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The human gut is home to trillions of microbes that interact with host cells to influence
and contribute to body functions. The number of scientific studies focusing on the gut
microbiome has exponentially increased in recent years. Studies investigating factors
that may potentially affect the gut microbiome and may be used for therapeutic
purposes in diseases where dysbioses in the gut microbiome have been shown are
of particular interest. This review compiles current evidence available in the scientific
literature on the use of probiotics to treat metabolic diseases and autism spectrum
disorders (ASDs) to analyze the efficacy of probiotics in these diseases. To do this,
we must first define the healthy gut microbiome before looking at the interplay
between the gut microbiome and diseases, and how probiotics affect this interaction.
In metabolic diseases, such as obesity and diabetes, probiotic supplementation
positively impacts pathological parameters. Conversely, the gut–brain axis significantly
impacts neurodevelopmental disorders such as ASDs. However, manipulating the gut
microbiome and disease symptoms using probiotics has less pronounced effects on
neurodevelopmental diseases. This may be due to a more complex interplay between
genetics and the environment in these diseases. In conclusion, the use of microbe-
based probiotic therapy may potentially have beneficial effects in ameliorating the
pathology of various diseases. Validation of available data for the development of
personalized treatment regimens for affected patients is still required.
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INTRODUCTION

The gut is a natural habitat for trillions of diverse microbes (anaerobic bacteria, yeasts, viruses,
and bacteriophages) where the phyla Firmicutes, Bacteroidetes, and Actinobacteria are the most
common (1). The gut microbiome is a complex ecosystem where microbes and their metabolites
interact with host cells to influence body functions. General health is associated with a “healthy”
microbiome, defined by the diversity and types of species of bacteria within the gut.

Fecal microbiome analysis has shown that the gut microbiota composition is influenced by
various factors such as age, genetics, types of food consumed, economic development, and
immediate environment (2–7). Dysbiosis of the microbiome is associated with a reduction in the
diversity of microbes within the gut. The altered diversity of gut microbes is correlated with various
diseases such as metabolic diseases, autism spectrum disorders (ASDs), and other brain disorders
(8–16). Changes in the microbiome have been also linked with infection risk and susceptibility (17),
including COVID-19 (18).
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Recently, products containing supposedly “healthy” bacteria
are touted as being beneficial to health by restoring balance to the
microbiome within the gut. These products are generally termed
“probiotics,” but have also generated other related products, all
of which are proposed to act to enhance healthy bacteria within
the gut. The term “probiotics” was coined in the 1970s while food
containing beneficial bacteria have been consumed even earlier.
Recently added interest in the commercialization of probiotic
foods meant that there has been a need to define what can be
claimed as a probiotic.

The generally accepted definition of probiotic was generated
together by the Food and Agriculture Organization of the
United Nations (FAO) and WHO—“live microorganisms which
when administered in adequate amounts confer a health benefit
on the host” (19). Other related products include “prebiotics,”
“synbiotics,” “postbiotics,” and “metabiotics” (20–23). The term
“live and active cultures” is sometimes used for fermented or
functional foods with live microorganisms within them but those
microorganisms may not prove to be probiotic yet (19).

With the plethora of probiotics and associated products now
available commercially, it is no wonder that there have been
many misconceptions regarding probiotics, their usage, and
their health benefits, which we will address in the subsequent
sections of this review.

Constituents of Probiotics
Specific health benefits have been ascribed to particular probiotic
strains, and therefore, not all probiotic supplements are equal,
even if they list the same species of probiotic bacteria. Therefore,
it is essential to ensure that the correct strain is used to treat the
underlying clinical issue. Additionally, supplements that contain
multiple strains of bacteria may also lack the scientific evidence
for the claimed benefits.

The most common bacterial species used in current probiotic
products are lactic acid bacteria such as Bifidobacterium and
Lactobacillus strains (24). However, recent studies have identified
other species of bacteria that may also confer benefits when
used as probiotics, such as Akkermansia muciniphila and
Faecalibacterium prausnitzii (25), and the use of these bacteria
in probiotic products is rising as well (26). The effectiveness of
probiotic supplementation can be measured through the bacterial
load in the feces, or other measures within the body (27, 28), and
is essential to establish the efficacy of any treatment.

