G-protein coupled receptors (GPCR e.g. neurokinin-1 receptor) activate phospholipase C (PLC). PLC
hydrolyses phosphatidylinositol-4,5-bisphosphate (PIP2) located in the plasma membrane which generates two second messengers inositol 1,4,5-
trisphosphate (IP3) and 1,2-diacylglycerol (DAG). IP3 binds to IP3 receptors (IP3Rs) located on the ER membrane leading to the release of Ca2+ from the ER
and DAG activates protein kinase C (PKC). Depletion of ER Ca2+ activates stromal interaction molecules STIM1-STIM2 (located in the ER membrane), which
then activates Orai1-Orai3 channels (located in the plasma membrane) to induce Ca2+ influx into the cytosol. This mechanism is called store-operated
calcium entry (SOCE). Ryanodine receptors (RYRs) represent an alternative pathway for Ca2+ release from the ER regulated by Ca2+, Mg2+ and other
molecules including ATP, calmodulin and CaMKII. The Ca2+ concentration in the ER is replenished via sarco-endoplasmic reticulum calcium ATPase 2b
(SERCA2b) pump. The influx of Ca2+ from the ER to mitochondria occurs through voltage-dependent anion channels (VDAC) and mitochondrial calcium
uniport (MCU) located in high numbers within mitochondria-associated ER membranes (MAMs) (insert a). Ca2+ leaves mitochondria mostly through Na+/Ca2
+/Li+ exchanger (NCLX). Ca2+ stored in the endo-lysosomes is mobilized mostly by two-pore channels (TPC) and transient receptor potential mucolipin
(TRPML) channels in response to nicotinic acid adenine dinucleotide phosphate (NAADP.) TRPML1 is involved in the mitochondrial-lysosomal contact sites
(Mit-Lys), facilitating Ca2+ transfer to mitochondria through VDAC and MCU (insert b). Multiple effector molecules mediate effects of Ca2+ signaling including
PKC, Raf-MAPK (mitogen-activated protein kinase)-ERK (extracellular signal-regulated kinase), calmodulin, calcium/calmodulin-dependent protein kinases
(e.g. CaMKII), and calcineurin. These signaling molecules influence gene expression through transcription factors such as nuclear factor kappa B (NF-kB),
cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), and nuclear factor of activated T-cells (NFAT).
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often deregulated in cancer including blood cancer (25). The

concentration of free Ca2+ in the ER is ~500 mM and ~2 mM for

total ER Ca2+, most of which is bound to Ca2+-binding proteins

such as calreticulin (CALR) (26). Many pathways of cell

activation converge on the efflux of Ca2+ from the ER that

occurs through channels called inositol 1,4,5-trisphosphate (IP3)

receptors (IP3Rs) (27) (Figure 1). IP3Rs induce the release of

Ca2+ from the ER upon binding of IP3 generated by

phospholipase C (PLC) (28). PLC operates downstream of G-

protein coupled receptors (GPCRs) and tyrosine kinase

receptors located in the plasma membrane (29, 30). When ER

Ca2+ becomes depleted, extracellular Ca2+ influx is initiated to

maintain signaling. In non-neuronal cells most extracellular

Ca2+ enters the cell through the mechanism called store-

operated calcium entry (SOCE) (31, 32). SOCE is triggered by

stromal interaction molecules (STIM1-STIM2) located in the ER

membrane. Upon sensing ER Ca2+ depletion, STIM proteins

oligomerize and redistribute to the plasma membrane where

they interact with Orai1-Orai3 channels to activate Ca2+ influx

into the cytosol (26, 32) STIM2 has low affinity for Ca2+ and

activates when ER Ca2+ stores are <500 mM. In contrast, STIM1

has high affinity for Ca2+ and only activates when Ca2+ stores are

<300 mM (33). Loss of STIM2 occuring in certain cancers is

thought to reduce ER Ca2+ content (7). PLC also generates 1,2-

diacylglycerol (DAG) that performs its signaling functions by

binding and activating other proteins, including protein kinases

C (PKC) and certain transient receptor potential (TRP)

canonical (TRPC) channels, in particular TRPC1, that can

interact with Orai1 and STIM1 to support SOCE (29,

34) (Figure 1).

Ca2+ transfer from the ER to mitochondria is another

important mechanism often hijacked in solid tumors and of

emerging importance in blood cancer (21, 35). ER and

mitochondria interact through specialized ER-mitochondrial

contact sites called mitochondria-associated ER membranes

(MAMs) (36) (Figure 1, insert a). Within MAMs, IP3Rs on the

ER interact with voltage-dependent anion channels (VDACs)

located in the outer mitochondrial membrane allowing

unrestricted Ca2+ entry into the inter-membrane space (37).

The passage of Ca2+ through the inner mitochondrial

membrane is restricted by the mitochondrial calcium uniport

(MCU) and the membrane potential (DYm ∼ −150 mV) (38).

Small amounts of mitochondrial Ca2+ support mitochondrial

metabolism, providing a mechanism that couples cellular

activity with the generation of adenosine triphosphate (ATP).

Ca2+ uptake into mitochondria activates pyruvate dehydrogenase,

a-ketoglutarate dehydrogenase, and isocitrate dehydrogenase,

thereby stimulating the tricyclic acid cycle and energy

generation (39, 40). In contrast, high levels of Ca2+ in the

mitochondria induce apoptosis (41, 42). Prolonged

accumulation of Ca2+ in the mitochondria leads to the opening

of the mitochondrial permeability transition pore (mPTP) formed

when VDAC1 clusters with adenine nucleotide translocase (on the
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inner mitochondrial membrane) and cyclophilin D (in the

mitochondrial matrix) . The mPTP opening causes

depolarization of the inner mitochondrial membrane, which

uncouples the respiratory chain leading to increased

mitochondrial membrane permeability and the release of

cytochrome c (21, 35, 36).

Oncogenic effects have also been shown for certain endo-

lysosomal Ca2+ storage and release mechanisms (43). Endo-

lysosomes are heterogenous and dynamic acidic organelles that

in addition to other roles, act as intracellular Ca2+ stores (44, 45).

Endo-lysosomes sequester and release Ca2+ to the cytosol mainly

through two-pore channels (TPC1-TPC2) and TRP mucolipin

channels (TRPML1-TRPML3) activated by second messengers

such as nicotinic acid adenine dinucleotide phosphate

(NAADP), the most potent Ca2+-mobilizing second messenger

known (46, 47). Effects of endo-lysosomal Ca2+ release may be

both local and global. The latter occur when endo-lysosomal

mechanisms act in conjuction with the ER to induce or inhibit

ER Ca2+ release (48). Endo-lysosomal Ca2+ signaling regulates

processes such as membrane trafficking, vesicle fusion and

secretion which impacts a range of cellular behavious e.g.

immune responses, autophagy, cell proliferation, and

migration (43, 49). In analogy to MAMs, mitochondrial

membrane contact sites have also been shown to involve

lysosomes (50, 51) (Figure 1, insert b). The release of

lysosomal Ca2+ through TRPML1 supports Ca2+ transfer to

mitochondria, providing an additional mechanism through

which intracellular Ca2+ signaling, mitochondrial bioenergetics

and lysosomal effects can be regulated (51).

This review emphasizes importance of abnormal Ca2+

signaling in hematologic cancers. We begin by presenting the

long-standing foundational data on Ca2+ homeostasis in red

blood cells (RBCs) as historically, this work provided guidance

for research into Ca2+ signaling in selected blood cancers. We

then focus on the neoplastic impact of deregulated Ca2+ influx

through the plasma membrane and the ER, Ca2+ efflux via Ca2+

pumps and exchangers, and the impact of deregulated Ca2+

sensor and effector proteins in blood cancer. Throughout the

review we highlight potential therapeutic strategies being

developed to abrogate this deregulation.
2 Foundational research into
calcium signaling in red cells with an
outline of the toolkit components

Research into Ca2+ homeostasis in RBCs has a long history

and has been regularly reviewed (52–54). While reticulocytes

and immature RBCs of patients with sickle cell disease retain

some of the mitochondria (55), normal mammalian RBCs do

not have true Ca2+ storage organelles. However, RBCs often

contain inside-out vesicles that are formed in response to
frontiersin.org
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increased Ca2+ uptake. These vesicles contain plasma membrane

calcium ATPases (PMCAs) that pump Ca2+ from the cytosol

into vesicles and thus protect the cytosolic and membrane

proteins from Ca2+-induced damage (oxidation, proteolysis,

irreversible dehydration) (see Figure 2A and the corresponding

legend for molecular details). Some of these Ca2+-filled vesicles

are extruded, other inside-out endosomes are retained inside the

cells (56–58). The resting concentration of cytosolic Ca2+ in

RBCs are similar to nucleated cells, ranging from 30–60 nM in

normal RBCs to the pathological 300 nM levels in patients with

certain hereditary anemias (59). This compares with 1.2-1.8 mM

in blood plasma (52, 53). Cytosolic Ca2+ concentrations in RBCs

affect many aspects of red cell physiology including cell

hydration, metabolic activity, redox state, and proteolysis.

Regulation of Ca2+ concentrations translates into the control

over the remodeling of the cytoskeletal elements and

concomitant changes in cell shape, cell volume, rheological

properties and ultimately, RBC longevity and clearance

(52) (Figure 2A).

Multiple types of channels permeable for Ca2+ are present in

the RBC membrane supporting versatility and plasticity of

intracellular Ca2+ signaling (53) (Figure 2A). These channels

are present in RBCs in very low copy numbers to keep the basal

Ca2+ permeability of the plasma membrane low. Each channel

type responds to its own stimulus (e.g. mechanical, electrical or

chemical) to induce Ca2+ oscillations under specific conditions.

Due to the broad variance in channel copy number per cell, there

is variation in RBC responses to stimulation, and the numbers of

“responding cells” typically range from 10% to 30% (60–62).

One of the first Ca2+ signaling processes identified in RBCs

was the function of the Gárdos channel (potassium calcium-

activated channel subfamily N member 4, KCNN4) (63)

(Figure 2A). KCNN4 is activated by Ca2+ that enters through

any of the non-selective cation channels [e.g. piezo type

mechanosensitive ion channel component 1, Piezo1 (64)].

Piezo channels are the largest plasma membrane Ca2+

channels known containing a three-bladed propeller-shaped

structure that spans the lipid bilayer sensing membrane stretch

(65–67). The activation of Piezo links mechanical forces

applied to RBCs with the control of cell volume and lifespan

(64, 68). The KCNN4 activation leads to K+ efflux and water

loss (69), which reduces RBC volume and facilitates cell shape

change. Activation of KCNN4 in RBCs of healthy people most

likely enables better passage of RBCs through narrow

capillaries (70), while its overactivation causes Ca2+-overload

and RBC dehydration (71) (Figure 2A) . Hereditary

stomatocytosis/xerocytosis are caused by gain of function

mutations in genes encoding either KCNN4 (58, 72, 73) or

Piezo1 channels (74–76). Different mutations cause distinctive

clinical phenotypes, including some with syndromic features

(72). The increasing use of next-generation-sequencing will

help characterize the scope of genetic variants that are

clinically relevant.
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Other Ca2+ channels in RBCs include selected TRP and

voltage-gated Ca2+ channels (Cav), N-methyl-D-aspartate

(NMDA) receptors, and VDACs (52, 53). The TRP channels

are a large family of approximately 30 structurally related but

diverse members, the majority of which function as non-

selective cation channels with variable Ca2+ permeability (77,

78). TRP channels can be activated by multiple external ligands

including inflammatory and pain mediators, certain spices (e.g.

garlic, mint, camphor and chili), metabolites, or physical stimuli

such as temperature and stretch. TRP channels act as

environmental sensors and transduction channels that regulate

intracellular Ca2+ levels in response to the depletion of internal

Ca2+ stores with or without simultaneous activation by PLC (79–

81). The importance of TRP and Piezo channels in human

physiology and pathology is underscored by the award of the

Nobel Prize in Physiology or Medicine in 2021 to David Julius

and Ardem Patapoutian “for their discoveries of receptors for

temperature and touch” (82–84). Based on the amino acid

sequence homology, activation mode and function, TRP

channels are divided into six subfamilies: TRPC (canonical,

TRPC1-TRPC7), TRPV (vanilloid, TRPV1-TRPV6), TRPM

(melastatin, TRPM1-TRPM8), TRPA (ankyrin, TRPA1),

TRPML (mucolipin, TRPML1-TRPML3), and TRPP

(polycystin, TRPP1-TRPP2) (77). All TRP channel types are

tetrameric assemblies of subunits containing six transmembrane

domains arranged around a central ion permeation pore (79).

