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Emotionotopy in the human right
temporo-parietal cortex
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Humans use emotions to decipher complex cascades of internal events. However, which
mechanisms link descriptions of affective states to brain activity is unclear, with evidence
supporting either local or distributed processing. A biologically favorable alternative is pro-
vided by the notion of gradient, which postulates the isomorphism between functional
representations of stimulus features and cortical distance. Here, we use fMRI activity evoked
by an emotionally charged movie and continuous ratings of the perceived emotion intensity
to reveal the topographic organization of affective states. Results show that three orthogonal
and spatially overlapping gradients encode the polarity, complexity and intensity of emotional
experiences in right temporo-parietal territories. The spatial arrangement of these gradients
allows the brain to map a variety of affective states within a single patch of cortex.
As this organization resembles how sensory regions represent psychophysical properties
(e.g., retinotopy), we propose emotionotopy as a principle of emotion coding.
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ARTICLE

o understand our own emotions, as well as those of others,

is crucial for human social interactions. Also, witnessing

facts and events of others’ life sometimes prompts inner
reactions related to the beliefs, intentions and desires of actors.
Through years, the relevance and pervasiveness of these aspects
motivated the quest for models that optimally associate beha-
vioral responses to emotional experiences.

In this regard, seminal works pointed toward the existence of
discrete basic emotions, characterized by distinctive and cultu-
rally stable facial expressions!, patterns of autonomous nervous
system activity>> and bodily sensations*. Happiness, surprise,
fear, sadness, anger and disgust represent the most frequently
identified set of basic emotions®, though alternative models
propose that other emotions, such as pride or contempt, should
be included for their social and biological relevance®. To prove
the neurobiological validity of these models, neuroscientists
investigated whether basic emotions are consistently associated
with specific patterns of brain responses across subjects. Findings
show that activity in amygdala, medial prefrontal, anterior cin-
gulate, insular, middle/inferior frontal, and posterior superior
temporal cortex, is associated to the perceived intensity of emo-
tions and supports their recognition’~10. However, this perspec-
tive has been challenged by other studies, which failed to
demonstrate significant associations between single emotions and
activity within distinct cortical areas or networks!!-13,

An alternative theory proposes that behavioral and physiolo-
gical characteristics of emotions would be more appropriately
described along a number of continuous cardinal dimensions!%1>,
generally one governing pleasure versus displeasure (i.e., valence)
and another one the strength of the experience (ie., arousal).
While these two dimensions have been reliably and consistently
described, other models propose that additional dimensions, such
as dominance or unpredictability, are needed to adequately
explain affective states!®!7. Neuroimaging studies also demon-
strated that stimuli varying in valence and arousal elicit specific
and reliable brain responses!®!1°, which have been recently
employed to decode emotional experiences?’. Activity recorded in
insula, amygdala, ventral striatum, anterior cingulate, ven-
tromedial prefrontal and posterior territories of the superior
temporal cortex is associated to transitions between positive and
negative valence and fluctuations in arousal?!22,

Of note, other than in ventromedial prefrontal regions, studies
using either discrete emotion categories!%12 or emotion
dimensions22-2> have shown responses in the posterior portion of
the superior temporal cortex, extending to temporo-parietal ter-
ritories. Furthermore, these temporo-parietal regions are funda-
mental for social cognition, as they support empathic
processing?®?7 and the attribution of intentions, beliefs and
emotions to others?®29,

However, despite this large body of evidence, it remains to be
determined whether emotional experiences are better described
through discrete basic emotions or emotion dimensions. More-
over, regardless of the adopted model, it is still debated how
emotion features are spatially encoded in the brain®11:13.30-32_ A5
a matter of fact, while findings support the role of distinct
regions’, others indicate the recruitment of distributed networks
in relation to specific affective states33.

An alternative and biologically favorable perspective may be
provided by the notion of gradient. Gradients have been proven a
fundamental organizing principle through which the brain effi-
ciently represents and integrates stimuli coming from the external
world. For instance, the location of a stimulus in the visual field is
easily described through two orthogonal spatially overlapping
gradients in primary visual cortex: rostrocaudal for eccentricity
and dorsoventral for polar angle3%. Thus, using functional mag-
netic resonance imaging (fMRI) and retinotopic mapping, one

can easily predict the location of a stimulus in the visual field
considering the spatial arrangement of recruited voxels with
respect to these orthogonal gradients. Crucially, recent investi-
gations revealed that gradients support the representation of
higher-order information as well3>-3/, with features as animacy
or numerosity being topographically arranged onto the cortical
mantle3>38:39,

Following this view, we hypothesize that affective states are
encoded in a gradient-like manner in the human brain. Specifi-
cally, different affective states would be mapped onto the cortical
mantle through spatially overlapping gradients, which would
code either the intensity of discrete emotions (e.g., weak to strong
sadness) or, alternatively, the smooth transitions along cardinal
dimensions (e.g., negative to positive valence). In either case, the
pattern of brain activity could be used to predict the current
affective state as function of cortical topography.

Here, we test this hypothesis using moment-by-moment rat-
ings of the perceived intensity of emotions elicited by an emo-
tionally charged movie. To unveil cortical regions involved in
emotion processing, behavioral ratings are used as predictors of
fMRI activity in an independent sample of subjects exposed to the
same movie. The correspondence between functional character-
istics and the relative spatial arrangement of distinct patches of
cortex is then used to test the topography of affective states.
Results show that three orthogonal and spatially overlapping
gradients encode the polarity, complexity and intensity of emo-
tional experiences in right temporo-parietal cortex. As this
organization resembles how primary sensory regions represent
psychophysical properties of stimuli (e.g., retinotopy), we propose
emotionotopy as a principle of emotion coding in the
human brain.

Results

Emotion ratings. A group of Italian native speakers continuously
rated the perceived intensity of six basic emotions® (i.e., happi-
ness, surprise, fear, sadness, anger and disgust) while watching an
edited version of the Forrest Gump movie (R. Zemeckis, Para-
mount Pictures, 1994). We first assessed how much each basic
emotion contributed to the behavioral ratings and found that
happiness and sadness explained 28% and 36% of the total var-
iance, respectively. Altogether, fear (18%), surprise (8%), anger
(7%) and disgust (3%) explained the remaining one-third of the
total variance. We also evaluated the agreement in ratings of the
six basic emotions (Fig. la), and found that happiness (mean
Spearman’s p=0.476+0.102 standard deviation, range
0.202-0.717), fear (p = 0.522 + 0.134, range 0.243-0.793), sadness
(p=0.509 +0.084, range 0.253-0.670), and anger (p=0.390 +
0.072, range 0.199-0.627) were consistent across all subjects,
whereas surprise (p = 0.236 + 0.099, range 0.010-0.436) and dis-
gust (p=0.269+0.115, range 0.010-0.549) were not. None-
theless, ratings for these latter emotions were on average
significantly different from a null distribution of randomly
assigned emotion ratings (p-value < 0.05; permutation test).