Evidence of Therapeutic Effects of
Probiotics
The benefits of probiotic supplementation result from either
inhibition of pathogen growth in the large intestine or augmented
immune response and intestinal barrier function in both small
and large intestines (29). As most probiotics are beneficial
bacteria found naturally within the gut, ingested probiotics
within the gut interact with immune cells to sustain an
immunologic balance within the gastrointestinal tract (30, 31).
Therefore, the interplay between the gut microbiome, probiotics,
and human health is via the modulation of immune responses

at the epithelial cells constituting the mucosal interface between
host and microorganisms.

The gut microbiome also produces a wide range of metabolites
due to the anaerobic fermentation of undigested materials and
endogenous compounds found within the microbes and host.
The metabolites produced by the microbiome serve as agents
that modulate the host cells’ responses, thus its immune system
and disease probability. Rooks and Garrett have reviewed how
these metabolites modulate the immune responses and disease
risk (32). We have summarized probiotic strains, their resulting
metabolites, and their effects on health in Table 1.

Regular consumption of probiotic supplements and foods has
ascribed numerous scientifically backed benefits, including effects
on the gut such as amelioration of diarrhea and other digestive
symptoms (33–38), reduction of inflammation (33, 39), as well as
benefits to various conditions ranging from emotional imbalance
to autoimmune diseases (40–45). Some groups have even shown
the benefits of consuming probiotics for patients with cancer
(28, 46, 47). However, it must be noted that while many clinical
benefits have been rigorously tested, in many cases, probiotics
cannot be considered an alternative to medicine, particularly in
severe diseases.

HEALTHY GUT MICROBIOME PROFILES
AND CHANGES IN DISEASE

Knowledge of a healthy gut microbiome is necessary before
addressing the diseases triggered by the dysregulation of the
gut microbiome. Hou et al. (51) established three enterotypes
comprising specific species and functional composition:
Bacteroides, Blautia, and Prevotella enterotypes. These different
gut microbiome diversity signatures have different risks
for different diseases (48–50). Additionally, the efficacy of
probiotic supplementation is also affected by enterotype
(51). Therefore, these enterotypes may form a basal gut
microbiome that is independent of geographical location as
well as nutrition.

Gut community profiles have also shown that healthy pre-
adolescents have more significant numbers of species and
greater diversity than adults, with increased Firmicutes and
Actinobacteria (52). Both Bacteroidetes and Firmicutes bacteria
are SCFAs producers, specifically acetic acid and propionic
acid by Bacteroidetes and butyric acid by Firmicutes (53).
Functionally, the diversity of microbial genes detected in the gut
microbiome in children was responsible for the ensuing growth
and development, such as vitamin synthesis. In contrast, the
enriched microbial genes detected in the gut microbiome of
adults are associated with inflammation and fat deposition (52).
Findings from a further study to understand the gut microbiome
of pre-adolescents in different geographical areas and conditions
showed that the distal guts of children living in the Bangladeshi
slum have significantly higher bacterial gut microbiome diversity
with enrichment in Prevotella, Butyrivibrio, and Oscillospira
together with a depletion in Bacteroides (54). However, this
microbial diversity was more prone to changes, unlike the
microbiota found in children living in the suburban community.
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TABLE 1 | List of probiotic strains and the metabolites produced and their effects.

Probiotic (bacterial) strain(s) Metabolites produced Effects References

Bacteroides thetaiotaomicron Acetate Increase mucus production (65)

Bacteroides thetaiotaomicron and
Faecalibacterium prausnitzii

Acetate and Butyrate Ensure maintenance of appropriate secretory cells proportion (65)

Bifidobacterium longum Acetate Fortifies intestinal epithelial cells integrity and prevent toxins
entry into circulation

(66)

Bifidobacterium dentium Acetate
γ-aminobutyric acid (GABA)

Stimulates MUC2 synthesis,
Promotes autophagy and calcium mobilization to release mucus

(67)

Bifidobacterium Lactis sp. 420 Acetate
Lactate

Modulate Cox expression profile, resulting in anti-inflammatory
and anticarcinogenic properties

(68)

Lactobacillus rhamnosus GG
and Saccharomyces cerevisiae boulardii

Butyrate
Propionate
Ethanol

Protects against pathogenic Escherichia coli (69)

Lactobacillus casei Butyrate
Acetate

Increase secretion of Glucagon-like peptide-1 (GLP-1) and
peptide YY (PYY) secretion

(70)

Lactobacillus. johnsonii L531 Butyrate
Acetate
Lactate

Reduces pathogen load (71)

Lactobacillus gasseri Butyrate Exerts anti-obesity effects (72)

Saccharomyces boulardii Acetate Antibiotic potency (73)