All TRP channels mediate receptor-operated Ca2+ entry but

some also function as components or regulators of SOCE (85,

86). The latter applies mostly to TRPC1 and TRPC4 as they can

interact with and be activated by STIM1 upon depletion of the

ER Ca2+ stores; in turn, TRPC1, TRPC3 and TRPC6 can interact

and activate Orai1 channels to support ER Ca2+ store refilling

(87). Other TRPC channels do not interact with STIM1 directly,

however heteromeric assemblies combining TRPC1 with

TRPC4/5 or TRPC3 with TRPC6/7 contribute to SOCE,

implying single TRPC components can provide SOCE

regulation (88). Other TRP channel types (e.g. TRPV4 and

TRPV6) and other proteins also interact with TRPC channels,

which influences diversity of their functioning (89).

TRPC6 is abundant in human RBCs and contributes to stress-

stimulated Ca2+ entry but its specific function in RBCs remains

elusive (90). The discovery of TRPV2 in RBCs is relatively recent

(91). Similar to Piezo1, TRPV2 mediates Ca2+ influx into RBCs in

response to mechanical activation, which modulates RBC osmotic

fragility and may contribute to the RBC storage lesion (92).

NMDA receptors are ligand-gated non-specific cation

channels with high Ca2+ permeability activated by glutamate

and glycine (93). NMDA receptors play critical functions in the

brain but are also expressed in non-neuronal cells, including all

types of blood cells: red cells (60, 94, 95), platelets (96–98),

neutrophils (99), monocytes (60), and lymphocytes (100, 101).

In RBCs, NMDA receptor regulates hemoglobin oxygen affinity,

nitric oxide production, cell hydration status, and proliferation of
frontiersin.org
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FIGURE 2 (Continued)

Mechanisms and consequences of deregulated calcium signaling in red cells and erythroid precursors. (A) In hereditary stomatocytosis/xerocytosis,
heterogenous gain-of-function mutations in the Piezo1 or Gárdos channels cause excessive Ca2+ entry into red blood cells (RBCs). In sickle cell
disease, there is an abnormally high abundance and activity of NMDA receptor channels, and probably other Ca2+-transporting ion channels
contributing to the increased permeability of the RBC membrane to Ca2+. A layer of aggregated hemoglobin S (HbS) interferes with the shedding of
NMDA receptor channels from the cell surface. Reduced levels of adenosine triphosphate (ATP) impair the function of the plasma membrane calcium
pump (PMCA); as a result, Ca2+ uptake exceeds its efflux. Excess intracellular Ca2+ can be sequestered into vesicles and extruded, protecting the
cytosolic and membrane proteins from Ca2+-induced damage. However, over time, increased cytosolic Ca2+ overactivates the Gárdos channel leading
to cell dehydration. Membrane and cytoskeletal instability are induced by the overactive calcium/calmodulin (CaM) complexes, calpain, or scramblase
(Scr). This leads to premature RBC clearance, hemolysis, and anemia. The exact contribution of these mechanisms to different types of anemia remains
under investigation. (B) Effects of high intracellular Ca2+ in polycythemia vera (PV). Hyperactive JAK2 V617F mutation increases Ca2+ levels in erythroid
precursors. Ca2+ overload impairs the nuclear export function of calreticulin (CALR), which results in nuclear retention of the glucocorticoid receptor a
(GRa) responsible for stress response and erythroid proliferation. Defective organelle sorting and extrusion from erythroblasts leaves organellar
remnants in reticulocytes.
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erythroid precursors (95). RBCs from patients with sickle cell

disease carry higher numbers of NMDA receptors than in healthy

donors (Figure 2A). NMDA receptor overactivity leads to

Ca2+ overload, K+ loss, cell dehydration, and oxidative stress,

which may contribute to sickle cell crises (94). The efficacy of

NMDA receptor inhibitor memantine for symptomatic treatment

of sickle cell disease is currently being explored (102, 103).

VDACs are the major components of the outer mitochondrial

membrane but they are also present in the plasma membrane

including in RBCs (104, 105). VDACs conductance and selectivity

are voltage-dependent. In the plasma membrane, VDACs may be

involved in the transmembrane electron transport (37, 104).

VDACs permeability for Ca2+ is low but considering the large

intracellular-extracellular Ca2+ gradient, their activation may still

contribute significant Ca2+ influx (53).

Finally, voltage-gated Ca2+ (CaV) channels transduce changes

in the plasma membrane potential to intracellular Ca2+ transients

that initiate many crucial physiological processes (106). In

neurons and muscle cells CaV channels primarily regulate

synaptic transmission and contraction respectively but these

channels also regulate secretion and biochemical processes such

as enzyme activity, protein phosphorylation/dephosphorylation,

and gene expression in other cell types. CaV channels are

subdivided into CaV1, CaV2, and CaV3 (107). CaV2.1 is epressed

in RBCs but its function is poorly defined (108).

Overall, Ca2+ channels play important roles in RBC

membrane transport, metabolism, volume, shape and lifespan

regulation, although many specific functions remain unknown

(53). It has been proposed that increased Ca2+ levels in RBCs due

to abnormal function of Ca2+ channels represents a common

mechanism underlying an accelerated clearance of RBCs from the

bloodstream and pathological hemolysis in a range of anemias,

which is a new area for investigation (59).
3 Calcium signaling in normal and
neoplastic erythropoiesis

The role of intracellular Ca2+ signaling during erythropoiesis

has been recently reviewed (54). Ca2+ signaling regulates erythroid
Frontiers in Oncology 07
progenitor proliferation, differentiation, survival, and terminal

enucleation. Changes in Ca2+ homeostasis are seen in reactive

ineffective erythropoiesis (e.g. in b-thalassemia) (109) or in

neoplastic erythropoiesis driven by Janus kinase 2 (JAK2) V617F

mutation in polycythemia vera (PV) (110, 111). CALR is an ER-

resident protein that regulates functions of other proteins by

chaperoning them to their active sites in response to changing

intracellular Ca2+ levels (112). In normal erythroid precursors,

CALR promotes the nuclear export of glucocorticoid receptor a,
which resets precursor proliferation to differentiation (110). In

contrast, hyperactive JAK2 signaling in PV increases free

intracellular Ca2+ levels, which impairs the nuclear export

function of CALR (Figure 2B). Glucocorticoid receptor a is

retained in the nucleus maintaining the expression of stress genes

that increase proliferation of erythroblasts (110). Elevated levels of

Ca2+ may also impair actin reorganization required to extrude

organelles during enucleation (111). Consequently, PV reticulocytes

have a high content of organellar remnants e.g. mitochondria, ER

and ER-associated proteins including CALR. In mature RBCs from

PV patients, high Ca2+ levels increase the activity of the Gárdos

channel leading to cell dehydration (111) (Figure 2B).

Increased levels of cytoplasmic Ca2+, cell dehydration and the

presence of organelle remnants in RBCs have the potential to

promote thrombosis in PV (111). Dehydrated RBCs are more

rigid, thus less amenable to shape changes required to pass

through narrow capillaries, and also more susceptible to

hemolysis under high-shear rates that occur in arterial circulation

(113, 114). Higher cytoplasmic Ca2+ levels are known to increase

adhesion between RBCs (115), and of RBCs to the endothelium

(116, 117). Most previous work into PV-associated thrombosis

focused on the role of a high hematocrit, white cell and platelet

activation, coagulation factors and inflammation (118). However, a

recent study used a laser-assisted optical rotational red cell analyzer

to demonstrate abnormal RBC morphodynamics in 48 patients

with PV (119). The deformability and stability of RBCs were

reduced and RBC aggregation was increased. These alterations

correlated with the incidence of ischemic stroke in 13 of these

patients, suggesting a link between abnormal RBC

morphodynamics and the increased risk of arterial thrombosis in

PV, although this requires confirmation in larger studies (119).
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Collectively, emerging data highlight a possible connection

between the JAK2 V617F mutation and deregulated Ca2+ signaling

in PV RBCs and precursors, with the potential to contribute to

autonomous erythropoiesis and thrombosis. Therefore, strategies to

modulate Ca2+ signaling may be useful for PV treatment.
4 Calcium signaling deregulation in
blood cancer

Similar to solid tumors (3, 120), many blood cancers

remodel Ca2+ signaling to promote their cancerous properties.

Altered expression or activity of Ca2+ channels, pumps, and

effectors can lead to the activation of transcription factors

involved in the control of cell survival and proliferation.
4.1 Plasma membrane
calcium-permeable channels

A number of Ca2+ influx channels located on the plasma

membrane have been reported to impact on leukemic cells. These

include the non-selective cation channels such as the TRP family,

purinoreceptors (P2X7), nicotinic acetylcholine receptor

(nAChR), Piezo1, NMDA receptor, and the Ca2+ selective Orai1

channels (Figure 1). Table 1 provides a summary of such changes
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in different blood cancers, and an explanation of their functional

effects follows.

4.1.1 Transient receptor potential channels
It is thought that the primary physiological roles of TRP

channels are perception of various sensations ranging from pain,

pressure, temperature, taste and vision. However, evidence

accumulates that TRP channels also regulate proliferation,

differentiation, invasion, metastasis, autophagy and apoptosis

of malignant cells (80, 81, 166–170). TRP channels have been

shown to contribute crucial oncogenic functions in a number of

hematologic malignancies (166, 167). Leukemia, lymphoma,

myeloma and Waldenström macroglobulinaemia patient cells

and cell lines have altered expression of TRP channels that has

been linked with changes in cell proliferation, cell death and cell

migration (165–167) (Table 1).

TRPM2 is overexpressed in cells from patients with acute

myeloid leukemia (AML) and in AML cell lines (e.g. Kasumi-1,

U937, KG-1, MV-4-11, SKNO1, THP-1, MonoMac-6, AML-

193, MOLM13 and SHSY5Y) (129). TRPM2 depletion in AML

cells and xenograft mouse models has anti-leukemic effects.

TRPV2, TRPM7 and TRPC1 have been studied in chronic

myeloid leukemia (CML) cell lines (K-562, KU812, MOLM-6

and 32D-p210) (127, 146, 147, 171). The silencing of TRPV2

induces significant apoptosis in K-562 cells (127), while

inhibition of TRPM7 reduces cell proliferation and increases
TABLE 1 The differential expression of plasma membrane calcium channels and their relative contribution to the malignant phenotype in
different blood cancers.

Cancer type Molecule Change in disease Functional effects References

AML P2X7 ↑ expression ↑ Ca2+ influx (C,P,M), ↑ proliferation (C,M), ↓ proliferation (C,P),
↓ remission rate (P), ↓ overall survival (P,M), altered sensitivity to
chemotherapy (P,M), ↑ migration (M)

(121–126)

TRPV2 ↑ expression ↑ proliferation (C), ↓ apoptosis (C) (127)

↓ expression (P) (128)

TRPM2 ↑ expression ↑ proliferation (C), ↑ autophagy (C), ↑ mitochondrial Ca2+ influx (C),
↓ ROS production (C)

(129, 130)

TRPM4 ↑ expression ↑ proliferation (C), cell cycle progression (C) (131)

Orai1 ↑ expression ↑ proliferation (C), ↑ migration (C), ↑ cell cycle progression (C) (132–134)

IP3R2 ↑ expression ↓ overall survival (P), ↓ event-free survival (P) (135)

CaV1.1
(CACNA1S)
CaV1.2
(CACNA1C)

↑ expression (P) (136, 137)

CaV1.2
(CACNA1C)

↓ expression in AML-MSCs ↑ AML proliferation in 2D and 3D co-culture models (P) (138)

ALL P2X7 ↑ expression ↑ Ca2+ influx (C),↑relapse (P) (121, 123)

↓ expression (P) (124)

TRPC4/C5 ↑ expression (C) (139)

TRPV5/V6 ↑ expression cell cycle progression (C), endocytosis (C), cell migration (C) (140–142)

TRPM2 ↑ expression ↑ Ca2+ influx (C), ↓ ROS production (C) (130, 143)

(Continued)
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differentiation (146). In BCR::ABL1-expressing murine myeloid

progenitor cells (32D-p210), TRPC1 expression is reduced and

may be one of the factors associated with SOCE reduction in

these cells (171).

TRPV1, TRPV6 and TRPM2 contribute to the growth of

cells derived from acute lymphoblastic leukemia (ALL) (142,

172). TRPV1 activation by resiniferatoxin (an analog of
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capsaicin, a vanilloid agonist) induces apoptosis, interferes

with cell cycle progression and decreases proliferation in both

Jurkat T-cells and patient-derived T-ALL lymphoblasts;

however, the affect of resiniferatoxin on non-leukemic cells

was not tested (172). TRPV6 is one of the necessary elements

for migration and oncogenic signaling in Jurkat T-cells (142).