To reveal emotion dimensions, we averaged across subjects the
ratings of the six basic emotions, measured their collinearity
(Fig. 1b) and performed principal component (PC) analysis
(Fig. 1c). The first component reflected a measure of polarity
(PC;: 45% explained variance) as positive and negative emotions
demonstrated opposite loadings. The second component was
interpreted as a measure of complexity (PC,: 24% explained
variance) of the perceived affective state, ranging from a positive
pole where happiness and sadness together denoted inner conflict
and ambivalence, to a negative pole mainly representing fearful
events. The third component was a measure of intensity (PCj:
16% explained variance), since all the six basic emotions showed
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Fig. 1 Emotion ratings. a Violin plots show the agreement between subjects (Spearman'’s p coefficient) of the six basic emotions. White circular markers
indicate mean correlation across subjects and black bars denote 25th and 75th percentile of the distribution (n = 66 subject pairings). Gray shaded area
represents the null distribution of behavioral ratings and dashed lines the mean and 95th percentile of the null distribution. b Correlation matrix showing
Spearman'’s p values for pairings of basic emotions. ¢ Principal component analysis: loadings of the six principal components. Explained variance was 45%
for polarity, 24% for complexity and 16% for intensity. d Violin plots show the agreement between subjects (Spearman’s p coefficient) of the six principal
components. White circular markers indicate mean correlation across subjects and black bars denote 25th and 75th percentile of the distribution (n=
66 subject pairings). Gray shaded area represents the null distribution of behavioral ratings and dashed lines the mean and 95th percentile of the null

distribution. HA happiness, SU surprise, FE fear, SA sadness, AN anger, DI disgust, PC principal component, PO polarity, CO complexity, IN intensity.

positive loadings (Fig. 1c). Altogether, the first three components
explained ~85% of the total variance. We further assessed the
stability of the PCs and found that only these first three
components (polarity: p=0.610+0.089, range 0.384-0.757;
complexity: p=0.453 + 0.089, range 0.227-0.645; intensity: p =
0.431 +£0.071, range 0.258-0.606), hereinafter emotion dimen-
sions, were consistent across all subjects (Fig. 1d). The fourth PC
described movie segments during which participants experienced
anger and disgust at the same time (PC4: 8% explained variance,
p=0.329+0.128, range —0.003-0.529), whereas the fifth PC
was mainly related to surprise (PCs: 6% explained variance, p =
0.214 +0.090, range 0.028-0.397). Notably, these two PCs were
not consistent across all subjects, even though their scores were
on average significantly different from a null distribution (p-
value < 0.05; permutation test). Scores of the sixth PC were not
significantly consistent across subjects (PCq: 1% explained
variance, p-value > 0.05; permutation test).

Richness of the reported emotional experience. In our beha-
vioral experiment, participants were allowed to report the per-
ceived intensity of more than one emotion at a time. Thus, the
final number of elicited emotional states might be greater than the
original six emotion categories. To measure the richness of
affective states reported by our participants, we performed
dimensionality reduction and clustering analyses on group-
averaged behavioral ratings. Results revealed the existence of 15
distinct affective states throughout the movie (Fig. 2), indicating
that Forrest Gump evoked complex and multifaceted experiences,
which cannot be reduced to the original six emotion categories.

Brain regions encoding emotion ratings. Emotion ratings
obtained from the behavioral experiment explained brain activity
in independent subjects exposed to the same movie (studyforrest
project http://studyforrest.org®®; g<0.01 false discovery rate -
FDR - corrected and cluster size >10; voxelwise encoding per-
mutation test; Fig. 3a and Supplementary Table 1). Notably, the
association between emotion ratings and brain activity was right-
lateralized and the peak was found in the right posterior superior
temporal sulcus/temporo-parietal junction (pSTS/TPJ), an
important region for social cognition!>22:26:28.29 (R2=0.07 +
standard error = 0.009; center of gravity—CoG: x = 61, y = —40,
z = 19; noise ceiling lower bound 0.13, upper bound 0.23; Fig. 3b
and Supplementary Fig. 1). The peak of association was also
located in proximity (11 mm displacement) of the reverse infer-
ence peak for the term TPJ (CoG: x =58, y=—50, z=16), as
reported in the NeuroSynth database (http://neurosynth.org)
(Fig. 3b).

Emotion gradients in right temporo-parietal cortex. We tested
the existence of either basic emotion or emotion dimension
gradients in a spherical region of interest (ROI) located at the
reverse inference peak for the term TPJ. This analysis was con-
ducted on behavioral ratings consistent across all subjects: hap-
piness, sadness, fear and anger for basic emotions and polarity,
complexity and intensity for emotion dimensions.

Using B coefficients obtained from the encoding analysis, we
observed that, within right TPJ, voxels appeared to encode
happiness in an anterior to posterior arrangement, fear and
sadness in an inferior to superior manner, while anger showed a
patchier organization (Fig. 3c). With respect to emotion
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Fig. 2 Richness of the emotional experience. Results of the dimensionality
reduction (t-SNE) and clustering analyses (k-means) on the group-
averaged behavioral ratings showing the existence of 15 distinct affective
states throughout the movie. Each element represents a specific timepoint
in the movie and the distance between elements depends on the statistical
similarity of emotion ratings. Element color reflects the scores of the
polarity and complexity dimensions: positive (+) and negative (—) events
(i.e., polarity) are associated, respectively, to the red and blue channels,
whereas complexity (¥) scores modulate the green channel. Pie charts
show the relative contribution of the six basic emotions to each of the 15
identified clusters. Combinations of distinct emotions likely express
secondary affective states, as ambivalence (i.e., cluster j depicting movie
scenes in which happiness and sadness are simultaneously experienced) or
resentment (i.e., cluster i representing movie segments in which a mixture
of sadness, anger and disgust is perceived). Of note, this evidence is also
supported by single-subject reports, in which the 38% (SE: £2.3%) of
timepoints were associated to a single emotion, the 29% (SE: £3.5%) to
two basic emotions and the 6% (SE: £1.4%) to the concurrent experience of
three distinct emotions. HA happiness, SU surprise, FE fear, SA sadness,
AN anger, DI disgust.

dimensions, voxels seemed to encode polarity and intensity in a
more inferior to superior fashion, whereas complexity in a more
posterior to anterior direction (Fig. 3d).

