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For some IoT applications, mobile entities are considered as the main source of sensed data,
requiring the attachment of sensor modules on them. The endowing of sensing capabilities
to such mobile entities can be performed in different ways, but the adoption of a reference
hardware framework can bring a series of advantages, specially in dynamic complex sce-
narios. This article exploits the MSensorMob2 multi-sensor hardware framework for mon-
itoring in areas with disconnection periods, comprising sensing, transmission and
reconfiguration functions. Comprehensive analyses on multiple open-source hardware
platforms are conducted, assessing their costs, deployment constraints and performance
issues when implementing this development framework.
� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Specifications table
Hardware name
 MSensorMob2-based Multi-sensor Monitoring Units

Subject area
 Engineering and material science

Hardware type
 Field measurements and sensors; Electrical engineering and computer science

Closest commercial analog
 ‘‘No commercial analog is available”

Open source license
 GNU General Public License (GPL)

Cost of hardware
 The costs for all created prototypes are properly presented in this article.

Source file repository
 https://doi.org/10.17632/tz4y6s9g5w.1
1. Hardware in context

The maturation of the Internet of Things (IoT) paradigm has the potential to change the way we perceive and interact
with the environment. Particularly, with the availability of affordable off-the-shelf hardware platforms, the IoT paradigm
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has been largely exploited to allow data monitoring from multiple sources, concurrently, creating the fundamentals for a
whole new set of disruptive applications. In recent years, emergent IoT-based applications have benefited from such
increasing availability of low-cost, tiny and powerful hardware platforms, resulting in a vibrating development
scenario [1,2].

For a group of applications, two or more types of data have to be periodically sensed, with each monitoring sample aggre-
gating all sensed data at a given time, together with the GPS position for the corresponding sampling instance and its times-
tamp. Such samples are expected to be retrieved by multi-sensor hardware units attached to mobile entities in a monitoring
scenario, such as cars, bicycles, skates, buses, drones, wearable gadgets, and virtually any generic mobile entity. Since some
monitoring scenarios may lack the basic networking infrastructure for continuous online transmission of the samples, either
due to costs constraints or coverage holes, such multi-sensor units should operate for long periods of disconnection,
demanding them to locally store samples for future transmissions. Therefore, for all aforementioned defined characteristics,
there will be some basic functions that will be equivalent for different applications, which push us to the proposal and adop-
tion of standard hardware frameworks [3,4].

In [5], we proposed a framework to support the development of multi-sensor hardware units targeted at GPS-based peri-
odic multi-variable monitoring in scenarios with a discontinuous networking service. The proposed framework in that work
defined the hardware architecture and a framework for the execution of a set of basic functions. In this article, we extend
that framework a bit further, including a new service for the updating of the configurations of the units. Such updating ser-
vice is intended to allow dynamic changes in deployed multi-sensor units when the initial monitoring requirements are
altered, which may be a reasonable demand in long-lasting applications as in smart cities scenarios.

For this new enhanced framework, referred as MSensorMob2, we assembled a group of multi-sensor units exploiting dif-
ferent open-source hardware platforms, a set of sensor devices, batteries and some basic electronic components for intercon-
nections, always considering affordable off-the-shelf hardware components for Do-It-Yourself (DIY) developments [6].
Additionally, we also employed a high-level hardware module for the Raspberry Pi platform as an easier though more expen-
sive alternative for sensors assembling. Then, we performed a comprehensive quality assessment for this group of multi-
sensor units based on the MSensorMob2 framework, comparing their deployment costs, physical configurations and
achieved performance. We believe that such multi-level assessments are valuable when indicating how such units could
be developed for real applications.
2. Extended hardware framework: MSensorMob2

The MSensorMob2 hardware framework is an improvement of our work in [5], which is intended to support easier and
affordable development of flexible multi-sensor mobile units in scenarios with discontinuous networking infrastructures.
The operation details of such enhanced framework are described here, indicating how MSensorMob2-complaint units will
be created for performance comparisons in this article.
2.1. Hardware architecture

The MSensorMob2 framework defines an architecture within the three-layers IoT generic operation model [7], namely
perception, network and application layers. While the lowest conceptual layer is responsible for the perception of the envi-
ronment, the network layer is located just above the perception layer, interfacing the flow of data from physical to applica-
tion layer. Since we want to support the development of sensor units to support virtually any type of sensors-based
application in IoT monitoring scenarios, the MSensorMob2 architecture implements the perception layer and part of the net-
work layer.

Fig. 1 presents the defined hardware architecture for the creation of multi-sensor units. In general, this architecture was
specified to assure energy and operational self-sufficiency, also being easy to create and operate, while keeping it highly
adaptable. Moreover, since the developed units will be battery-powered, low-energy consumption was also a project request
for the architecture.