TRPM2 is crucial for cell cycle arrest and decreases apoptosis of
TABLE 1 Continued

Cancer type Molecule Change in disease Functional effects References

TRPM4 abnormal Ca2+ oscillation pattern (C), ↓ cytokine secretion (C) (144)

Orai1 ↑ expression (P) (134)

NMDAR mutations in GRIN2C ↑ relapse in high-risk pediatric patients (P); effects on expression and
functional consequences are unknown

(145)

CaV1.1
(CACNA1S)
CaV1.2
(CACNA1C)

↑ expression (P) (136, 137)

CML P2X7 ↑ expression ↓ remission rate (P) (121)

↓ expression (C) (125)

TRPV2 ↑ expression ↑ proliferation (C), ↓ apoptosis (C) (127, 146,
147)

TRPM2 ↑ expression (C) (130)

TRPM7 ↑ expression ↑ Ca2+ influx (C), ↑ proliferation (C), differentiation (C) (146)

Piezo1 ↑ expression (C) (148)

Orai1 ↑ expression (C) (134)

CLL P2X7 ↑ expression ↑ Ca2+ influx (P), ↓ proliferation (P) (149)

TRPC1 ↑ expression ↑ cytokine secretion (P) (150)

a7-nAChR ↑ expression ↑ proliferation (C), ↑ migration (P,C) (151)

Orai1 ↑ expression ↑ Ca2+ influx (P), ↓ event-free survival (P), ↓ progression-free survival
(P)

(11, 134)

CACNA1A ↑ expression (P) (136, 137)

DLBCL TRPM4 ↑ expression ↓ overall survival (P), ↓ progression-free survival (P) (152)

IP3R2 ↑ expression ↑ sensitivity to BIRD-2-mediated cell killing (C) (153–155)

CaV1.1
(CACNA1S)
CaV1.2
(CACNA1C)
CaV1.3
(CACNA1D)
CaV1.4
(CACNA1F)

↑ expression of CACNA1D in ABC-
DLBCL and of CACNA 1S, 1D and 1F
in GCB-DLBCL (P)

(156)

Orai1 ↑ expression (C,P) (134, 156)

Plasma cell
myeloma

TRPV1 ↑ expression ↑ proliferation (C,P), ↑ cell survival (C,P), ↑ drug resistance (C) (157, 158)

TRPV2 ↑ expression ↓ overall survival (P), ↓ event-free survival (P), ↑ bone lesions (P),
↑ cytokine secretion (P)

(159, 160)

TRPM7 ↑ expression ↑ migration (C) (161)

TRPM8 ↑ expression (P) (162)

TRPML2 ↑ expression ↑ sensitivity to ibrutinib and/or bortezomib (C) (163)

a7-nAChR ↑ expression ↑ proliferation (C), ↑ migration (C) (151)

Orai1 ↑ expression ↑ migration (C), ↓ progression-free survival (P) (161, 164)

Waldenström
macroglobulinaemia

TRPC1 ↓ expression (P) (165)
fr
(P) = Patient cells, (C) = Cell lines, (M) = Mouse model. ↑ = increased, ↓ = decreased. Expression changes are often found in particular cell lines or leukemic subtypes and not in others.
Empty cells indicate there is no data. AML, acute myeloid leukaemia; ALL, acute lymphoblastic leukaemia; CLL, chronic lymphocytic leukaemia; CML, chronic myeloid leukaemia; DLBCL,
diffuse large B-cell lymphoma; MSCs, mesenchymal stromal cells.
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irradiated Jurkat T-cells and Bcl-2-overexpressing T-

lymphoblasts (143).

In chronic lymphocytic leukemia (CLL) cells, patient-

derived and the Jok-1 cell line, TRPC1 plays a role in

promoting cell survival. It does so by contributing to the

production of anti-inflammatory cytokines and the activation

of mitogen-activated protein kinase (MAPK)/extracellular

signal-regulated kinase (ERK) pathways triggered by CD5

activation (150, 168). TRPML2 is associated with the

sensitivity of plasma cell myeloma cell lines to ibrutinib and/or

bortezomib treatment. TRPML2 expression is low in ibrutinib-

resistant U266 cells but high in ibrutinib-sensitive RPMI8226

cells (163). Upon TRPML2 RNA-silencing, RPMI8226 cells

show worse response to ibrutinib than controls (163). These

data raise the possibility that TRPML2 expression levels may

help predict ibrutinib sensitivity in patients with myeloma (163).

Most recently, somatic mutations and copy number

variations in TRP genes have been reported in 33 cancer types

including hematologic malignancies, in particular diffuse large

B-cell lymphoma (DLBCL) and AML cells (173). TRP mutations

in the transmembrane regions were concluded to be likely

deleterious and these genetic alterations were possibly linked

to transcripitional deregulation of TRP genes and the

consequent change in expression of TRP channels (173). The

frequency of mutations in TRP channels was higher in DLBCL

than in AML cells, with TRPM2, TRPM3 and TRPM6 showing

the greatest mutation frequency (173). However, it is not clear

what significance these genetic alterations have in the

pathogenesis of cancer. Further work is required to uncover

how these mutations contribute to cancer initiation and

progression, and whether they can serve as markers for

diagnosis, prognosis, or as treatment targets (173). Ex vivo

studies with patient-derived cells demonstrate that targeting of

TRP channels offers potential to inhibit malignant cell

proliferation and improve chemotherapy effects (129, 172).

4.1.2 Purinoreceptor channels
P2X receptors are a family of ATP-dependent cation

channels that have seven members (P2X1–7). An increase in

extracellular ATP, often due to damage to the plasma membrane

or exocytosis of ATP-containing granules, is the principal

physiological stimulus for P2X receptor activation (174).

Altered expression or function of P2X7 has been reported in a

number of hematologic cancers (175). P2X7 is upregulated in

cells from patients with AML and CLL and downregulated in B-

ALL (124). Reports have differed on whether P2X7 in CML cells

is up- or down-regulated (121, 124). When P2X7 activation is

prolonged, and the receptor is exposed to high ATP levels, P2X7

opens an unselective membrane macropore and can trigger cell

death (175, 176). P2X7RB is a splice variant that is unable to

form this macropore (176). Both full-length P2X7RA and

truncated variant P2X7RB are overexpressed in AML cells;

whereas in relapsed AML patients, P2X7RB is increased and
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P2X7RA is decreased (126). AML blasts with high levels of

P2X7RB have higher viability and much lower Ca2+ uptake than

those expressing high levels of P2X7RA (126). AML

development is slower and overall survival is extended in mice

transplanted with P2X7-null AML cells compared to mice

transplanted with control AML cells (125). Ca2+ influx is

decreased in murine P2X7-null leukemia-initiating cells (LICs)

and bulk AML cells compared to wild-type. The transcription

factor cAMP-response element binding protein (CREB), which

is involved in calcium signaling, is decreased in P2X7-null LICs

and upregulated in AML patients. When CREB is overexpressed

in P2X7-null AML cells, the development of leukemia is similar

to wild-type AML cells (125). These results suggest that CREB-

mediated Ca2+ signaling is required for the leukemogenic

activities of P2X7.

4.1.3 Nicotinic acetylcholine receptor
Upon binding acetylcholine, nAChR channels assist the

movement of cations into the cell, which causes membrane

depolarization (177) and triggers the opening of voltage-gated

Cav channels leading to Ca2+ influx (151). Homomeric a7-
nAChRs are more permeable to Ca2+ and desensitize faster

than heteromeric nAChRs (177). Primary CLL cells express

a7-nAChR at a higher level than normal B-cells, and

inhibiting a7-nAChRs in a range of leukemic cell lines reduces

cell migration (151). Conversely, protein expression levels of a7-
nAChRs in AML, CML and ALL patient peripheral blood or

bone marrow-derived mononuclear cells was lower than in

healthy subjects (178). Acetylcholine causes an increase in

intracellular Ca2+ levels in CML-derived K-562 cells, and the

a7-nAChR antagonist methyllycaconitine citrate inhibits K-562

cell proliferation as well as reduces the intracellular Ca2+ levels

(177). The opposite was observed in Jurkat T-ALL cells, with

methyllycaconitine causing intracellular Ca2+ levels to rise but

this did not require extracellular Ca2+ (179).

4.1.4 N-methyl-D-aspartate receptor
Typical neuronal NMDA receptors are ligand-gated non-

specific cation channels with high Ca2+ permeability activated by

glutamate and glycine (93). In non-neuronal cells, including in

megakaryocytes, NMDA receptors may also function in a

metabotropic-like (i.e. flux independent) manner (97, 98, 180,

181) (see Figure 3A and the corresponding legend for molecular

details). In leukemic cell lines with megakaryocytic features

Meg-01, K-562, and Set-2, NMDA receptor supports cell

proliferation (182). Deletion of NMDA receptor in Meg-01

cells shifts cell differentiation toward the erythroid lineage,

suggesting NMDA receptor function at the level of a

bipotential megakaryocyte-erythroid progenitor (183). NMDA

receptor inhibitor memantine enhances cytotoxic effects of

cytarabine in Meg-01 cells, thus this drug combination

warrants testing on patient cells (183). In non-leukemic mice,

the NMDA receptor regulates proplatelet formation through a
frontiersin.org

https://doi.org/10.3389/fonc.2022.1010506
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Immanuel et al. 10.3389/fonc.2022.1010506

Frontiers in Oncology frontiersin.org11
C

B

A

D

FIGURE 3 (Continued)

https://doi.org/10.3389/fonc.2022.1010506
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


FIGURE 3 (Continued)

Selected NMDA receptor effects in hematopoietic cells. (A) Overview of NMDA receptor-induced calcium signaling. NMDA receptor directly
facilitates Ca2+ entry into cells but may also operate in a metabotropic manner to induce Ca2+ release from the ER or via secondary messenger
activation of ion channels such as transient receptor potential (TRP) channels. Adenosine diphosphate (ADP) and glutamate are both released
from maturing megakaryocytes. ADP binds G protein-coupled receptors (GPCR) and activates PLC-b to increase intracellular Ca2+ levels.
NMDA receptor modulates GPCR function in neuronal cells, so potentially may do so in hematopoietic cells. (B) Overview of NMDA receptor-
associated effects in megakaryocytes. NMDA receptor assists proplatelet formation by regulating the expression of extracellular matrix (ECM)
elements (e.g. collagen) and ECM remodeling enzymes (e.g. lysyl oxidase, LOX and matrix metalloproteinases, MMPs). (C, D) Schematics of
NMDA receptor subunit GluN2C and the GRIN2C gene variants discovered in B-ALL. In (C), the glutamate-binding domain (400-539; 659-800
aa) is enclosed in an orange rectangle, and glutamate binding sites are represented by orange dots (at 509-511, 516, 687-688, and 729 aa
respectively). Location of GRIN2C variants found in B-ALL is marked by a red dot in (C) and red rectangle in (D) The affected region is 51 base
pairs long; the EPGS sequence is translated (134-137 aa).
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mechanism that involves megakaryocyte interaction with the

extracellular matrix and cytoskeletal reorganization (180).

NMDA receptor exerts these effects by influencing Ca2+ and

adenosine diphosphate (ADP) signaling, and the expression of

transcripts involved in extracellular matrix remodeling (180)

(Figure 3B). These mechanisms are relevant to the

pathophysiology of primary myelofibrosis (PMF); therefore,

NMDA receptor inhibitors should be tested in PMF models.

In a random survival forest model, variants in the GRIN2C

gene encoding the GluN2C subunit of NMDA receptor were

part of a group of 7 variant genes found to predict shorter event-

free survival in high-risk pediatric patients with B-ALL (145).

The mutated GRIN2C region in ALL covers an intron/exon

boundary located in the GluN2C protein’s N-terminal domain

(see Figures 3C, D for further details). The presence of GRIN2C

mutations was associated with accelerated relapse in children

with high-risk B-ALL, but their functional impact is not known.

These findings call for experimental studies to determine the

NMDA receptor role in normal and leukemic B-cell precursors.

4.1.5 Voltage-dependent anion channels
VDAC has three isoforms in mammals with VDAC1 being

the most abundant (37, 104). VDAC1 is a key regulator of

metabolite transfer between the mitochondria and cytosol

including of ATP, ADP, and of small ions such as Ca2+ and

Na+. These functions are crucial for normal mitochondrial

bioenergetics (37, 184). In its open state, VDAC1 facilitates

metabolite exchange but is lowly permeable to Ca2+. In contrast,

in the “closed” state VDAC1 is highly permeable to Ca2+

providing a proapoptotic signal (37, 185).