To prove the existence and precisely characterize the orientation
of these gradients, we tested the association between physical
distance and functional characteristics of right TPJ] voxels
(Supplementary Fig. 2). Results demonstrated that within a 15-
mm radius sphere, the relative spatial arrangement and functional
features of right TPJ were significantly and maximally correlated,
either considering the basic emotion model (p = 0.352, p-value =
0.004; permutation test; 95% confidence interval—CI: 0.346-0.357)
or the emotion dimension one (p=0.399, p-value<0.001;
permutation test; 95% CI: 0.393-0.404). For alternative definitions
of the right TPJ region, see Supplementary Table 2.

Crucially, when focusing on each emotion dimension, results
revealed the existence of three orthogonal and spatially over-
lapping gradients: polarity (p = 0.241, p-value = 0.041; permuta-
tion test; 95% CI: 0.235-0.247), complexity (p = 0.271, p-value =
0.013; permutation test; 95% CI: 0.265-0.277) and intensity (p =
0.229, p-value =0.049; permutation test; 95% CI: 0.223-0.235;
Fig. 4 and Supplementary Table 3). On the contrary, happiness

(p=0.275, p-value=0.013; permutation test; 95% CIL
0.269-0.281), but not other basic emotions, retained a gradient-
like organization (fear: p =0.197, p-value = 0.091; sadness: p =
0.182, p-value = 0.160; anger: p = 0.141, p-value = 0.379; permu-
tation test; Supplementary Table 3). Of note, the peculiar
arrangement of group-level emotion dimension gradients (Fig. 4)
was also identified using single-subject f{MRI data (Supplementary
Fig. 3 and Supplementary Table 4).

As any orthogonal rotation applied to the emotion dimensions
would result into different gradients, we measured to what extent
rotated solutions explained the topography of right TP]. There-
fore, we tested the correspondence between anatomical distance
and the fitting of ~70,000 rotated versions of polarity, complexity
and intensity (see Supplementary Methods for a comprehensive
description). Results showed that the original unrotated emotion
dimensions represented the optimal solution to explain the
gradient-like organization of right temporo-parietal cortex
(Supplementary Fig. 4).

Further, we performed a data-driven searchlight analysis to
test whether right TPJ was the only region significantly encoding
all the three emotion dimension gradients (please refer to
Supplementary Methods for details). Results obtained from the
meta-analytic definition of right TP] were confirmed using this
alternative approach (g<0.05 FDR corrected and cluster size
>10; voxelwise encoding permutation test; CoG: x = 58, y = —53,
z=21; Supplementary Fig. 5), as no other region encoded the
combination of polarity, complexity and intensity in a topo-
graphic manner.

Moreover, we conducted three separate searchlight analyses to
characterize the spatial arrangement of single emotion dimension
gradients (see Supplementary Information). Polarity, complexity
and intensity maps revealed specific topographies: regions as the
right precentral sulcus represented the three emotion dimensions
in distinct—yet adjoining—subregions, whereas the right
occipito-temporal sulcus encoded overlapping gradients of
complexity and intensity (Supplementary Fig. 6).

When we explored whether the left hemisphere homologous of
TP] (CoG: x = —59, y = —56, z=19) showed a similar gradient-
like organization, we did not find significant associations between
spatial and functional characteristics either for the basic emotion
model (p=0.208, p-value=0.356; permutation test) or the
emotion dimension one (p = 0.251, p-value = 0.144; permutation
test; Supplementary Table 2). Specifically, neither any of the
emotion dimensions (polarity: p=0.132, p-value =0.354; com-
plexity: p = 0.157, p-value = 0.222; intensity: p = 0.149, p-value =
0.257; permutation test) nor any of the basic emotions showed a
gradient-like organization in left TP] (happiness: p=0.158, p-
value = 0.216; fear: p = 0.142, p-value = 0.293; sadness: p = 0.156,
p-value = 0.213; anger: p=0.073, p-value =0.733; permutation
test; Supplementary Table 3).

Lastly, as spatial smoothness of functional data and cortical
folding may affect the estimation of gradients, we performed
additional analyses considering the unfiltered version of group-
average brain activity and obtaining a measure of the anatomical
distance respectful of cortical topology. Results showed that the
topographic arrangement of emotion dimensions in right
temporo-parietal territories was not affected by smoothing
(Supplementary Fig. 7) and respected the cortical folding
(polarity: p = 0.248, p-value = 0.026, CI: 0.238-0.257; complexity:
p=0.314, p-value = 0.001, CI: 0.304-0.323; intensity: p = 0.249,
p-value =0.013, CI: 0.239-0.258; permutation test). For details
about this procedure and a comprehensive description of the
results, please refer to Supplementary Information.

To summarize, polarity, complexity and intensity dimensions
were highly consistent across individuals, explained the majority
of the variance in behavioral ratings (85%) and were mapped in a
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Fig. 3 Encoding of emotion ratings. a Brain regions encoding emotion ratings corrected for multiple comparisons using the False Discovery Rate method
(g < 0.01; voxelwise encoding permutation test; n = 3595 timepoints). b Peak of association between emotion ratings and brain activity (purple sphere) and
reverse inference peak for the term TPJ as reported in the NeuroSynth database (yellow sphere). Coordinates represent the center of gravity in
MNI152 space. ¢ f coefficients associated to basic emotions in a spherical region of interest (27 mm radius) located at the reverse inference peak for the
term TPJ. Maps for emotions not consistent across all the subjects (i.e., surprise and disgust) are faded. d f coefficients associated to emotion dimensions
in a spherical region of interest (27 mm radius) located at the reverse inference peak for the term TPJ. Maps for components not consistent across all the
subjects (i.e., PC4, PC5 and PCé) are faded. IFG inferior frontal gyrus, rMFG rostral middle frontal gyrus, mSFG medial superior frontal gyrus, preCS
precentral sulcus, pSTS/TPJ posterior part of the superior temporal sulcus/temporo-parietal junction, MOG middle occipital gyrus, pMTG posterior middle
temporal gyrus, SMG supramarginal gyrus, LatS lateral sulcus, STS superior temporal sulcus.

gradient-like manner in right (but not left) TPJ. Happiness (28%
of the total variance in behavioral ratings) was the only basic
emotion to be consistent across subjects and to be represented in
right TPJ. Importantly, though, happiness and complexity
demonstrated high similarity both in behavioral ratings (p =
0.552) and in brain activity patterns (p = 0.878). Taken together,
these pieces of evidence indicate the existence of emotion
dimension gradients in right temporo-parietal cortex, rather than
the presence of discrete emotion topographies.

Emotion dimension gradients and portrayed emotions. In
movie watching, actions and dialogues are not usually directed
toward the observer and the reported subjective experience is very
likely influenced by character emotions, intentions and beliefs.
Therefore, we tested whether the gradient-like organization of
right TPJ can be explained considering portrayed emotions of
movie characters. We took advantage of publicly available tagging
data of Forrest Gump*!, in which participants indicated the
portrayed emotion of each character and whether it was directed
toward the character itself (self-directed; e.g., Forrest feeling sad)
or toward another one (other-directed; e.g., Forrest feeling happy

for Jenny). These reports constituted two third-person descrip-
tions, which we used as models of the attribution of affective
states to others (please refer to Supplementary Information for
details).