A reference profile comprising the abundance and list of
microbes in a healthy human was constructed, with 157
organisms classified as healthy gut microbes in the Fecal Biome
Population Report (55). Additionally, Kong et al. (56) studied
the gut microbiome of healthy centenarians as a benchmark for
a healthy microbiome model. They found that short-chain fatty
acids (SCFAs)-producing bacteria were more abundant in the
long-living Chinese cohort. SCFAs such as butyrate, propionate,
and acetate, produced by the gut microbiome, are beneficial for
health. SCFAs act by stimulating the expansion of regulatory T
cells, inhibiting inflammation via reducing histone deacetylase-
9 gene expression (57). Thus, SCFAs maintain the gut barrier’s
integrity, stimulate immunity in the intestines, and prevent
pathogen infection (32, 58). Hence, metabolites produced by the
gut microbiome can also modulate a person’s health status (59).

Interestingly, the follow-up study revealed that the long-living
healthy people in the study (both Chinese and Italian cohorts)
had more diverse microbiota structures than younger age groups
(60). This result contrasts with previous studies whose results
have suggested that gut microbiome diversity in a person tends
to decrease as the person ages (61, 62). This suggests that the
changes in your gut microbiome are not set in stone and can be
modulated with environmental factors and diet.

The potential of the dysbiosis of the gut microbiome in
the establishment of metabolic diseases should be obvious.
However, the gut microbiome is also able to communicate
with the nervous system via the gut-brain axis (GBA) and
thus affects neurological diseases as well. The GBA involves
bidirectional interaction between the central and the enteric
nervous systems, connecting the cognitive and emotional centers
of the brain with peripheral intestinal functions. Bacteria in
the gastrointestinal (GI) tract influence the signaling of neural
pathways and the central nervous system (CNS) (63–67).
Evidence of microbiota-GBA communications emerged from the
association of dysbiosis with central nervous disorders (63, 68,

69). From this, we note that healthy gut microbiota is essential
for brain development and function.

Consequently, a healthy gut microbiome is essential for both
metabolic and neurological health. In the following sub-sections,
we will be addressing the use of probiotics in metabolic diseases
(obesity and type II diabetes) and neurodegenerative diseases.

Gut Dysbiosis and Probiotics and
Obesity
Obesity is defined by excessive fat accumulation in the body,
which may increase the risk of non-communicable diseases
such as diabetes, cardiovascular diseases, some cancers, and
hypertension (70). The gut microbiome and the composition
of dietary intake are profoundly linked (71). For example, the
intake of animal-based foods provided up to 5 consecutive
days of increased bile-tolerant microbes (Alistipes, Bilophila,
and Bacteroides) and reduced the amount of fiber-fermenting
bacteria (72).

Gut microbiota profiles in overweight and obese individuals
show higher amounts of Bacteroides, Bifidobacteria,
Staphylococcus aureus, and Lactobacilli Clostridia (73, 74).
Among overweight individuals, the baseline ratio of gut
microflora, Firmicutes to Bacteroidetes was disturbed (75).
Firmicutes bacteria potentially are able to affect the modulation
of gene expression and hormones involved in metabolism (76).
Therefore, the change in the ratio of different bacteria species
may affect human metabolism, leading to obesity.

Probiotics may act as anti-obesity agents by various modes of
action, including modulation of specific gut microbiota strains,
gastrointestinal and immune system modulation, lowering
insulin resistance, and greater satiety. The use of probiotics
containing Lactobacillus and Bifidobacterium species in obesity
treatment is promising (77). Some of the positive changes
which resulted from the intake of probiotics include lower

Frontiers in Nutrition | www.frontiersin.org 3 May 2022 | Volume 9 | Article 887019

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles


fnut-09-887019 April 27, 2022 Time: 15:18 # 4

Lee et al. Probiotics and the Gut Microbiome

waist circumference, lower body fat deposition, lower body
weight, lower weight gain, and improved lipid profile. However,
Vajro et al. showed that L. salivalis supplementation in obese
adolescents led to no improvement in obesity parameters (78).
Another study with the consumption of one capsule of L.
rhamnosus G showed a lower weight gain at 1 year of life and
up to 4 years old in children but observed no weight changes
after that period (79). This difference in weight gain patterns
may be due to the colonization of the gut microflora, which
begins during the first few years of life (80, 81). Unless various
scientific groups consistently match the age of controls and
subjects, together with consistent bacterial strains utilized in
probiotics, the conclusion derived from the comparison of these
studies remains murky.