VDAC1 is overexpressed in U266 myeloma cells, which

together with CD45 expression enhances the cells sensitivity to

apoptosis via mitochondrial pathways (186). VDAC1 is also

overexpressed in CLL patient cells compared to healthy controls

(187). VDAC1-derived decoy sequences (Antp-LP4 and N-

terminal-Antp) induce cell death in peripheral blood

mononuclear cells from patients with CLL but not from

healthy donors (187). Similarly, in a large panel of leukemic

cell lines including from CLL (MEC-1, MO1043, and CLL), T-

ALL (MOLT4, Jurkat), and AML (U-937, THP-1, K-562),

VDAC1-targeting peptides induce cell death (188).
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VDAC1 associating with Bcl-2, Bcl-xL or hexokinase

prevents apoptosis in cancer cells. VDAC1 peptides disrupt this

association leading to VDAC1 oligomerization, mitochondrial

Ca2+ overload, cytochrome c release and apoptosis (187, 188).

Combined treatment of acute promyelocytic leukemia (APL) cell

line HL-60 with melatonin and retinoic acid decreases VDAC1

expression, suggesting its leukemia-promoting role (189). In B-

ALL cell lines, VDAC1 was upregulated after prednisolone

treatment in three steroid-sensitive cell lines (697, Sup-B15,

RS4;11) but unchanged in the steroid-resistant cell line (REH),

suggesting that VDAC1 has a role in steroid-induced apoptosis

(190). Similar was seen in T-ALL cells. Cell death occurred in

Jurkat T-cells when either rice or human VDAC proteins were

overexpressed, and the effect was blocked by ectopically expressed

Bcl-2 (191). Overall, VDAC1 interactions with pro-survival

proteins support anabolic metabolism and inhibit apoptosis

thus maintaining leukemia growth. Strategies that target these

interactions are being explored for treatment of leukemia, with T-

ALL cells emerging as the most vulnerable to this form of

manipulation (192, 193).

4.1.6 Voltage-gated ion channels
(CaV channels)

Voltage-gated Ca2+ channels are coded by CACNA genes

(calcium voltage-gated channel subunit alpha) and are

subdivided into three families CaV1, CaV2 and CaV3 (194).

CaV1 and CaV3 channels are expressed in many cell types while

CaV2 are mostly expressed in neurons (106). CaV channels

mediate Ca2+ influx in response to plasma membrane

depolarization, influencing muscle contraction and

neurotransmission, as well as secretion and gene expression in

may cell types (137). CaV1 channels are activated by high voltage

(> −40 mVwith a peak at 0 mV) andmediate long-lasting (L-type)

currents with slow inactivation. In contrast, CaV3 channels are

activated by low voltage (around −60 mV with a peak at −20 mV)

and mediate transient currents (T-type) with faster kinetics than

the L-type currents. CaV2 channels are activated by high voltage

and mediate P/Q-type, N-type and R-type Ca2+ currents (106).

Bioinformatic analysis of Oncomine, a web-based cancer

microarray database of patient tissue revealed increased

expression of CACNA transcripts in diverse cancer types
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including of CACNA1S and CACNA1C (coding for CaV1.1 and

CaV1.2 channels respectively) in AML and B-ALL samples and

of CACNA1A (coding for CaV2.1) in samples from patients with

CLL, marginal zone lymphoma and monoclonal gammopathy of

unknown significance (136, 137). On the other hand,

downregulation of CACNA1C transcripts (coding for CaV1.2)

was seen in centroblastic lymphoma, CACNA1F (coding for

CaV1.4) in anaplastic large cell lymphoma, and CACNA1G

(coding for CaV3.1) in mantle cell lymphoma (195). A recent

study confirmed distinct expression of CaV channels in a range

of lymphoma cell lines and patient-derived samples (156).

CaV1.2 (CACNA1C) expression was increased in classical

Hodgkin lymphoma cell lines when compared to other B-cell

lymphoma cell lines. CaV1.3 (CACNA1D) showed higher

expression in samples from patients with activated B-cell-like

DLBCL (ABC-DLBCL), whereas expression of CaV1.1

(CACNA1S), CaV1.2 (CACNA1C), and CaV1.4 (CACNA1F)

were higher in germinal centre B-cell like DLBCL (GCB-

DLBCL) (156). Therapeutic potential of inhibiting CaV1.2 in

AML was revealed in an elegant 3D-culture model that

mimicked the human bone marrow niche and utilized AML-

derived mesenchymal stromal cells (AML-MSCs) from pediatric

patients (138). Inhibition of CaV1.2 channel in AML-MSCs

using lercanidipine (an anti-hypertensive drug) interfered with

leukemia growth ex vivo and in vivo, with no toxic effects on

normal MSCs or healthy CD34-positive HSCs (138). Further

work is required to determine the mechanism through which

CaV channels influence blood cancer growth.

4.1.7 Orai1 channels
Multimers of Orai1 proteins form an ion pore in the plasma

membrane that is highly selective for Ca2+. SOCE is triggered

when Orai1 and STIM1/STIM2 proteins interact in response to

ER Ca2+ store depletion. Increased expression of Orai1 or STIM1/

STIM2 has been recorded in cell lines derived from AML

(132, 133), T-ALL (134), CLL (11) and various lymphoma cell

lines (134, 156). Mantle cell lymphoma Rec-1 cell line does not

have high expression of Orai1 and STIM1 but Rec-1 and patient

cells have significantly higher cytoplasmic Ca2+ concentrations

under physiological conditions compared to normal cells

suggesting “leaky SOCE” (196). High expression of Orai1 and

STIM1 in CLL patients is associated with worse treatment- and

progression-free survival (11). In mice models of T-ALL, deletion

of STIM1 and STIM2 abolishes SOCE and results in prolonged

survival (134). The underlying mechanism is intriguing, as the

absence of SOCE does not change leukemic cells proliferation;

instead, prolonged survival is associated with reduced

inflammation in organs infiltrated by leukemia (134). In the

HL-60 APL cell line, silencing of Orai1 and Orai2 reduces cell

migration and proliferation (132). In the KG-1 and U937 AML

cell lines, Orai1 contributes to cell proliferation and cell cycle
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progression (133). ORAI1 gene expression was increased in

peripheral blood mononuclear cells from 9 patients with AML

compared with normal cells and correlated with adverse risk in

the cohort of 439 AML patients (133).

Orai1 and STIM1 function is also linked with the CD20

molecule in B-cells and required for the efficacy of anti-CD20

antibody therapy in B-cell cancers. CD20 (MS4A1) is part of the

membrane-spanning 4-domain family, subfamily A (MS4A)

(197). The exact biological role of CD20 is unknown but it may

act as an amplifier of Ca2+ signals transmitted through the B-cell

receptor (BCR) in immature and mature B-cells to modulate cell

proliferation and differentiation (198). CD20 has been reported to

be physically coupled to or affect the phosphorylation of BCR and

BCR-associated kinases; which are upstream regulators of the

signaling cascade that activates SOCE (199–201).

Monoclonal anti-CD20 antibodies such as rituximab and

obinutuzumab activate Ca2+ influx in patient CLL cells and cell

lines such as SUDHL-4, BL2, Ramos, BL60, Raji, Daudi, and

normal B-cells (202–206). Using genetically encoded Ca2+

indicator GCaMP-CD20 as a precise method to measure Ca2+

concentration changes around CD20, it was determined that anti-

CD20 antibodies do not cause Ca2+ influx through or near CD20

(207). Instead, obinutuzumab activates intracellular Ca2+ efflux

from either lysosomes or the ER into the cytosol (206) (see

Figure 4A and the corresponding legend for molecular details).

Inhibition of this intracellular Ca2+ movement reduces

obinutuzumab-induced cell death (206, 207). Binding of

rituximab to CD20 induces co-clustering of CD20 with Orai1

and STIM1 in SUDHL-4 cells, leading to extracellular Ca2+ influx

and internal Ca2+ store release (205). CD20 overexpression in

HEK293 cells increases Ca2+ influx, which is abolished when

Orai1 and STIM1 are knocked down (207). CD20 strongly

interacts with STIM1 but only when Orai1 is present (207).

Influx of Ca2+ induced by rituximab or obinutuzumab is

significantly reduced in Orai1 knockdown cells (205, 206). In

B-CLL cells expressing high levels of STIM1, a combination of an

anti-STIM1 monoclonal antibody and rituximab significantly

reduces cell viability compared to rituximab alone (11). Thus,

CD20 interactions with Orai1/STIM1 are important for the

therapeutic efficacy of anti-CD20 antibodies. Manipulation of

these interactions may help develop more effective therapeutic

combinations for B-cell malignancies (Figure 4A).

4.2 IP3 signaling cascade and Ca2+

release from the ER

IP3 is a major regulator of Ca2+ signaling; it binds to IP3Rs on

the ER to release Ca2+ into the cytosol (27, 28) (Figure 1). IP3 and

another second messenger DAG are generated when PLC,

activated downstream of G-protein coupled or tyrosine kinase

receptors, hydrolyses PIP2 located in the plasma membrane (26).
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FIGURE 4 (Continued)

Therapeutic potential of pro-apoptotic calcium signaling at the ER and mitochondria. (A) Mechanism of BCR activated Ca2+ influx in response
to rituximab and obinutuzumab. The membrane-spanning 4-domain protein CD20 is physically-coupled to the BCR. Rituximab and
obinutuzumab induce phosphorylation of several proteins involved in BCR signaling, including BLNK (B-cell linker kinase), BTK (Bruton’s
tyrosine kinase), and PLC-g (phospholipase C-g). CD20 binds STIM1 and this binding is dependent on the presence of Orai1. Upon binding of
rituximab/obinutuzumab, Ca2+ is released from lysosomes, the ER, and/or extracellularly via activation of store-operated calcium entry, which
assists cell killing. (B) Schematic showing the four Bcl-2 homology (BH) domains. Venetoclax binds to the hydrophobic cleft located in the BH3
domain, and BIRD-2 binds to the BH4 domain. Transmembrane domain (TM), N- and C- termini are indicated. (C) Canonical BAX and BAK
dependent pathway of apoptosis and the mechanism through which venetoclax inhibits this pathway. (D) Non-canonical ER Ca2+-dependent
pathway of apoptosis and the mechanism through which BIRD-2 inhibits this pathway.
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4.2.1 Phospholipase C
PLC has six isoforms; b, g, d, ϵ, z, and h. PLC-b operates

downstream of GPCRs and PLC-g downstream of tyrosine

kinase receptors (29, 30). Important activators of PLC-g in

hematologic cells are BCR and T-cell receptors (TCR), which

are transmembrane tyrosine kinase receptors (208). T-cells

mainly express the PLC-g1 isoform, and B-cells mainly express

the PLC-g2 isoform. PLC-g1 is essential for IP3 production and

Ca2+ release in normal T-cells, whereas PLC-b3 is the main

regulator of these responses in Jurkat T-cells and patient-derived

T-ALL blasts (209).

Leukemic stem cells (LSCs) are multipotent, proliferative, and

self-renewing cells that propagate leukemia (210). In AML LSCs,

oxysterol-binding protein-related protein 4L (ORP4L) acts as a

scaffold protein that facilitates PIP2 presentation to PLC-b3 for

cleavage into IP3 (211). ORP4L is expressed in LSCs, but not in

normal HSCs (211). Knocking down or inhibiting ORP4L decreases

the survival of T-ALL cells and AML LSCs and reduces

spontaneous cytosolic and mitochondrial Ca2+ oscillations (209,

211, 212). In T-ALL cells, ORP4L also interacts with PLC-b3 and

IP3R1, which enhances Ca2+ release from the ER by facilitating the

binding of IP3 to IP3R1 (212). Overall, the ORP4L regulated Ca2+

release into the mitochondria helps sustain mitochondrial oxidative

respiration required for survival of T-ALL cells and AML LSCs

(209, 211, 212)

BCR and TCR recruit kinases such as SYK (spleen tyrosine

kinase), BTK (Bruton’s tyrosine kinase), BLNK (B-cell linker

kinase), and ZAP70 (zeta chain of T-cell receptor-associated

protein kinase 7) to phosphorylate and activate PLC-g. PLC-g2
plays a role in CLL, DLBCL, Hodgkin lymphoma, endemic Burkitt

lymphoma, MALT-associated gastric lymphoma, and plasma cell

myeloma (208). For example, B-CLL cells showing high

responsiveness after BCR engagement have higher PLC-g2
activity and calcium signaling compared to non-responding cells

(213). Patients with such hyperresponsive B-cells have a poorer

prognosis than non-responders (213). Ibrutinib, which inhibits

BTK and thus blocks PLC-g2 signaling, has become an important

and effective treatment for CLL and other B-cell lymphomas (208).

4.2.2 Inositol 1,4,5-trisphosphate receptors
Three isoforms of IP3Rs exist and most cell types express

more than one isoform (214). Mice with all three IP3R isoforms
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deleted develop T-cell malignancies throughout the body that

resemble T-ALL (215). Cytogenetically normal AML cells have

higher expression of IP3R2 than healthy progenitors and

patients with high IP3R2 expression have shorter overall and

event-free survival (135). DLBCL SU-DHL-4 cells also have high

levels of IP3R2 and constitutive IP3 signaling, which leads to

elevated basal levels of cytoplasmic Ca2+ and increased cell

survival (154). Inhibition of IP3 production via inhibiting PLC

reverses the prosurvival effect and increases cell death in SU-

DHL-4 cells (154).