On average, subjective ratings shared the 11.4% *8.6%
(standard deviation) of the variance with the self-directed
emotion attribution model and the 35.3% +16.1% with the
other-directed model, indicating that first-person experience and
characters’ emotions are not completely independent. Moreover,
in line with previous studies highlighting the role of right TPJ in
the attribution of mental states to others?®2%42, the other-
directed—but not the self-directed—emotion attribution model
significantly explained activity within this region (Supplementary
Fig. 8). However, none of the first six components obtained from
the other-directed emotion attribution model (i.e., 87% of the
explained variance) retained a topographic organization in right
TP] (Supplementary Table 5). In addition, we used canonical
correlation analysis to transform the other-directed model into
the space defined by subjective emotion ratings and tested
whether starting from a third-person complex description of
portrayed emotions, one can fully reconstruct the brain
topography of emotion dimensions. Only the first aligned
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Fig. 4 Emotion gradients in right TPJ. a We revealed three orthogonal and spatially overlapping emotion dimension gradients (polarity, complexity and
intensity) within a region of interest located at the reverse inference peak for the term TPJ (15 mm radius sphere). Symmetry axis of the region of interest
represents the main direction of the three gradients. b § coefficients of the polarity dimension are mapped in an inferior to superior direction. ¢ g
coefficients of the complexity dimension are mapped in a posterior to anterior direction. d § coefficients of the intensity dimension are mapped in an
inferior to superior direction. For single-subjects results, please refer to Supplementary Fig. 3. Lowermost row depicts the arrangement of the emotion
dimension gradients in surface space. CoG center of gravity, R STS right superior temporal sulcus.

component was mapped in a topographic manner within right
TPJ] (reconstructed polarity: p =0.221, p-value=0.036; recon-
structed complexity: p=0.150, p-value =0.384; reconstructed
intensity: p = 0.207, p-value = 0.092; permutation test). Overall,
these results suggest that right TPJ topography is better explained
by subjective reports, rather than by information coded in
portrayed emotions. At the same time, they may not provide the
clearest support for the interpretation that emotion dimension
gradients exclusively map first-person experiences. First, in social
interactions, one’s affective state is often influenced by facts and
events of others’ life. In our study, we observe a positive
correlation between first-person reports and portrayed emotions
(e.g., highest sadness score when Forrest holds dying Bubba) and
the lack of complete orthogonality between models prevents the
precise distinction of the two. Second, real-time subjective ratings
and accurate descriptions of characters’ emotions are better

captured using different experimental paradigms. Indeed, our
emotion ratings were continuously recorded during movie
watching, whereas for portrayed emotions, individuals tagged
movie scenes in a random order, choosing among a wide array of
labels and were allowed to watch each excerpt more than once. In
light of all this, further studies are needed to clarify whether
emotion dimension gradients exclusively encode first-person
experience.

Characterization of emotion dimension gradients. To detail
how right TPJ gradients encode perceived affective states, we have
reconstructed fMRI activity for movie segments connoted by
either positive or negative polarity, as well as higher or lower
complexity and intensity. The orientation of the three emotion
dimension gradients was represented by the symmetry axis of our
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Fig. 5 Characterization of emotion dimension gradients in right TPJ. a Right TPJ hemodynamic activity related to the scores below and above the 50th
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ROL. For polarity, events connoted by positive emotions increased
activity in ventrorostral territories, lying close to the superior
temporal sulcus, whilst highly negative events augmented
hemodynamic activity in dorsocaudal portions of right TPJ,
extending to the posterior banks of Jensen sulcus (Fig. 5a, d).

Events connoted by higher complexity (e.g., concurrent
presence of happiness and sadness) were associated to signal
increments in rostrolateral territories of right TPJ, whereas those
rated as having lower complexity (e.g., fearful events) increased
hemodynamic activity in its caudal and medial part, encompass-
ing the ascending ramus of the superior temporal sulcus (Fig. 5b,
d). Higher levels of intensity were related to increased activity in
rostrodorsal and ventrocaudal territories, reaching the ascending
ramus of the lateral sulcus and posterior portions of the middle
temporal gyrus, respectively. On the contrary, low-intensity
events augmented hemodynamic activity in a central belt region
of right TPJ, located along the superior temporal sulcus (Figs. 5c,
3d). Noteworthy, the orthogonal arrangement of polarity and
complexity and the fact that intensity was represented both
superiorly and inferiorly to the superior temporal sulcus
determined that the variety of emotional states elicited by the
Forrest Gump movie (see Fig. 2) could be mapped within a single
patch of cortex.

Moreover, in sensory areas, topographies result from the
maximal response of neurons to a graded stimulus feature. To
parallel right TP] emotion dimension gradients with those
observed in primary sensory regions, we investigated whether

distinct populations of voxels were selective for specific polarity,
complexity and intensity scores. Thus, we employed the
population receptive field method*3 to estimate the tuning curve
of right TPJ voxels for each emotion dimension. The maps of
voxel selectivity demonstrated the existence of four populations of
voxels tuned to specific polarity values, which encoded highly and
mildly positive or negative events, respectively (Fig. 6a). Also, two
distinct populations of voxels were tuned to maximally respond
during cognitively mediated affective states (i.e, highly and
mildly positive complexity values), and two other populations
were selective for emotions characterized by higher and lower
levels of automatic responses (i.e., highly and mildly negative
complexity values; Fig. 6b). Lastly, for the intensity dimension,
two specific populations of voxels were engaged depending on the
strength of the emotional experience (Fig. 6c). This further
evidence favored the parallel between emotion and sensory
gradients.

Discussion

Previous studies reported that activity of individual brain regions
codes distinct emotion features’, whereas others suggested that a
distributed network of cortical areas conjointly interacts to
represent affective states33. However, the possibility that gradients
may encode the emotional experience as function of either basic
emotions, or emotion dimensions, has never been explored. The
topological isomorphism between feature space and cortical
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(polarity: p = 0.547, p-value = 0.001; complexity: p = 0.560, p-value < 0.001 and intensity: p = 0.596, p-value < 0.001; permutation test; n = 428 voxels).

distances has been successfully adopted to relate psychophysical
characteristics of stimuli to patterns of activity in sensory
regions3. Nonetheless, this biologically advantageous mechanism
has been proven to lie at the basis of the cortical representation of
higher-level features as well3>38:39, Thus, we tested whether dif-
ferent affective states could be mapped onto the cortical mantle
through spatially overlapping gradients.