A. muciniphila is negatively correlated to obesity development,
as well as other diseases such as type-2 diabetes and
hypertension (82). A human clinical trial looking at the
impact of A. muciniphila supplementation for over 3 months
showed that the treatment led to improved insulin sensitivity,
insulinemic, and reduction of total cholesterol (83). The evidence
of A. muciniphila as a probiotic that confers a protective effect
against metabolic disorders has been accumulating over the past
few years (84) and may merit further study.

Hence, probiotics positively impact the reduction of relevant
obesity parameters, although the effect varies across the different
age groups and genders. More standardized studies are needed
to investigate how the different mixtures of bacterial species in
probiotics affect different age groups and genders.

Gut Dysbiosis, Probiotics, and Diabetes
Type-2 diabetes is a metabolic disorder in which individuals
display abnormally high blood glucose, resulting from inadequate
insulin secretion and resistance (85). Type 2 diabetes results from
the interaction between environmental factors and genetic factors
(86). One of the primary risk factors of type-2 diabetes is being
overweight or obese (87).

A change in the composition of the gut microbiota may
result in increased susceptibility to prediabetic conditions
such as insulin resistance (87–89). Reports have revealed that
the intestinal microbiome of individuals with type-2 diabetes
has reduced butyrate-producing bacteria (87, 90), a lower
frequency of Firmicutes, and a higher frequency of Bacteroidetes
and Proteobacteria (88). The metabolites produced by gut
microbes also affect insulin sensitivity and glucose homeostasis,
with metabolites like SCFA improving insulin secretion (91).
Therefore, butyrate-producing bacteria affect insulin secretion
and therefore, the blood sugar level of a person. Further
exploration of the bacterial strain or administration of butyrate
may be beneficial to a diabetic.

Probiotic intake, such as Lactobacillus rhamnosus GG, leads to
improvement in intestinal integrity, reduced lipopolysaccharide
level, reduced endoplasmic reticulum stress, and improved
insulin sensitivity (91–93). Animal and clinical trials have shown
that both single probiotic strains or mixtures of probiotics have
the potential to improve type-2 diabetes parameters (87, 94).
More research is required to dissect the most suitable species
impacting gut metabolism, as well as exposure time, and dose.

Gut Dysbiosis, Probiotics, and Autism
Spectrum Disorder
Autism spectrum disorder is a group of neurodevelopmental
disorders defined by deficits in communication and social
interaction, and stereotyped behaviors (65). GI abnormalities are
common among individuals with ASD (95, 96), with a strong
correlation of GI symptoms with ASD severity (97).

The gut microbiota of children with ASD is less diverse,
with decreased levels of health-promoting gut bacteria, and an
increased abundance of species that produce neurotoxins (65).
Metabolites from the gut microbiota may play vital roles in the
pathogenesis of ASD (95, 96). Altered fecal SCFAs have been
linked to constipation in ASD (97), where lower levels of acetic
acid and butyrate and an elevated level of valeric acid have been
reported in subjects with ASD (96). It has also been shown that
SCFAs can induce autistic-like symptoms upon injection into
rats (98).

Maternal immune activation (MIA) mouse models that
display features of ASD have altered microbiota and GI
barrier defects. Oral treatment of MIA offspring with the
human commensal bacteria Bacteroides fragilis improves gut
permeability, alters the microbial composition, and corrects
behavioral defects in MIA animals. Therefore, it has been
proposed that targeting the gut microbiota may be a potential
therapy for specific symptoms in ASDs (95).

Probiotics potentially impact gut microbiota communities to
alter the levels of harmful metabolites in ASD children, reducing
GI inflammation and intestinal permeability (1, 99). However,
the results of probiotic supplementation in individuals with ASD
remain inconclusive and controversial. Current probiotics are
mainly aerobic, short-lived, milk-derived cultures, which are not
usually a significant part of the primarily anaerobic human gut
microbiome (1). A review based on four studies concluded that
current evidence does not support the use of probiotics to modify
behavior in patients with ASD (100). Probiotics did not exert a
significant effect to restore most of the beneficial bacteria upon
assessment of stool samples from 58 individuals with ASD and
39 age-matched typically developing children (97). On the other
hand, it has also been reported that probiotics treatment seems to
improve ASD-associated behavioral symptoms (101).