Several oncogenes and tumor suppressors directly interact

with IP3Rs and regulate their activities to control Ca2+ influx

into the mitochondria. Among such IP3R regulators are the Bcl-

2 family proteins, which consist of different anti-apoptotic

members (e.g. Bcl-2, Bcl-xL, Mcl-1, and Bcl-10) and pro-

apoptotic members (e.g. BIM, BID, BAX, and BAK) (216)

(Figure 4B). Bcl-2 overexpression is common in blood cancer,

including in DLBCL, AML and CLL (154, 217, 218). Bcl-2 binds

to and prevents the activation of pro-apoptotic proteins through

their BH3 domains (219, 220). To overcome Bcl-2 effects in

cancer cells, BH3 mimetics like venetoclax were developed that

target the hydrophobic BH3-binding groove of Bcl-2

(Figure 4B). Venetoclax binding to Bcl-2 liberates BIM, which

activates BAX or BAK, leading to apoptosis (221) (Figure 4C).

In addition to the canonical BAX/BAK-dependent pathway

of apoptosis, Bcl-2 also directly binds to IP3Rs on the ER

through its BH4 domain. The binding of Bcl-2 to IP3R

inhibits Ca2+ release from the ER and prevents cell apoptosis

triggered by mitochondrial Ca2+ overload (222). Venetoclax

does not interfere with this BH4-dependent mechanism of cell

death (223). In contrast, a designer peptide Bcl-2 IP3R

Disruptor-2 (BIRD-2) targets the BH4 domain of Bcl-2 (224)

(Figure 4B). BIRD-2 binding to Bcl-2 unleashes IP3R activation

and cytotoxic Ca2+ levels are released from the ER (155,

225) (Figure 4D).

BIRD-2 induces apoptosis in multiple blood cancer cell lines

and/or patient-derived cells, including from DLBCL, CLL,

plasma cell myeloma, and follicular lymphoma (153, 226, 227).

DLBCL cells with high levels of IP3R2 and constitutive IP3

signaling are particularly sensitive to BIRD-2 (154). In DLBCL

cell lines, BIRD-2 induces cell death in a caspase-dependent

manner, however in contrast to venetoclax, BIRD-2-induced cell
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death is independent of BAX/BAK (228). In both DLBCL cell

lines and primary CLL patient samples, BIRD-2 triggers

mitochondrial Ca2+ overload to induce caspase-dependent cell

death. Cyclosporine A, which desensitizes mPTP to excessive

Ca2+-induced opening, and ruthenium265 (Ru265), which

inhibits mitochondrial Ca2+ uptake, both counteract BIRD-2-

induced cell death (228). Combining venetoclax with BIRD-2

enhances cell death of DLBCL cell lines, however DLBCL cells

with acquired resistance to venetoclax were not sensitized to

BIRD-2 (155, 229). BIRD-2 may be useful in combination with

venetoclax as a therapeutic strategy in DLBCL, however the

clinical relevance of these approaches remains to be determined.

Another therapeutic target that can induce mitochondrial

Ca2+ overload is the GPCR neurokinin-1 receptor (NK-R1),

expression of which is elevated in patient-derived AML cells and

cell lines (230). Targeting NK-R1 with the antagonists SR140333

or aprepitant in AML and CML cell lines increases cytosolic and

mitochondrial Ca2+ concentrations, resulting in increased

production of reactive oxygen specied (ROS) and apoptosis

(230). When IP3R or VDAC1 are inhibited, ROS production

and apoptosis are decreased (230), but neither antagonist

inhibits proliferation of normal CD34-positive HSCs.

Aprepitant has been approved by the US Food and Drug

Administration for the treatment of chemotherapy-induced

nausea and vomiting (230). Therefore, this and other NK-R1

antagonists could be repurposed for testing efficacy in

AML (230).
4.3 Endo-lysosomal Ca2+ channels

The role of endo-lysosomal Ca2+ signaling in blood cancer

has not been systematically studied but there are a number of

observations pointing towards its importance. TRPML3, TPC1

and TPC2 endo-lysosomal Ca2+ efflux channels are expressed in

the megakaryoblastic leukemia cell line Meg-01 (231). NAADP

releases Ca2+ from the lysosomal-like Ca2+ stores in Meg-01 cells

and TPC knockdown reduces this response (231). TPC2 is

localized to platelet dense granules that are lysosome-related

organelles and is involved in their maturation and function

(232). TPC2 mediates Ca2+ release and formation of

perigranular Ca2+ nanodomains in Meg-01 cells that mark

“kiss-and-run” events mediating material transfer between

different granules (232). Upon genetic deletion of NMDA

receptors in Meg-01 cells, accumulation of lysosomal

organelles and upregulation of MCOLN3 transcripts (coding

for TRPML3) were observed. This suggests a link between

lysosomal biogenesis, NMDA receptor function and Meg-01

cell proliferation (183). TPC1 and TPC2 inhibitor tetrandrine

suppresses growth and increases cell death in several AML cell

lines (U937, NB4, K-562, HL-60 and THP-1) (233–236). A

recent study also demonstrates that TPC2 inhibition and its
Frontiers in Oncology 16
genetic deletion sensitizes ALL cells (cell lines and patient-

derived) to cytotoxic drugs (237). Upon TPC2 deletion,

leukemic cells are not able to sequester cytotoxic drugs within

lysosomes, which increases drug concentration in the cytoplasm

and enhances its cytotoxic effectiveness. Therefore, targeting

lysosomal TPC2 may help overcome chemoresistance in ALL

cells (237). Similar may apply in AML, although different

mechanisms may contribute to lysosomal deregulation in

different types of leukemia (238–240).
4.4 Calcium ATPases and secondary-
active Ca2+ transporters

Several types of Ca2+ ATPases are involved in the maintenance

of transmembrane Ca2+ gradients between the cytosol and the

blood plasma as well as between the cytosol and the inner

compartments of the organelles. Plasma membranes are equipped

with several isoforms of the plasma membrane calcium ATPases

(PMCAs) (241, 242) (Figure 1). Human monocytes and

macrophages express plasma membrane Na+/Ca2+ exchanger

NCX that actively extrudes Ca2+ while taking in Na+ transported

passively using the energy of transmembrane Na+ gradient

generated by the Na+/K+ ATPase (243). Mitochondrial

membrane contains its own Na+(Li+)/Ca2+ exchanger (NCLX)

that controls Ca2+ levels in the mitochondria (244). Cells also

pump Ca2+ out of the cytoplasm into the Golgi apparatus

through secretory pathway Ca2+ ATPases (SPCA), and to the ER

through SERCA (245) (Figure 1). The activity of SERCA reflects the

activation state of T-cells (246), B-cells (247), Th1 and Th2

lymphocytes (248). Of these molecules, SERCA has been reported

to be dysregulated in a number of hematologic malignancies.

4.4.1 Sarco-endoplasmic reticulum calcium
ATPase

There are three SERCA genes in humans and alternative

splicing can give rise to many isoforms (10). In response to

differentiation, SERCA3 expression changes in leukemic

megakaryocytic cell line Meg-01, precursor B-ALL cell lines

(Kasumi-2 and RCH-ACV), and APL cell lines (NB4 and HL-

60) (249–251). All-trans retinoic acid-induced differentiation of

APL cells results in increasing SERCA3 expression and

SERCA3-dependent Ca2+ accumulation (249). When SERCA

activity is inhibited, lower concentrations of retinoic acid can

induce differentiation of NB4 and HL-60 cell lines (252).

In a human T-ALL xenograft mouse model, SERCA inhibition

with thapsigargin reduces tumor growth (253). Thapsigargin

prevents the activation of the transmembrane receptor,

NOTCH1, which often contains activating mutations in T-ALL,

CLL, mantle cell lymphoma, and a subset of DLBCL (10, 253). The

reduction of Ca2+ entering the ER upon SERCA inhibition changes

the folding and trafficking of NOTCH1 (10, 253). As reviewed by
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Pagliaro et al, other SERCA inhibitors have been developed that

induce apoptosis in a range of leukemic cell lines and xenograft

models including T-ALL, B-ALL, mantle cell lymphoma, and AML

(10). In contrast, when SERCA expression is reduced or its activity

is inhibited by oncogenes such as Bcl-2 and Ras, the decrease in ER

Ca2+ concentrations reduces the potential for a Ca2+ overload and

initiation of apoptosis in response to ER stress (219, 254).
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4.5 Calcium sensor and effector proteins

Some of the downstream Ca2+ sensor proteins implicated in

blood cancer include the S100 family, calcium/calmodulin-stimulated

protein kinases (CaMKs), calcineurin, CALR, and PKC.

Dysregulation of these Ca2+ sensors alters gene regulation

associated with cell apoptosis, proliferation, and migration (Table 2).
TABLE 2 The differential expression of calcium sensor and effector proteins and their relative contribution to the malignant phenotype of
different blood cancers.

Cancer
type

Molecule Change in disease Functional effects References

AML S100-A4 ↑ expression ↓ overall survival (P), ↑ cell proliferation (C), ↑ migration (C), ↑d rug resistance (C) (255–259)

S100-A8 or
-A9

↑ expression ↓ overall survival (P,M), ↓ event free survival (P), ↑ drug resistance (C), ↑ autophagy (C), ↓
apoptosis (C), differentiation (C,P,M)

(255, 260–
265)

S100-P ↑ expression ↑ overall survival (P), differentiation (C) (259, 266–
268)

CAMKI ↑ expression ↑ cell proliferation (C,M), ↓ overall survival (P) (269)

CAMKII ↑ activation ↓ differentiation (C), ↑ cell proliferation (C) (270)

CAMKIV ↑ expression ↑ cell proliferation (C,M), ↓ overall survival (P) (269)

PKCa ↑ expression and activation ↑ Bcl-2 phosphorylation (P), ↓ overall survival (P) (271–273)

ALL S100-A4 ↑ expression (C,P) (258, 274)

S100-A6 ↑ expression ↓ overall survival (M), ↑ cell proliferation (M), ↓ apoptosis (C) (274–278)

S100-A8 or
A9

↑ expression ↓ event free survival (P), ↓ Ca2+ influx (C), ↑ drug resistance (C,P), ↑ relapse (P) (274, 279)

Calcineurin ↑ activation ↑ cell proliferation (C,M), ↓ apoptosis (C,M), ↑ disease progression (M) (280, 281)

CML S100-A4 ↑ expression ↑ drug resistance (C) (282)

S100-A8 or
A9

↑ expression ↑ drug resistance (C), ↑autophagy (C), ↓ Ca2+ influx (C) (260, 283)

CAMKII ↑ activation ↑ cell proliferation (C) (270)

CAMKII ↑ expression ↑ drug resistance (P) (284)

PKCa ↓ expression ↑ association with cell membrane (P) (285)

PKCb2 ↑ expression (P) (286)

MPN S100-A4 ↑ expression ↑ inflammation (P) (287)

S100-A8 or
A9

↑ expression ↑ inflammation (P), ↓ cell proliferation (P) (287)

FKBP5 ↑ expression in
megakaryocytes

↑ cell survival (P), ↓ calcineurin activity (P), ↑ STAT5 activation (C,P) (288, 289)

CALR mutations, predicted loss of
Ca2+ binding

↑ Ca2+ influx (P), ↑ proliferation of megakaryocytes (P) (9, 290, 291)

CLL S100-A8 ↑ expression ↑ disease progression (P), ↑ need for early treatment (P) (292)

PKCa ↓ expression (P) (286)

PKCb2 ↑ expression, ↑ activation ↓ Ca2+ influx (P), ↑ cell survival (P,M), ↓ apoptosis (P) (286, 293,
294)

DLBCL S100-A4 ↑ expression ↑ drug resistance (P) (295)

S100-A8 or
A9

↑ expression ↑ drug resistance (P) (295)

Calcineurin ↑ activation ↑ cell proliferation (C), ↓ apoptosis (C) (280, 296)

T-cell
lymphoma

S100-A9 ↑ expression ↑ drug resistance (P), ↓ overall survival (P), ↓ progression free survival (P), ↑early
reoccurrence rate (P)

(297, 298)

Plasma cell
myeloma

CAMKII ↑ expression ↑ disease progression (P), ↓ overall survival (P), ↑ cell proliferation (C), ↓ apoptosis (C) (299)
fr
(P) = Patient cells, (C) = Cell lines, (M) = Mouse model. ↑ = increased, ↓ = decreased. Expression changes are often found in particular cell lines or leukemic subtypes and not in others.
Empty cells indicate there is no data. AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; DLBCL,
diffuse large B-cell lymphoma; MPN, myeloproliferative neoplasms (classical Philadelphia chromosome-negative).
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4.5.1 S100 family
The S100 family are Ca2+ binding proteins of which many

have been reported to be dysregulated in AML, ALL, CLL, MPN,

and lymphomas (292, 295, 300, 301). S100- A8 and A9 are the

most well-studied members of the S100 family in leukemia.