We demonstrated that the topography of right TPJ, a crucial
cortical hub for social cognition!22226:28.29 " is described by
emotion dimensions, rather than by single basic emotions.
Indeed, within this region, we discovered three orthogonal and
spatially overlapping gradients encoding the polarity, complexity
and intensity of the emotional experience. The peculiar
arrangement of these gradients allows a gamut of emotional
experiences to be represented in a single patch of cortex,
including affective states perceived as pleasant, unpleasant or
ambivalent, connoted by calmness or excitement and mediated by
primitive reactions or mentalization. Therefore, TP] organization
resembles the one observed in primary sensory areas, where sti-
mulus properties are topographically arranged onto the cortical
mantle, as in the case of eccentricity and polar angle in primary
visual cortex (V1), frequency in primary auditory region and
body parts in primary somatosensory area. In this regard, the
evidence that emotion dimensions are encoded in a gradient-like
manner supports a biologically plausible mechanism for the
coding of affective states, which we named emotionotopy. Indeed,
as in vision precise portions of V1 map distinct locations of the
visual field, specific regions of temporo-parietal cortex code

unique emotional experiences. This emerged also from the ana-
lysis of response tuning, showing how within each emotional
hemifield of polarity and complexity, populations of voxels code
specific levels of emotional experience.

As for polar angle and eccentricity in V1, right TP] emotion
dimension gradients are lower-dimensional descriptions of the
underlying neural activity. The retinotopic representation of
azimuth and elevation in V1 overlaps with local maps of ocular
dominance and orientation tuning. Therefore, multiple neural
codes exist at different spatial scales and the ability to capture
either global or local representations relates to the resolution of
the imaging technique. Our data provide evidence for a lower-
dimensional, yet biologically favorable, neural code to represent
emotions in temporo-parietal regions. Considering the parallel
with the organization of sensory areas, we believe that the
topography of right TP] does not prevent the existence of other
neural codes, especially considering the coexistence of global and
local representations and the multifaceted nature of this region.

Furthermore, the fact that affective reports explained the
activity of other cortical modules is not necessarily in contrast
with the topographic organization of TPJ. In fact, as in vision a
rich and complex percept relies on both primary visual cortex to
extract fundamental features and other regions to process specific
stimulus properties (e.g., V5 for motion), so in emotion proces-
sing TPJ may represent a hub embedded in a distributed network
of regions carrying out distinct computations.

Here, we employed a naturalistic continuous stimulation
paradigm to foster emotional contagion and empathic
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reactions?2. Indeed, we found that within a 60-s time window,
emotion transitions represented in the Forrest Gump movie are
similar to those experienced in real life** and are predicted by a
mental model of emotion co-occurrence®® (see Supplementary
Information). This supports the ecological validity of our stimulus
and emphasizes that movies can be successfully adopted to nur-
ture emotional resonance*®=48, also in the fMRI setting.

In movie watching, actions and dialogues generally are not
directed toward the observer. Thus, the emotional experience
results from narrative choices aimed at fostering empathic
responses and emotional contagion®® as well as from perspective-
taking and mentalizing processes®®>!. That character intentions
and beliefs shape subjective experience in a bystander may also
explain the high between-subject agreement in reports of
experienced emotions#0-48. This is in line with the consistency of
behavioral ratings of happiness, fear, sadness and anger in our
data. Noteworthy, surprise and disgust were not consistent across
all participants and, even though this may appear in contradiction
to the supposed®? universalism of basic emotions, our stimulus
was not built to reflect the well-established definition of six
emotions. For instance, some of our subjects reported that movie
scenes rated as disgusting were mainly associated to situations
that required interpretation of the context (e.g., the principal of
the school using his power to obtain sexual favors), rather than to
repulsive images. This cognitive interpretation of disgust was
apparently not present in all subjects, with some of them relying
more on its well-established definition for their ratings. Also, the
use of six distinct emotion categories allowed to compare basic
emotion and emotion dimension models starting from the same
datal>17. Moreover, while the definition of basic emotions is
common across individuals, ratings based on emotion dimensions
require participants to be acquainted with the meaning of psy-
chological constructs (e.g., dominancel!®).

Nonetheless, single basic emotions provide a coarse description
of subjective experiences, as affective states could emerge from
psychological processes not directly reducible to single emo-
tions®3. Our rating model, though, does account for this possi-
bility, as subjects were allowed to report more than one emotion
at a time. This resulted in the identification of 15 distinct affective
states (Fig. 2), a number compatible with previous studies?®>%.
Also, despite divergences in literature>>>°, when subjects are free
to detail their personal experience—as in our case—they report a
complex blend of apparently conflicting emotions as well (e.g.,
happiness and sadness together).

With respect to emotion dimensions, the components we
identified were deliberately interpreted not following any known
model. Yet, polarity mainly relates to positive against negative
emotions as in valencel4, whereas intensity is unipolar and
mimics arousal'4. We considered the second component as a
measure of complexity of the emotional state. Indeed, this
dimension contrasts events in the movie rated as fearful, an
emotion with a fast and automatic response®’, against scenes
characterized by ambivalence, where cognitive processes play a
significant role in generating mixed emotions®3. Even though this
component does not pertain to classical emotion dimension
theories, complexity may be related to the involvement of Theory
of Mind?3 in emotion perception®®. In addition, a recent study on
mental representation of emotions*> described the “human mind”
component as a cardinal dimension of the affective space. This
dimension maps states “[...] purely mental and human specific
vs. bodily and shared with animals”, which is in line with our
interpretation of complexity.

We collected behavioral emotion ratings to explain brain
activity in independent subjects. In line with previous studies!®12,
results highlighted a set of regions located mainly in the right
hemisphere (Fig. 3 and Supplementary Table 1). Interestingly, the

peak of association between emotion ratings and brain activity
was located in right pSTS/TPJ. This area plays a central role in the
attribution of mental states to others, as demonstrated by func-
tional neuroimaging?82%, noninvasive transcranial stimulation®®
and lesion studies®!. In addition, this region spans across the
posterior portion of the superior temporal sulcus, which is
implicated in emotion perception!%1222:62.63 Tn line with this, we
showed that activity in right TPJ is significantly explained by the
process of emotion attribution to others and by subjective emo-
tional ratings. This evidence fits well with the involvement of
right TP] in the representation of subjective emotional
experience!%22:63, in empathic processes2®2” and in the attribu-
tion of beliefs and emotions to others.28:2942

In addition, in the current study, ratings of the emotional
experience elicited by an American movie in Italian participants
explained brain activity in German subjects. This suggests that the
topographic representation of emotion dimensions exists
regardless of linguistic or micro-cultural differences. Yet, the
mapping of distinct emotional states within right TPJ gradients
may depend on the background of each individual.