Autism spectrum disorder individuals are highly selective
eaters (102, 103); therefore dietary factors remain a strong
confounding factor for these individuals. The complex interplay
between host genetics, environment, and the microbiome
although challenging to dissect are important factors to
consider. Larger longitudinal trials as well as optimizing dosage,
formulation (single vs. multispecies probiotics), timing (101),
route of administration as well as toxicity concerns remain to be
addressed to validate the efficacy of probiotics for ASD, taking
into consideration age and population-specific differences in gut
microbiota/metabolites produced (6, 7).

Gut Dysbiosis and Probiotics in
Neurodegenerative Diseases
It is well-established that age is a primary risk factor for
neurodegenerative diseases due to increased insults including
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decreased neurotransmitter levels, chronic inflammation,
oxidative stress, and apoptosis (104). There is also a high
prevalence of GI comorbidities among patients with Parkinson’s
and Alzheimer’s diseases (105, 106). Dysbiosis in the intestinal
microbiota in the elderly may result in a leaky gut, and
subsequently, promote systemic and neuroinflammation (107).

Gut microbiota secretes neurometabolites, which include
neurotransmitters that regulate the signaling cascades of
the CNS. A comprehensive review of neurotransmitters
directly secreted by various probiotics has been published
(105). Altered levels of neurotransmitters result in behavioral
changes in neurodegenerative diseases. Restoring the balance of
neurotransmitters by targeting gut microbiota is therefore central
to the management of neurodegenerative disease.

Parkinson’s disease (PD) is characterized by loss of
dopaminergic neurons and intraneuronal alpha-synuclein
accumulation, in the basal ganglia and at peripheral sites,
including the gut (108). GI dysfunction has been reported
to be a potential contributor to the pathogenesis of PD with
evidence that alpha-synuclein inclusions appear early in the
enteric nervous system and travel to the brain via the vagal nerves
(109, 110). A review on altered gut microbiota compositions in
patients with PD is available (111). Probiotics administration in
independent studies improves GI symptoms and the metabolic
profile of patients with PD (108, 111, 112).

Alzheimer’s disease (AD) is one of the most common
irreversible, neurodegenerative disorders in the elderly, which
leads to cognitive decline and dementia. Inflammatory response
at the site of beta-amyloid (one of the hallmark features of AD)
accumulation in the brain has been linked to the gut microbiota
(66). Current studies on the efficacy of probiotics in AD,
although limited, seems promising. In a transgenic mice model
of Alzheimer’s Disease (AD), modulation of the gut microbiota
through exercise and probiotic treatment alleviated the progress
of AD (113). Rats injected with probiotics (L. acidophilus,
L. fermentum, B. lactis, B. longum) for 8 weeks elicit an
improvement in memory deficit and AD-associated pathology
(114). However, it remains to be determined whether these
findings are replicable in humans. Another randomized, double-
blind, and controlled clinical trial among 60 patients with AD
revealed that a 12-week probiotic (L. acidophilus, L. casei, B.
bifidum, and L. fermentum) consumption improved cognitive
function and certain metabolic markers (115). There is also
an ongoing clinical trial (randomized, placebo-controlled) to

investigate the effect of probiotics on 58 participants with
dementia (116). Therefore, the efficacy of probiotics to restore gut
dysbiosis in patients with AD awaits further validation.

A key limitation of current probiotic studies for PD and AD
is the small sample sizes (n < 100). Consistent study designs in
larger human trials with validated safety and efficacy are required
before translation into clinical settings.

FUTURE DIRECTIONS

Manipulation of the gut microbiota and microbial metabolites to
address challenging questions in metabolic and brain disorders is
difficult due to the complex relationship between host genetics
and environmental factors to influence the gut microbiota.
A healthy diet and exercise positively modify the gut microbiota
(117–119), therefore it remains inevitable to tackle these key
modifiable factors to ensure a healthy community of microbes.

Utilizing data from the NIH Human Microbiome Project
(HMP) for resources and insights on the human microbiome
provides an opportunity to further understand the complex
relationship between human health and diseases, which will serve
as a pedestal for novel approaches toward the development of
therapeutics to tackle relevant diseases. Large scale, harmonized
multi-center studies, and freely accessible data are imperative to
validate the role of probiotics as potential therapeutics before
translating research into clinical practice.

The long-term effects of probiotics and their corresponding
metabolites/substances on health are needed to fully understand
the mechanisms of each probiotic strain on health (120).
Delineation of the precise role and effect of each probiotic strain
may just be the beginning of introducing precise probiotic strain
for an exact clinical disease. This delineation may be followed
by combined efforts of various strains of probiotics. In short,
the journey into the gut microbiome is just the tip of the
iceberg at the moment.
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