Dysregulation of their expression, and changes in plasma levels,

or secretion levels in the bone marrow microenvironment have

been reported in AML (300, 301). S100- A8 and A9 are dose-

dependent regulators of myeloid differentiation and leukemic

cell proliferation and can play contradictory roles, depending on

their expression levels as monomers, homodimers, or

heterodimers (300, 301). S100- A8 and A9 are expressed

constitutively in the cytoplasm of myeloid cells, including

myeloid precursors, but are absent from lymphocytes (301).

Increased activity of multiple S100 family members is associated

with increased drug resistance in hematologic malignancies

including AML, CML, ALL, and B-cell lymphomas (302, 303).

For example, S100-A8/A9 contribute to gilteritinib resistance in

FLT3- internal tandem duplications- (FLT3-ITD)-positive AML

primary cells and cell lines (304). Particularly, S100-A9

expression has been found to be more consistently and

remarkably altered than S100-A8 in human FLT3-ITD-

positive AML cell lines (MOLM13 and MOLM13-RES) after

gilteritinib treatment. The potential mechanism is gilteritinib

promotes Bcl-6 dissociation from the S100-A9 promoter, which

leads to upregulation of S100-A9 (304).

4.5.2 Calcium/calmodulin-stimulated protein
kinase family

Calmodulin is a Ca2+-binding protein that regulates a wide

variety of cellular processes via interaction with multiple target

proteins (305). The CaMK family members are activated when

bound to Ca2+-saturated calmodulin (306). CaMK family members

are overexpressed or aberrantly activated in CML, AML, and plasma

cell myeloma (269, 270, 284, 299, 307). Inhibition or knockdown of

CaMKI, CaMKII, or CaMKIV reduces proliferation in different

myeloid leukemia cells and multiple CAMK or calmodulin

antagonists have been used to inhibit leukemic cell growth and

proliferation (269, 270, 305–307). High expression of CaMKs is

associated with a poor overall survival probability in patients with

plasma cell myeloma or AML (269, 299). Deletion of CaMKII

suppresses T-cell lymphomagenesis in mice, and T-cell lymphoma

cell line growth (comprising H9, JB6, Jurkat, and SU-DHL-1) is

suppressed when CaMKII activity is inhibited (308). CaMKII is also

activated by the constitutively active tyrosine kinase BCR::ABL1 in

CML cells. The tyrosine kinase inhibitor (TKI) imatinib, inhibits

proliferation of BCR::ABL1 expressing cells and is accompanied by a

rapid decrease in activated (autophosphorylated) CaMKII (270). In

an inducible BCR::ABL1 cell line (TonB210.1), decreased BCR::

ABL1 expression is also accompanied by a reduction of

autophosphorylated CaMKII, and inducing BCR::ABL1 expression

restores CaMKII autophosphorylation (270). CAMKII-g is highly

activated in CML LSCs and its aberrant activation accelerates CML
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blast crisis (309). In a mouse xenograft model of patient-derived

CML cells, LSCs were eliminated by an ATP-competitive CAMKII-

g inhibitor berbamine (310).

4.5.3 Calcineurin
Calcineurin is a calcium-calmodulin-dependent phosphatase,

that when activated by Ca2+ and calmodulin, dephosphorylates its

substrates including nuclear factor of activated T-cells (NFAT)

(311). Dephosphorylated NFAT proteins translocate into the

nucleus to regulate the transcription of genes important for cell

proliferation, growth, migration, differentiation, and survival

(311). The calcineurin-NFAT pathway negatively regulates

megakaryopoiesis (312). Inappropriate inhibition of this

pathway may contribute to the pathological expansion of

megakaryocytes and their precursors, in particular in the

context of Down syndrome (313, 314) (see Figure 5A and the

corresponding legend for molecular details). The calcineurin

inhibitor FKBP5 (FK506 binding protein) is overexpressed in

megakaryocytes from patients with PMF. FKBP5 overexpression

in UT-7 cells (a factor-dependent human cell line with a

megakaryocytic phenotype) promotes cell survival after cytokine

deprivation, suggesting a pathway to disease development through

the inhibition of calcineurin (288).

Calcineurin and NFAT have also been implicated in other

hematologic malignancies, including Burkitt lymphoma, T-cell

lymphoma, T-ALL, DLBCL, CML, CLL, and AML (311, 315,

316). The calcineurin inhibitors, cyclosporin A, and tacrolimus

(FK506), have anti-leukemic effects in mice T-ALL models, and

deletion of calcineurin specifically in T-ALL leukemic cells

results in impaired leukemia progression (280, 281). Inhibition

of calcineurin by cyclosporin A or FK506 is also selectively

cytotoxic against the ABC-DLBCL (296). This response to

calcineurin inhibitors is associated with reduced NFAT-

mediated expression of critical genes, including c-Jun, signal

transducer and activator of transcription 3 (STAT3),

interleukin-6 and interleukin-10 that are crucial for survival of

ABC-DLBCL cells (296).

4.5.4 Calreticulin
CALR, amongst its other functions, is an ER-resident Ca2+-

buffering protein that helps maintain intracellular Ca2+

homeostasis and assists the folding of proteins destined for

secretion or insertion into the plasma membrane (317). CALR

is mutated in approximately one-quarter of the Philadelphia

chromosome-nega t i v e MPNs , PMF and es s en t i a l

thrombocythemia (290, 318). The mutations in CALR, as well

as JAK2 and MPL (Figure 5B, left), converge to constitutively

activate JAK2-STAT signaling, which drives deregulated

expansion of HSCs and megakaryocytes (317, 318). CALR

mutations have two main variants, type 1 and type 2. Type 1

or type 1-like mutations are mostly large deletions of which a 52-

bp deletion is the most common; while type 2 or type 2-like are

mostly small insertions of which a 5-bp insertion is the
frontiersin.org

https://doi.org/10.3389/fonc.2022.1010506
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Immanuel et al. 10.3389/fonc.2022.1010506

Fro
B

A

FIGURE 5 (Continued)
ntiers in Oncology frontiersin.org19

https://doi.org/10.3389/fonc.2022.1010506
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
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Oncogenic effects of calcineurin and calreticulin. (A) The role of calcineurin-NFAT signaling in the pathogenesis of myeloid proliferation
associated with Down syndrome. Human chromosome 21 encodes two important regulators of nuclear factor of activated T-cells (NFAT) -
regulator of calcineurin 1 (RCAN1) and dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A). When calcineurin is activated by
Ca2+ and calmodulin (CaM), it dephosphorylates NFAT. Dephosphorylated NFAT translocates to the nucleus and transcriptionally regulates
numerous genes involved in cell proliferation, growth, migration, differentiation, and survival. NFAT is re-phosphorylated by DYRK1A and is
exported back to the cytoplasm. RCAN1 inhibits calcineurin, and so also inhibits the dephosphorylation and translocation of NFAT. RCAN1 and
DYRK1A are overexpressed in Down syndrome and are suspected to contribute to the development of transient abnormal myeloproliferation
and megakaryoblastic leukemia in Down syndrome children. (B) The role of mutated calreticulin (CALR) in myeloproliferative neoplasms. More
than 50 mutations have been reported in exon 9 of the CALR gene; most generate a +1-frameshift causing the mutated CALR protein (mCALR)
to stably associate with the thrombopoietin receptor MPL protein in the ER. The mCALR-MPL complex is transported from the ER through the
Golgi apparatus and secretory system to the plasma membrane. The binding of mCALR to MPL constitutively activates signaling through JAK2
and its downstream targets such as STAT, AKT, and ERK (left). The most common mCALR variants are type 1 that also impair the Ca2+ binding
activity of mCALR more than type 2. The type 1 mCALR with reduced Ca2+ binding dissociates from STIM1 in the ER. This allows STIM1 to
dimerize and bind Orai1 and TRPC, which leads to constitutive activation of SOCE (right).
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most common. Type 1 mutations are predicted to impair the

Ca2+-binding activity of CALR more than type 2 (319).

Congruently, type 1 mutations associate with higher ER Ca2+

release, higher SOCE, and spontaneous cytosolic Ca2+

oscillations in cultured megakaryocytes (9, 290).

CALR assists the folding of STIM1, and whilst they are

bound, STIM1 is in an inactive configuration on the ER

membrane inhibiting SOCE (9). Megakaryocytes with mutated

CALR have a decreased association between CALR and STIM1

(Figure 5B, right), and the CALR type 1 variant has the highest

level of dissociation from STIM1. Defective interaction between

mutant CALR and STIM1 activates SOCE and generates

spontaneous cytosolic Ca2+ influx. This, in turn, increases

megakaryocyte proliferation, which can be reversed using a

specific SOCE inhibitor (9). Thus, the impact of mutated

CALR on Ca2+ homeostasis may be influencing the course of

MPN in combination with its aberrant activation of JAK2-STAT

signaling. Further elucidation of these mechanisms may inform

the development of new drugs to improve the effects of

JAK2 inhibition.

4.5.5 Protein kinase C
PKC is activated by the second messenger DAG, which is

hydrolyzed from PIP2 following receptor engagement and PLC

activation (320, 321). The PKC family has many isoforms that can

be categorized into three groups: conventional PKC isoforms,

novel PKC isoforms, and atypical PKC isoforms (320, 321). A

range of PKC isoforms are up- or down-regulated which can affect

cell growth and survival in AML, CML, CLL, and plasma cell

myeloma (286, 322, 323). Only the conventional PKC isoforms (a,
b, and g) are activated by Ca2+ as well as DAG (320, 321). In CML,

the BCR::ABL1 phosphorylates a range of PKC isoforms leading

to altered activity (323). ER Ca2+ release and SOCE are reduced in

cell lines that express BCR::ABL1 (171, 324). These abnormal Ca2+

responses are Bcl-2 independent but PKC dependent. PKC-b
overexpression is significantly associated with resistance to TKIs

such as imatinib (323, 325). Suppressing PKC-b activity or

expression in TKI-resistant CML patient cells and cell lines
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increases the sensitivity to imatinib (325). Inhibition of PKC-b
increases the effect of imatinib on reducing leukemic cell

proliferation in a CML mouse model and also prolongs survival

(325). Outside of CML, PKC-b was found to be essential for CLL

development in a mouse model and promotes cell growth and

survival of CLL cells (294, 322, 326).
5 Mutational landscape in the
calcium-toolkit encoding genes
recorded in publically accessible
blood cancers databases

We reviewed publically available genetic cancer databases

for mutations affecting molecules described in this review across

the main blood cancer types. Figure 6 demonstrates the

mutational landscape in lymphoid cancers and Figure 7 in

myeloid cancers. We obtained this data using cBioPortal for

Cancer Genomics platform (https://www.cbioportal.org/) (354,

355). The Ca2+-toolkit encoding genes were queried as gene sets

grouped according to function (see Supplementary Table S1).