Our study presents the following limitations: first, the effect
size we report for the relationship between emotion ratings and
brain activity appears to be relatively small (i.e., 7% of explained
variance in right TPJ). However, (1) brain regions significantly
encoding emotions are selected after rigorous correction for
multiple comparisons; (2) the magnitude of the effect is in line
with recent fMRI literature on the coding of emotions in the
brain?® and the evaluation of the noise ceiling suggests that our
emotion dimension model explains between 30% (i.e., upper
bound) and 54% (i.e., lower bound) of right TPJ activity; (3) we
used a parsimonious encoding model, in which only six pre-
dictors explained 3595 samplings of brain activity.

Second, although using a larger set of emotion categories the
same polarity, complexity and intensity components still emerged
(see Supplementary Information for details), we cannot exclude
that our emotion dimensions are specific for the present stimulus.
Therefore, alternative movies should be employed to test the
generalizability of the topographic organization of polarity,
complexity and intensity within right TPJ.

Third, our findings suggest that emotion dimension gradients
are better explained considering subjective reports of the affective
experience, rather than by portrayed emotions. However, the
significant association between subjective ratings and characters’
emotions, as well as differences in rating scales and choice of
emotion categories, limit the possibility to draw clear conclusions
about the encoding of subjective experiences, rather than emotion
attribution processes, in right TPJ topography.

In summary, our results showed that moment-by-moment
ratings of perceived emotions explain brain activity recorded in
independent subjects. Most importantly, we demonstrated the
existence of orthogonal and spatially overlapping right temporo-
parietal gradients encoding emotion dimensions, a mechanism
that we named emotionotopy.

Methods
Behavioral experiment. In the present study, we took advantage of a high-quality
publicly available dataset, part of the studyforrest project?? (http://studyforrest.
org), to demonstrate the existence of a gradient-like organization in brain regions
coding emotion ratings. Particularly, we used moment-by-moment scores of the
perceived intensity of six basic emotions elicited by an emotionally charged movie
(Forrest Gump; R. Zemeckis, Paramount Pictures, 1994), as predictors of fMRI
activity in an independent sample. We then tested the correspondence between the
fitting of the emotion rating model in TPJ voxels and their relative spatial
arrangement to reveal the existence of orthogonal spatially overlapping gradients.
To obtain moment-by-moment emotion ratings during the Forrest Gump
movie, we enrolled 12 healthy Italian native speakers (5F; mean age 26.6 years,
range 24-34). None of them reported to have watched the movie in 1 year period
prior to the experiment. All subjects signed an informed consent to participate in
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the study, had the right to withdraw at any time and received a small monetary
compensation for their participation. The study was conducted in accordance with
the Declaration of Helsinki and was approved by the local IRB (CEAVNO:
Comitato Etico Area Vasta Nord Ovest; Protocol No. 1485/2017).

We started from the Italian dubbed version of the movie, edited following the
exact same description reported in the studyforrest project (eight movie segments
ranging from a duration of 11 to 18 min). The movie was presented in a setting free
from distractions using a 24” monitor with a resolution of 1920 x 1080 pixels
connected to a MacBook™ Pro running Psychtoolbox®* v3.0.14. Participants wore
headphones in a noiseless environment (Sennheiser™ HD201; 21-18,000 Hz;
Maximum SPL 108 dB) and were instructed to continuously rate the subjective
perceived intensity (on a scale ranging from 0 to 100) of six basic emotions®
throughout the entire movie: happiness, surprise, fear, sadness, anger and disgust.
Specific buttons mapped the increase and decrease in intensity of each emotion and
subjects were instructed to represent their inner experience by freely adjusting or
maintaining the level of intensity. Participants were allowed to report more than
one emotion at the same time and ratings were continuously recorded with a 10-Hz
sampling rate. Subjects were presented with the same eight movie segments
employed in the fMRI study one after the other, for an overall duration of 120 min.
Further, before starting the actual emotion rating experiment, all participants
performed a 20-min training session to familiarize with the experimental
procedure. Specifically, they had to reproduce various levels of intensity for random
combinations of emotions that appeared on the screen every 10s.

For each subject, we recorded six timeseries representing the moment-by-
moment perceived intensity of basic emotions. First, we downsampled timeseries to
match the fMRI temporal resolution (2 s) and, afterward, we introduced a lag of 2 s
to account for the delay in hemodynamic activity. The resulting timeseries were
then temporally smoothed using a moving average procedure (10 s window). This
method allowed us to further account for the uncertainty of the temporal
relationship between the actual onset of emotions and the time required to report
the emotional state.

To verify the consistency in the occurrence of affective states while watching the
Forrest Gump movie, we computed the Spearman’s p correlation coefficient across
subjects for each of the six ratings (Fig. 1b). Statistical significance of the agreement
was assessed by generating a null distribution of random ratings using the IAAFT
procedure (Iterative Amplitude Adjusted Fourier Transform®; Chaotic System
Toolbox), which provided surrogate data with the same spectral density and
temporal autocorrelation of the averaged ratings across subjects (1000 surrogates).

Preprocessed and temporally smoothed single-subject emotion ratings were
averaged to obtain six group-level timeseries representing the basic emotion model.
After measuring the Spearman’s p between pairings of basic emotions (Fig. 1b), we
performed PC analysis and identified six orthogonal components, which
constituted the emotion dimension model (Fig. 1c).

To verify the consistency across subjects of the PCs, we computed the
agreement of the six components by means of a leave-one-subject-out cross
validation procedure (Fig. 1d). Specifically, for each iteration, we performed PC
analysis on the left-out subject behavioral ratings and on the averaged ratings of all
the other participants. The six components obtained from each left-out subject
were rotated (Procrustes analysis, reflection and orthogonal rotation only) to match
those derived from all the other participants. This procedure generated for each
iteration (i.e., for each of the left-out subjects) six components, which were then
compared across individuals using Spearman’s p, similarly to what has been done
for the six basic emotions. To assess the statistical significance, we created a null
distribution of PCs from the generated surrogate data of the behavioral ratings, as
described above (1000 surrogates).