Results are observational only and require validation but are

useful to generate hypotheses for future research and to assist

discussion. The datasets available for interrogation and the

samples reviewed are listed in Supplementary Tables S2 and

S3. The lymphoid neoplasms reviewed included B-ALL (n = 234-

269 patients depending on the gene), DLBCL (n = 1288), low-

grade B-cell neoplasms (n= 1542) including CLL (n = 1254),

monoclonal B-cell lymphocytosis (n = 54), mantle cell

lymphoma (n = 29), plasma cell myeloma (n= 205) and low-

grade T-cell neoplasms (n = 43) including Sezary syndrome (n =

26), primary cutaneous CD8/CD30 positive lymphomas (n = 14)

and mycosis fungoides (n = 3) (Figure 6, Table 3 and

Supplementary Table 2). Of these lymphoid cancers, patients

with B-ALL had the lowest frequency of variants in the Ca2+-

toolkit encoding genes (5.9%) and patients with low-grade T-cell

neoplasms had the highest frequency (48.8%), most carrying
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multiple variants (Figure 6 and Table 3). The GRIN genes

encoding NMDA receptor subunits and the ITPR genes

encoding IP3Rs were mutated in 1.3% of B-ALL patients each,

other variants were present in <1% of B-ALL patients. The

cBioPortal data did not yet contain results of Bohannan et al.

published earlier this year that reported the presence of GRIN2C

mutations in high-risk B-ALL patients (145) (Figure 3C). It

would be interesting to review these data when it becomes

publically available, and pursue similar analysis in larger

studies in the future.
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In mature T-cell neoplasms, the most affected genes were

those coding for PLC (16.3%), Ca2+/Na+/K+ exchangers (14.0%),

TRPC and TRPM channels (11.6% each), CaV and NMDA

receptor channels (9.3% each), ryanodine receptors (RYR)

(7.0%), and a few others at 4.7% each (TRPV, P2RX, and

SERCA) (Figure 6 and Table 3). This particularly high

frequency of variants in cutaneous T-cell neoplasms requires

confirmation in larger cohorts. Unfortunately, no other mature

or precursor T-cell malignancies could be reliably reviewed. Less

than 10 T-ALL samples with mutational data were identified and
FIGURE 6

Calcium-toolkit mutations in lymphoid neoplasms. Oncoprints are shown generated using cBioportal for Cancer Genomics platform (https://
www.cbioportal.org/). Events were analyzed per patient, frequencies are listed. Unaltered columns and whitespaces between columns are not
shown. The Ca2+-toolkit genes were grouped according to function (see Supplemental Table 1). The molecular profiles queried included
mutations but excluded copy number variations and structural variants as these were not available for most patients. The databases analyzed are
indicated in the figure and referenced below: 1) For B-ALL: Acute Lymphoblastic Leukemia databases St Jude Nat Genet 2015 (327), St Jude Nat
Genet 2016 (328) and Pediatric Acute Lymphoid Leukemia Phase II TARGET 2018. TARGET data was generated by the Therapeutically Applicable
Research to Generate Effective Treatments initiative and is available at https://portal.gdc.cancer.gov/projects. The St Jude database also
contained 8 T-ALL, 10 AML, and 5 unspecified leukemias - none had relevant mutations and these cases were excluded from the total. There
were no other T-ALL cases with mutational data available for analysis so this cancer type could not be analyzed further. 2) For DLBCL: Diffuse
Large B cell Lymphoma databases DFCI Nat Med 2018 (329), Duke Cell 2017 (330), Broad PNAS 2012 (331), TCGA PanCancer Atlas (332–340),
and BCGSC Blood 2013 (341). 3) For low-grade B-cell neoplasms: Chronic Lymphocytic Leukemia databases Broad Cell 2013 (342), Broad
Nature 2015 (343), IUOPA Nature 2015 (344), ICGC Nature Genetics 2011 (345), Mantle Cell Lymphoma database IDIBIPS PNAS 2013 (346), and
Multiple Myeloma database Broad Cancer Cell 2014 (347). 4) For low-grade T-cell neoplasms: Cutaneous T Cell Lymphoma database Columbia
U Nat Genet 2015 (348). Only patients with the appropriate diagnoses were selected. Specific cases analyzed are listed in Supplemental Table 2.
The cBioPortal queries can be retrieved at the following links: B-ALL https://bit.ly/3Q9ZGvv; DLBCL https://bit.ly/3CZJpq8; low-grade B-cell
neoplasms https://bit.ly/3AP87Xx; low-grade T-cell neoplasms https://bit.ly/3TvDZsT. Specific genetic variants can be found through these links,
all were of unknown significance. *Numbers of patients analyzed and disease groups are clarified in Table 3.
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none had relevant mutations. Ca2+ signaling is critical for T-cell

activation downstream of TCR and linked closely with the

regulation of T-cell metabolism (356). Multiple studies

highlighted the role of Orai, CaV, TRP, NMDA receptors and

other Ca2+ regulators in normal and malignant T-cells (134, 192,

357–361). Further studies are required to examine potential

contribution of these changes in T-cell cancers.

In mature B-cell neoplasms, mutated genes were broadly

similar between the low-grade and high-grade cancers (Figure 6

and Table 3). The frequency of variants was higher in patients

with low-grade B-cell neoplasms, 23.0% compared with 13.9% in

DLBCL, but many patients with DLBCL had multiple variants.

The types of variants were similar between patients with CLL,

monoclonal B-cell lymphocytosis, mantle cell lymphoma and
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plasma cell myeloma. In low-grade B-cell lymphoproliferative

disorders, variants in RYR1-3 were the most common (4.5%),

followed by PLC (3.2%), CACNA (2.8%), TRPM (2.6%) and

TRPC genes (2.1%), with others present in <2% of patients. Some

of these mutations appeared exclusive between each other. In

DLBCL, RYR mutations were less common (2.5%) but CACNA

variants were more common (3.8%) (Figure 6 and Table 3). One

could hypothesize that the acquisition of multiple mutations

associates with a higher grade. Further bioinformatics analysis

and laboratory studies to determine the role of gene variants in

lymphoid cancers appears warranted. For example, experimental

studies to examine the contribution of mutations in plasma

membrane Ca2+ channels and RYRs would be of interest. The

existing literature in this area is limited. RYRs facilitate the
FIGURE 7

Calcium-toolkit mutations in myeloid neoplasms. Oncoprints are shown generated using cBioportal for Cancer Genomics platform (https://
www.cbioportal.org/). Events were analyzed per patient, frequencies are listed. Unaltered columns and whitespaces between columns are not
shown. The Ca2+-toolkit genes were grouped according to function (see Supplemental Table 1). The molecular profiles queried included
mutations but excluded copy number variations and structural variants as these were not available for most patients. The databases analyzed are
indicated in the figure and referenced below: 1) Acute Myeloid Leukemia databases OHSU Nature 2018 (349); TCGA PanCancer Atlas (332–340),
and Pediatric Acute Myeloid Leukemia TARGET 2018. TARGET data was generated by the Therapeutically Applicable Research to Generate
Effective Treatments initiative and is available at https://portal.gdc.cancer.gov/projects. 2) Myelodysplasia databases UTokyo Nature 2011 (350)),
MSKCC 2020 (349, 351, 352). 466 MDS patients were excluded from the analysis as they were not profiled for any queried genes. 3)
Myeloproliferative Neoplasms database CIMR NEJM 2013 (353). Only patients with the appropriate diagnoses were selected. Specific cases
analyzed are listed in Supplemental Table 3. The cBioPortal queries can be retrieved at the following links: AML https://bit.ly/3Ts6NlX; MDS
https://bit.ly/3AuvJkc; MPN https://bit.ly/3q1TZ8C. Specific genetic variants can be found through these links, apart from CALR mutations all
were of unknown significance. *Numbers of patients analyzed are clarified in Table 3.
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release of Ca2+ from the ER in addition to IP3Rs (362) (Figure 1).

They are the largest ion channels known regulated by CaV1.1/

CaV1.2-mediated Ca2+ entry, as well as other small molecules

including ATP, calmodulin, calsequestrin and CaMKII (363).

RYR1 is primarily expressed in skeletal muscles but is also

present in B-lymphocytes (364, 365) and Burkitt lymphoma-

derived Namalwa cells (366). The RYR role in B-cell function

remains unclear but its activity downregulates CD38 expression

(366). High levels of CD38 associate with poor risk CLL (367).

Studies to determine the mechanism of the RYR contribution to
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the regulation of CD38 and the impact of RYR mutations on

CD38 expression and B-cell activation may be helpful.

In the group of myeloid neoplasms, we reviewed 821 patients

with AML, 151 with MPN and 31-431 patients with

myelodysplastic syndrome (MDS) (depending on the gene)

(Figure 7, Table 3 and Supplementary Table S3). Compared with

B-ALL, AML patients carried more variants (11.9% versus 5.5% in

B-ALL patients). Variants in CACNA (1.8%) and TRP genes (2.2%

in TRPM, 1.1% in TRPC, 0.7% in TRPV) were the most common in

AML but no variants exceeded 3% frequency. MDS patients had a
TABLE 3 Frequencies of genetic variants in the calcium-toolkit encoding genes documented in lymphoid and myeloid cancer databases.

Cancer type Lymphoid Myeloid

B-cell T-cell AML MDS MPN

B-ALL DLBCL Low-grade B-cell neoplasms Low-grade T-cell
neoplasms

Total CLL MBL MCL PCM
Total number of patients
per cancer type

234
except
1269

1288 1542 1254 54 29 205 43 821 31 except 2209
3431 433

151

Gene sets analyzed % of patients with gene variants in each cancer type

CACNA 0.0 3.8 2.8 2.2 5.6 0.0 6.3 9.3 1.8 0.0 2.0

TRPC 0.4 2.6 2.1 2.3 1.9 0.0 1.5 11.6 1.1 3.2 2.0

TRPV 0.4 0.3 0.8 0.6 0.0 3.4 2.0 4.7 0.7 0.0 0.0

TRPM 0.4 2.7 2.6 1.9 3.7 10.3 5.4 11.6 2.2 3.2 0.7

VDAC 0.0 0.0 0.1 0.0 0.0 0.0 1.0 0.0 0.1 0.0 0.0

GRIN 1.3 1.6 0.9 0.8 0.0 3.4 1.5 9.3 1.1 1.02 2.0

P2RX 0.0 0.7 0.3 0.2 0.0 0.0 1.0 4.7 0.1 0.0 0.7

nAChR 0.4 0.9 1.2 0.8 1.9 3.4 3.4 4.7 0.7 0.0 0.0

PIEZO 0.0 0.4 0.5 0.5 0.0 0.0 0.5 0.0 0.2 0.0 0.0

ORAI 0.0 0.4 0.3 0.1 0.0 0.0 2.0 0.0 0.5 0.0 0.7

STIM 0.4 0.2 0.1 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0

ITPR 1.3 1.4 0.8 0.6 1.9 0.0 2.0 2.3 0.5 0.0 0.7

RYR 0.4 2.5 4.5 3.8 0.0 0.0 10.2 7.0 0.6 0.0 0.7

SERCA 0.01 1.2 1.6 1.4 3.7 0.0 2.0 4.7 1.5 3.2 0.7

Calcium exchangers 0.0 1.2 1.4 1.1 1.9 0.0 2.9 14.0 0.9 3.2 0.0

Mitochondrial calcium regulators 0.0 0.5 0.6 0.8 0.0 0.0 0.0 0.0 0.1 0.0 0.0

Endolysosomal calcium channels 0.4 0.7 0.5 0.3 0.0 3.4 1.0 2.3 0.4 0.0 0.0

CALR 0.0 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.7 1.43 16.6

Calcium binders 0.01 1.1 0.1 0.1 0.0 0.0 0.5 0.0 0.2 0.0 0.0

S100 family 0.4 0.2 0.1 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0

PKC 0.0 1.9 1.4 1.2 0.0 0.0 3.4 2.3 0.6 0.04 0.7

CAMK 0.0 0.8 1.0 0.9 0.0 0.0 2.4 0.0 1.0 0.0 0.0

PLC 0.9 3.4 3.2 3.1 1.9 0.0 4.9 16.3 1.8 0.02 0.7

Calcineurin 0.0 0.5 0.1 0.1 0.0 0.0 0.5 0.0 0.5 0.0 0.0

Total % of patients with genetic
variants5

5.91 13.9 23.0 20.3 22.2 24.1 39.0 48.8 11.9 2.33 26.5
frontier
This table provides a summary of data displayed in Figures 6, 7. The gene sets are listed in Supplemental Table 1 and the full list of cases reviewed is provided in Supplemental Table 2
(lymphoid cases) and Supplemental Table 3 (myeloid cases). 1,2,3,4 Patient numbers varied for these groups from the overall total as shown. 5Many patients had multiple genetic variants.
AML, acute myeloid leukemia; B-ALL, acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; MCL, mantle cell lymphoma; MBL,
monoclonal B-cell lymphocytosis; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasms; PCM, plasma cell myeloma.
sin.org

https://doi.org/10.3389/fonc.2022.1010506
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Immanuel et al. 10.3389/fonc.2022.1010506
lower frequency of variants at 2.3% overall, although data for these

patients was limited. In the MPN group, 17% had CALRmutations,

consistent with it being a known MPN driver (353, 368). In

addition, a further 9.5% of MPN patients had variants in other

Ca2+-toolkit genes (including 2.0% in CACNA, TRPC and GRIN
Frontiers in Oncology 24
genes each). It was intriguing that these variants were exclusive with

CALR mutations and also appeared exclusive with each other,

raising the possibility of their independent effects in MPN

(Figure 7 and Table 3). Evidence slowly accumulates that Ca2+

signaling is aberrant in CALR-mutatedMPN (9, 290, 291, 319). The
FIGURE 8

Remodeling of calcium signaling in hematologic cancers and therapeutic opportunities this presents. Examples of mechanisms responsible for
the remodeling of Ca2+ signaling in blood cancer are depicted within the central blue circle. Their direct consequences are listed in the middle
red circle, and therapeutic opportunities arising from these changes are highlighted in the outer green circle. For example, the increased
expression of the plasma membrane Ca2+ channels (a mechanism of remodeling) leads to increased extracellular Ca2+ influx supporting
oncogenic signaling (a consequence). Such changes could be counteracted by specific Ca2+ channel inhibitors (a therapeutic opportunity).
In another example, mechanisms that spare cancer cells from mitochondrial Ca2+ overload (e.g. through the overexpression of Bcl-2 or VDAC)
could be counteracted by inhibitors of these molecules. The design of novel therapies heavily relies on our understanding of the Ca2+-toolkit
remodeling in different blood cancers.
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TABLE 4 Demonstrative examples of calcium-related compounds/drugs (specific inhibitors or activators of calcium channels and receptors) that
have been found to exert an impact on the functional outcome in vivo or in vitro in diverse blood cancer types.

Target Compound Functional effects Cancer
type

References

Plasma membrane Ca2+ channel activators

TRPV2 Cannabidiol ↑ cytoplasmic [Ca2+], ↑ ROS production, induces mitophagy, ↓ cell viability, ↓ cell
proliferation, ↓ cell cycle progression

CML (C) (147)

Plasma cell
myeloma (C)

(372)

NMDAR Glutamate ↑ cytoplasmic [Ca2+], ↑ cell proliferation AML (C) (182, 183,
373)

NMDA ↑ cytoplasmic [Ca2+], ↑ cell proliferation AML (C) (182, 183,
373)

Plasma membrane Ca2+ channel inhibitors

P2X7 A740003 ↓ cell proliferation, ↓ self-renewal of leukemia-initiating cells, ↑ survival time AML (C,M) (124, 125)

AZ10606120 ↓ cytoplasmic [Ca2+] influx, ↓ leukemic growth AML (P,M) (126)

TRPC3 Pyr3 Pyr3 and Dex - co-treatment: ↓ Dex-mediated Ca2+signaling,
↑ cell death, ↑ cell cycle arrest, ↑ apoptosis, ↑ mitochondrial membrane potential
depolarization, ↑ ROS production

ALL (P,C) (374)

TRPV2 Tranilast ↓ cytoplasmic [Ca2+], ↓ cell growth, ↑ apoptosis, ↑ cell cycle arrest AML (C)

CML (C)

Non-Hodgkin
lymphoma (C)

(127)

a7-nAChR Methyllycaconitine
citrate

↓ cytoplasmic [Ca2+], ↓ proliferation CML (C) (177)

NBP-14 ↓ migration, ↓ a7-nAChR expression AML(C)

CLL (C,P)

Plasma cell
myeloma (C)

(151)

NMDA
receptor

Memantine ↓ cytoplasmic [Ca2+], ↓ proliferation, ↓ cell viability, facilitates differentiation, inhibits
proplatelet formation, alteres expression of Ca2+ channels and pumps, ↑ cytarabine-mediated
cell killing

AML (C) (182, 183,
373)

MK-801 ↓ cytoplasmic [Ca2+], ↓ cell proliferation, ↓ cell viability, facilitates differentiation, inhibits
proplatelet formation

AML (C) (182, 373)

VDAC VDAC-based (decoy)
peptides

mitochondrial dysfunction, ↓ ATP production, mitochondrial Ca2+ overload, cytochrome c
release and apoptosis

ALL (C) (188, 192)

Avicin as above ALL (C) (192, 375)

CaV1.2 Lercanidipine ↓ Ca 2+ influx into AML-MSCs, ↓ proliferation of AML-MSCs and of AML blasts, sensitizes
leukemia cells to other drugs

AML (P,M) (138)

CaV3 mibefradil
and NNC-55-0396

↓ cytoplasmic [Ca2+], ↓ proliferation, ↑ apoptosis ALL (376)

ER/SOCE Ca2+ channel and effector modulators

Broad
inhibitor of
SOCE*

BTP-2 ↓ megakaryocyte proliferation CALR-
mutated MPN

(9)

Bcl2 inhibitor BIRD-2 Disrupts the Bcl2-IP3R interaction, ↑cytoplasmic [Ca2+] through IP3R, ↑ apoptosis CLL (C,P) (154, 226–
228)

DLBCL (C) (153–155,
225, 228)

Follicular
lymphoma (C)

(227)

Plasma cell
myeloma (C)

(227)

IP3R Wogonoside – IP3R1
activator

↑ cytoplasmic [Ca2+], increases differentiation, induces cell cycle arrest, ↓ cell viability, ↓
STAT3 activation

AML (C,M,P) (377, 378)

ALL (C,M) (379)

Xestospongin – IP3R
inhibitor

Inhibits Ca2+ release into cytoplasm, ↑ cell death, synergy with Dex to further ↑cell death ALL (C) (380)

(Continued)
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pattern of the mutational landscape revealed by our review argues

that further work into Ca2+ signaling in MPN is warranted,

including in patients without CALR mutations.
6 Concluding remarks

In all cell types, including hematopoietic, Ca2+ is an essential

second messenger controlling a wide range of cellular functions,

including activation of gene transcription, protein kinase signaling,

cell cycle, cell survival, proliferation, differentiation, migration, and

apoptosis (2–4). Others have reviewed deregulation of Ca2+ signaling

in specific cancer subtypes such as AML, CLL and plasma cell

myeloma, and summarized the influence of Ca2+ remodeling on cell

proliferation and differentiation (369–371). Our review is the first
Frontiers in Oncology 26
one, to our knowledge, that highlights the extent and intricacies of

alterations in the Ca2+-toolkit in a wide range of hematologic

cancers. We also provide a review of blood cancer databases for

genetic variants in the Ca2+-toolkit encoding genes.

It has been well documented that in solid tumors, cancer cells

remodel Ca2+ signaling to enhance cancer hallmarks (1, 2). Our

review emphasizes that similar alterations occur in blood cancer,

driven by changes in expression, function and possibly mutations in

the Ca2+-toolkit components. Figure 8 provides a schematic

summary of the underlying mechanisms and their consequences

in blood cancer cells. Normal cells in response to activation mostly

use Ca2+ released from the ER to support signaling. However,

prolonged IP3R-mediated Ca2+ release in chronically activated

cancer cells (e.g. due to oncogenic mutations) may lead to

mitochondrial Ca2+ overload triggering apoptosis. Therefore, to
TABLE 4 Continued

Target Compound Functional effects Cancer
type

References

Orai1
inhibitor

RP4010 ↓ cell proliferation AML (C,P,M) (381)

Orai1
inhibitor

Synta66 ↓ cell proliferation CLL (C,P) (11)

Orai3
activator

Tipifarnib ↑ cytoplasmic [Ca2+], loss of membrane integrity, ↑ cell death AML (C) (382)

Plasma cell
myeloma (C)

(382)

ORP4L
inhibitor

LYZ-81 ↓ Ca2+ oscillations, ↑ cell death of LSCs, ↓ PIP2 hydrolysis AML (C,P,M) (211)

↑ cell death, ↓leukemic engraftment, ↑ survival Adult T-cell
leukemia (P,M)

(383)

PLC inhibitor U73122 ↓ cytoplasmic [Ca2+], ↑ cell death, CLL (P)

DLBCL (C)
(154)

CaMKII
inhibitor

berbamine Eliminates CML LSCs CML (P,M) (310)

SERCA
inhibitor

CAD204520 ↑ cytoplasmic [Ca2+], ↓ cell viability, ↑ cell cycle arrest, targets mutated NOTCH1, SERCA
inhibition achieved in vivo without cardiac toxicity

Mantle cell
lymphoma (C)

(384)

ALL (C,P,M) (384)

Casearin J ↑ cytoplasmic [Ca2+] via ER and SOCE activation, ↑ ROS production, ↓ cell viability, inhibits
NOTCH1 signaling

ALL (C) (385, 386)

CXL017 ↓ cell viability AML (C) (387)

HA14-1 (also binds
hydrophobic cleft of
Bcl-2)

↑ cytoplasmic [Ca2+], has adverse effects on platelet survival (388) ALL (C) (389, 390)

CLL (P) (391)

DLBCL (C) (391)

JQ-FT ↓ cell viability, ↑cell cycle arrest, ↓ proliferation, targets mutated NOTCH1 ALL (C,M) (392)

Thapsigargin ↑ cytoplasmic [Ca2+], ↓ cell viability, ↓ cell size, ↑ cell cycle arrest, targets mutated NOTCH1
cell lines, impairs cardiac cell mechanics

ALL (C,M) (253, 384–
386)

Endo-lysosomal Ca2+ modulators

TPC1/2
inhibitor

Tetrandrine ↓ cell proliferation, ↑ cell death AML (C,P) (233–236)

Inhibits cytotoxic drug sequestration in the lysosomes which helps overcome chemoresistance ALL (C,P) (237)

Co-localizes
with
lysosomes

Imipramine blue +
pimozide (STAT5
inhibitor)

↑ cytoplasmic [Ca2+], loss of mitochondrial membrane potential, liberation of ROS, ↑ apoptosis AML (C,P) (240, 393)
fr
References were prioritized that include data on the effects on calcium signaling. ↑ = increased, ↓ = decreased. *Broad inhibitors of SOCE were used in many studies. Their effects are not
listed but this particular example has been included to reflect the emerging therapeutic potential for the modulation of SOCE in CALR-mutated MPN. (P) = Patient cells, (C) = Cell lines,
(M) = Mouse model. ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; Dex, dexamethasone;
DLBCL, diffuse large B-cell lymphoma; LSCs, leukemia stem cells. MPN, myeloproliferative neoplasms.
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escape apoptosis, cancer cells shift to preferentially utilize

extracellular Ca2+ transferred into cells by overexpressed or

overactive plasma membrane Ca2+ channels. On the other hand,

mechanisms that utilize ER-derived Ca2+ may be reduced, and

overactive SERCA2 pumps Ca2+ back into the ER. This remodeling

of Ca2+ signaling helps cells maintain heightened oncogenic

signaling while shielding mitochondria from Ca2+ overload. The

examples of mechanisms providing anti-apoptotic effects include

Bcl-2-mediated inhibition of IP3R in DLBCL and reduced ER Ca2+

binding by mutated CALR in MPN. In addition, intracellular

mediators of Ca2+ signaling may be overexpressed or overactive

e.g. PLC, PKC, ORP4L, calcineurin and CaMK. Understanding how

Ca2+ signaling remodels in cancer cells creates therapeutic

opportunities, with the potential to spare normal cells and tailor

therapies according to the underlying mechanism in different

cancers/patients (Figure 8).

Research into Ca2+ signaling in blood cancer has become very

active in recent years. Many critical discoveries have been made but

multiple challenges remain. We highlighted some areas for future

investigation throughout this review, including the need to

characterize diverse mechanisms of Ca2+ remodeling and

determine the significance of the mutational landscape affecting

the Ca2+-toolkit genes in different cancer types. Such work is not

easy. Ca2+ signaling is a complex network of intertwining pathways

and ubiquitous for cellular functioning. It can be difficult to identify

the causes and consequences of the changes found in blood cancer.

Most of the previous studies focused on a specificmechanism of Ca2+

signaling in isolation and used cell lines to characterize it. Moving

forward, we should consider changes to the entire Ca2+ toolkit and

use multiple disease models ex vivo and in vivo to study effects of

multiple gene networks in cancer cells and stromal cells. This will

require innovative approaches and collaboration between experts in

Ca2+ signaling, hematological sciences and clinical hematologists.

The ultimate aim of pursuing research in this area is to

improve the treatment of patients. Calcium pathways are

amenable to modulation and may offer novel points for

therapeutic intervention. The main targets/pathways were

recently summarized for AML (371). Our Table 4 provides a

range of examples of compounds/drugs that have been found to

exert an impact on the functional outcome in vitro or in vivo in

diverse blood cancer types. Some of these compounds are in

clinical use for other applications or undergo pre-clinical/clinical

testing in solid tumors (394, 395). If their targets are found to be

pathogenic in blood cancer, these drugs could be rapidly

transitioned to hematologic applications.

In conclusion, multiple Ca2+ homeostatic mechanisms and Ca2+

responsive pathways are altered in hematologic cancers. Some of

these alterations may have genetic basis, including in MPN, B-cell

and T-cell lymphoproliferative disorders, but studies are limited.

Most changes in the Ca2+-toolkit do not appear to define or associate

with specific cancer types but may influence variables such as grade

(e.g. in mature B-cell neoplasms), prognosis including

responsiveness to chemotherapy (e.g. in ALL, AML and CLL), and
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complications (e.g. thrombosis and bone marow fibrosis in MPN).

Deregulation of Ca2+signaling provides an opportunity to design

novel therapeutic interventions. Some options are currently

investigated mostly at the pre-clinical level in various cancer

models (e.g. of AML, ALL and DLBCL). Similar opportunities are

being considered in solid tumours, whichmay facilitate faster clinical

translation to blood cancer. Future research to define the role of

specific Ca2+ regulatory mechanisms in different blood cancer types

will be challenging but such work is likely to advance therapies.
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