Although subjects were asked to report their inner experience using six emotion
categories, their ratings were not limited to binary choices. Indeed, at each
timepoint raters could specify the perceived intensity of more than one emotion,
leading to the definition of more complex affective states as compared to the basic
ones. To further highlight this aspect, we performed dimensionality reduction and
clustering analyses on emotion timeseries. Starting from emotion ratings averaged
across participants, we selected timepoints characterized by the highest intensity
(i.e., by summing the six basic emotions and setting the threshold to the 50th
percentile) and applied Barnes-Hut t-distributed stochastic neighbor
embedding>®%° (t-SNE; perplexity = 30; theta = 0.05). The algorithm measures the
distances between timepoints in the six-dimensional space defined by the basic
emotions as joint probabilities according to a Gaussian distribution. These
distances are projected onto a two-dimensional embedding space using a Student’s
t probability distribution and by minimizing the Kullback-Leibler divergence. To
further describe the variety of affective states elicited by the movie, we then applied
k-means clustering analysis to the projection of timepoints in the t-SNE manifold
and determined the number of clusters using the silhouette criterion®”.

fMRI experiment. We selected data from the phase II of the studyforrest project,
in which 15 German mother tongue subjects watched an edited version of the
Forrest Gump movie during the fMRI acquisition. Participants underwent two 1-h
sessions of fMRI scanning (3T, TR 2 s, TE 30 ms, FA 90°, 3 mm ISO, FoV 240 mm,
3599 tps), with an overall duration of the experiment of 2 h across eight runs.
Subjects were instructed to inhibit any movement and simply enjoy the movie (for
further details*’). We included in our study all participants that underwent the

fMRI acquisition and had the complete recordings of the physiological parameters
(i.e., cardiac trace) throughout the scanning time (14 subjects; 6F; mean age 29.4
years, range 20-40 years). For the fMRI pre-processing pipeline, please refer to
Supplementary Information.

Encoding analysis. Voxel-wise encoding®®%® was performed using a multiple
linear regression approach to measure the association between brain activity and
emotion ratings, constituted by the six PCs. Of note, performing a least-square
linear regression using either the six PCs or the six basic emotion ratings yields the
same overall fitting (i.e., full model R?), even though the coefficient of each column
could vary among the two predictor sets.

To reduce the computational effort, we limited the regression procedure to gray
matter voxels only (~44 k with an isotropic voxel resolution of 3 mm). We assessed
the statistical significance of the R? fitting of the model for each voxel using a
permutation approach, by generating 10,000 null encoding models. Null models
were obtained by measuring the association between brain activity and surrogate
data having the same spectral density and temporal autocorrelation of the original
six PCs. This procedure provided a null distribution of R? coefficients, against
which the actual association was tested. The resulting p-values were corrected for
multiple comparisons using the FDR7? method (g < 0.01; Fig. 3a, Supplementary
Fig. 1 and Supplementary Table 1). R? standard error was calculated through a
bootstrapping procedure (1000 iterations). Moreover, we conducted a noise-ceiling
analysis for right TP] data, similarly to what has been done by Ejaz and
colleagues”! (please see Supplementary Methods).

Emotion gradients in right TPJ. We tested the existence of emotion gradients by
measuring the topographic arrangement of the multiple regression coefficients’? in
regions lying close to the peak of fitting for the encoding procedure (i.e., right
pSTS/TPJ). To avoid any circularity in the analysis’3, we first delineated an ROI in
the right pSTS/TP] territories using an unbiased procedure based on the Neuro-
Synth”4 database v0.6 (i.e., reverse inference probability associated to the term
TPJ). Specifically, we started from the peak of the TP] NeuroSynth reverse infer-
ence meta-analytic map to draw a series of cortical ROIs, with a radius ranging
from 9 to 27 mm. Afterward, to identify the radius showing the highest significant
association, for each spherical ROI we tested the relationship between anatomical
and functional distance’® (Supplementary Table 2). This procedure was performed
using either multiple regression coefficients obtained from the three emotion
dimensions or from the four basic emotions stable across all subjects. As depicted
in Supplementary Fig. 2, we built for each radius two dissimilarity matrices: one
using the Euclidean distance of voxel coordinates, and the other one using the
Euclidean distance of the fitting coefficients (i.e., f values) of either the three
emotion dimensions or the four basic emotions. The rationale behind the existence
of a gradient-like organization is that voxels with similar functional behavior (i.e.,
lower functional distance) would also be spatially arranged close to each other on
the cortex”” (i.e., lower physical distance). The functional and anatomical dis-
similarity matrices were compared using the Spearman’s p coefficient. To properly
assess the significance of the anatomo-functional association, we built an ad hoc
procedure that maintained the same spatial autocorrelation structure of TP] in the
null distribution. Specifically, we generated 1000 IAAFT-based null models for the
emotion dimension and the basic emotion data, respectively. These null models
represented the predictors in a multiple regression analysis and generated a set of
null B regression coefficients. Starting from these coefficients, we built a set of
functional dissimilarity matrices that have been correlated to the anatomical dis-
tance and provided 1000 null Spearman’s p coefficients, against which the actual
anatomo-functional relationship was tested. Confidence intervals (CI; 2.5 and 97.5
percentile) for the obtained correlation values were calculated employing a boot-
strap procedure (1000 iterations). We also tested the existence of gradients in other
brain regions encoding emotion ratings using a data-driven searchlight analysis.
Results and details of this procedure are reported in Supplementary Information.

To estimate the significance of right TPJ gradients, we used null models built on
emotion ratings, leaving untouched the spatial and temporal structure of brain
activity. However, as spatial smoothness may still affect the estimation of gradients,
we tested right TPJ topography using the group-average unfiltered data. In brief, all
the steps described in the fMRI data pre-processing section (see Supplementary
Methods) were applied, with the only exception of spatial filtering. Following this
procedure, the estimated smoothness of the right TP] region was 4.5 x 4.2 X 3.6 mm
(3dFWHMX tool). Using these data and the same procedure described above, we
measured the significance of emotion gradients. Results are detailed in
Supplementary Table 6 and Supplementary Fig. 7.

The Euclidean metric does not take into account cortical folding. Indeed, because
of the morphological characteristics of TPJ, which include a substantial portion of
STS sulcal walls, the estimation of emotion gradients would benefit from the use of a
metric respectful of cortical topology. For this reason, we ran the Freesurfer recon-all
analysis pipeline’® on the standard space template’” used as reference for the
nonlinear alignment of single-subject data. We then transformed the obtained files in
AFNI-compatible format (@SUMA_Make_Spec_FS). This procedure provided a
reconstruction of the cortical ribbon (i.e., the space between pial surface and gray-to-
white matter boundary), which has been used to measure the anatomical distance. In
this regard, we particularly employed the Dijkstra algorithm as it represents a
computationally efficient method to estimate cortical distance based on folding”%7°.
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The single-subject unsmoothed timeseries were then transformed into the standard
space, averaged across individuals and projected onto the cortical surface (AFNI
3dVol2Surf, map function: average, 15 steps). Afterward, we performed a multiple
linear regression analysis using PCs derived from emotion ratings as predictors of the
unsmoothed functional data. This analysis was carried out within a cortical patch
that well approximated the size of the 3D-sphere used in the original volumetric
pipeline and centered at the closest cortical point with respect to the Neurosynth TPJ
peak. Thus, for each regressor of interest, we obtained unsmoothed 8 values
projected onto the cortical mantle. We then tested the existence of a gradient-like
organization for each predictor, using the Dijkstra algorithm and the same procedure
described above. Results are detailed in Supplementary Table 6 and Fig. 4.

Right temporo-parietal gradients and portrayed emotions. We tested whether
the gradient-like organization of right TP] reflects portrayed emotions. Thus, we took
advantage of publicly available emotion tagging data of the same movie, provided by
an independent group*!. Differently from our behavioral task, raters were asked to
indicate the portrayed emotion of each character (e.g., Forrest Gump, Jenny) in 205
movie segments (average duration ~35s) presented in random order and labeled
over the course of ~3 weeks. As also suggested by the authors®!, this particular
procedure minimizes carry-over effects and help observers to exclusively focus on
indicators of portrayed emotions. Importantly, in their editing, the authors respected
the narrative of movie scenes (e.g., Forrest in front of Jenny’s grave is a single cut
with a duration of ~131s), so that the raters could have a clear understanding of
what was shown on the screen. In addition, the possibility to tag emotions inde-
pendently in each movie segment and to watch each scene more than once, allowed
subjects to choose among a larger number of emotion categories®? (N =22), as
compared to our set of emotions. Moreover, each observer was instructed to report
with a binary label whether the portrayed emotion was directed toward the character
itself (self-directed; e.g., Forrest feeling sad) or toward another character (other-
directed; e.g., Forrest feeling happy for Jenny). These two descriptions served as
third-person emotion attribution models and underwent the exact same processing
steps (i.e., 2 s lagging and temporal smoothing), which have been applied to our
subjective emotion rating model. As the two third-person emotion attribution
models included the four basic emotions found to be consistent across observers in
our experiment (i.e., happiness, fear, sadness and anger), we have been able to
directly assess the correlation for these ratings using Spearman’s p.

We then measured the extent to which the two third-person emotion
attribution models explained brain activity in right TPJ following the method
described in the “Encoding analysis” section. As these two descriptions are higher
in dimensionality as compared to our subjective emotion rating model, we assessed
the significance of fitting using three different procedures: (A) matching the
dimensionality across models by selecting the first six PCs only; (B) matching the
emotion categories in ratings, by performing PCA on the four basic emotions
shared across models (i.e., happiness, fear, sadness and anger); (C) using the full
model regardless of the dimensionality (i.e., six components for our subjective
emotion rating model and 22 for each of the two emotion attribution models). In
addition, to allow a direct and unbiased comparison between R? values obtained
from different models, we performed cross-validation using a half-run split method
(Supplementary Fig. 8).

Lastly, we tested whether right TPJ gradients encode emotion attribution
models. Specifically, we evaluated two different scenarios: (1) the existence of right
TPJ gradients encoding the 22 components of each emotion attribution model; (2)
the possibility to identify emotion gradients following the multidimensional
alignment81 (i.e., canonical correlation analysis) of the 22-dimensional emotion
attribution space to the six-dimensional space defined by subjective ratings. These
alternative procedures relate to two different questions: (1) whether the process of
emotion attribution is associated to emotion gradients in right TPJ and (2) whether
starting from a third-person complex description of portrayed emotions, one can
reconstruct the subjective report of our raters. Results for these two procedures are
detailed in Supplementary Table 5.

Characterization of emotion gradients in right TPJ. Once the optimal ROI
radius was identified, we tested the gradient-like organization of right TPJ for each
individual emotion dimension and basic emotion (Supplementary Table 3), using
the same procedure described above. We calculated the numerical gradient of each
voxel using f values. This numerical gradient estimates the partial derivatives in
each spatial dimension (x, y, z) and voxel, and can be interpreted as a vector field
pointing in the physical direction of increasing f3 values. Afterward, to characterize
the main direction of each gradient, rather than calculating its divergence (i.e.,
Laplacian of the original data®>83), we computed the sum of all vectors in the field
(Fig. 4 and Supplementary Fig. 2). This procedure is particularly useful to reveal the
principal direction of linear gradients and provides the opportunity to represent
this direction as the orientation of the symmetry axis of the selected ROI The
above-mentioned procedure was also adopted to assess the reliability of the
emotion gradients in each subject. Results and details of this procedure are
reported in Supplementary Information. Furthermore, since gradients built on
coefficients could reflect positive or negative changes in hemodynamic signal
depending on the sign of the predictor, we represented the average TPJ activity
during movie scenes characterized by specific affective states (Fig. 5).

We investigated whether distinct populations of voxels are selective for specific
affective states. To this aim, we employed the population receptive field method*3
(pRF) and estimated the tuning curve of right TPJ voxels for each predictor found
to be topographically encoded within this region. We modeled the tuning curve of
each voxel as a Gaussian distribution, in which y represented the preferred score of
the predictor and o the width of the response. The optimal combination of tuning
parameters was selected among ~5k plausible values of y (5th—95th percentile of
the scores of each predictor—0.5 step) and o (ranging from 1 to 12—0.25 step),
sampled on a regular grid. Each emotion timeseries was then filtered using these
~5k Gaussian distributions and fitted in brain activity through a linear regression
approach. This produced t-values (i.e., B/SE ) expressing the goodness of fit of y
and ¢ combinations, for each right TPJ voxel. The principal tuning of voxels was
then obtained by selecting the combination characterized by the highest t-value
across the ~5k samples (Fig. 6).

To estimate the similarity between tunings (i.e., 4 parameters) obtained from
the pRF approach and our original results (i.e., § coefficients of the gradient
estimation), we computed Spearman’s p across right TPJ voxels. The significance of
such an association was tested against a null distribution of f coefficients obtained
through the IAAFT procedure (N = 1000).

Lastly, we further characterized the prototypical responses of populations of
voxels as function of affective states. To do so, we used the non-negative matrix
factorization* and decomposed the multivariate pRF data (i.e., voxels ¢-values for
each y and o) into an approximated matrix of lower rank (i.e,, 10, retaining at least
90% of the total variance). This method allows parts-based representations, as the
tuning of right TPJ voxels is computed as a linear summation of non-negative basis
responses. The results of this procedure are summarized in Supplementary Fig. 9.

All the analyses were performed using MATLAB R2016b (MathWorks Inc.,
Natick, MA, USA).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from OpenScience
foundation: Emotionotopy (https://osf.io/tzpdf). Raw fMRI data are available
atstudyforrest.org (http://studyforrest.org). Real life experience-sampling dataset is
available at https://osf.io/zrdpa. Portrayed emotions dataset is available at F1000
repository (https://f1000research.com/articles/4-92/v1). A reporting summary for this
article is available as a Supplementary Information file.

Code Availability

The code and the preprocessed data are publicly available at OpenScience foundation:
Emotionotopy (https://osf.io/tzpdf).
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