The MSensorMob2 architecture is composed of a (core) controller, Wi-Fi interface, SD/microSD card, a GPS (receiver)
device, portable power supply (LiPo battery, power bank, etc.), and a number of sensors and components for human–ma-
chine interface (particularly, the S-Button and M-Button, besides informative LEDs). This way, we expect to allow the devel-
opment of units that operate without any support from smartphones or computers. As an important consideration, for the
implementation of the user input interface, we assume that they are implemented as conventional push buttons. However,
other types of buttons (e.g. switch ON/OFF buttons) could be adopted instead, just adjusting eventual transitions between
logical states, without impacting the operation of the framework.

Finally, we adopt the Wi-Fi technology to provide the expected networking services, mostly due to the low-cost and easy-
to-use nature of this wireless technology, as well as its high availability as an onboard component on many popular devel-
opment hardware platforms.
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Fig. 1. Hardware architecture for the defined multi-sensor mobile units.
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2.2. Hardware firmware

We also defined a software component (firmware) that is responsible for managing the accessing to the multi-sensor unit
resources, proposing the standard operation procedures. In short, our original MSensorMob firmware in [5] defines functions
for a) automatized networking configuration, b) the types and number of sensor devices, c) the number of analog-to-digital
converters (ADC) that will be used, d) the monitoring (sensing) frequency, e) the sampling and storage procedures and f)
samples transmission to any cloud-based service. For the MSensorMob2 firmware, besides all mentioned procedures in
the original MSensorMob firmware, we also included an updating service to allow dynamic remote re-configuration of
the units, which may be valuable for many applications that employ many distributed multi-sensor units in dynamic
scenarios.

The MSensorMob2 firmware operates based on six logical states, as depicted in Fig. 2. The use of LEDs is important in this
case to visually indicate to the users about the changes in the logical states, while the S-Button and M-Button are user inputs
to trigger states changes [5]. As an important remark, the M-Button and S-Button are being implemented as conventional
push buttons in that figure, as previously described. This way, states transitions are always triggered when the M-Button
is pressed, while a state transition is triggered when the S-Button is pressed from the IDLE state.

The defined six logical states are described in details as follows:
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Fig. 2. Defined firmware, with all expected functions for MSensorMob2-based units.
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� INITIALIZE: it is an initial state that is executed just after the unit is powered on. It is responsible to read the configuration
file stored on the SD/microSD card, which contains the hardware specifications (ID, sample frequency, ADCs reference,
digital/analog sensors pins, etc.) as defined in [5]. After that, the unit is ready to be used, moving to the IDLE state to wait
for user commands and additional interactions;

� IDLE: this is the standby state, when the unit waits for some user’s action or other requests;
� SETUP: a MSensorMob2 unit will sense the environment and store samples to be further transmitted to a cloud server.
Such transmission will be performed when the unit is under the coverage radius of its base Wi-Fi station. The SETUP state
is responsible for connecting the monitoring unit to a wireless network, exploiting for that the popular WPS (WiFi Pro-
tected Setup) technology. When the S-Button is pressed, the SETUP procedure is initiated;

� MONITORING: it initiates when the M-Button is pressed, indicating that the unit will start collecting data from the con-
figured sensors, storing such data into ‘‘csv” sample files (in a daily basis). When the M-Button is pressed again, the unit
returns to the IDLE state;

� UPLOADING: from the IDLE state, when the unit is connected to its baseWi-Fi station and there are unsent samples stored
on it, the unit automatically transitions to the UPLOADING state for transmission. Successfully transmitted samples are
removed from the SD/microSD card;

� UPDATING: from both SETUP and UPLOADING states, the MSensorMob2 firmware automatically moves to the UPDATING
state. In this state, the monitoring unit requests the ‘‘version.txt” file, located in the respective unit’s folder in the cloud
service used to store the monitoring data. Once the ‘‘version.txt” file is received from the cloud storage service, the unit
performs a comparison of the indicated firmware version with the current version running on the device. After identifying
that the versions are not the same, the monitoring unit also requests, from the cloud storage service, the firmware in the
version informed in the ‘‘version.txt” file. Finally, the.tar file that stores the firmware is downloaded, extracted and the
device is restarted, allowing the new firmware to be executed after booting.
3. Required hardware components

Although the MSensorMob2 framework was designed to address a group of multi-sensor units expected to operate by
continuously sensing the environment for long disconnection periods, the framework as a whole can be implemented in
different ways, since the basic defined services are provided. Such flexibility allows, for example, the use of different hard-
ware platforms when implementing the Core Controller, as well as the adoption of different numbers, types and config-
urations of sensor devices and electronic components. As a result, a great number of different, but compatible
MSensorMob2 units can be developed, with particular implementation, processing and deployment issues. Thus, describ-
ing and comparing some of such possible construction units are of paramount importance when supporting applications
based on this framework.
4
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3.1. Employed hardware platforms

Among the hardware possibilities when implementing the units, open-source hardware platforms have been largely used
as flexible off-the-shelf options, assuring reasonable processing power while keeping low-energy consumption patterns.
Additionally, the popularization of open-source hardware platforms has considerable increased the number of programming
resources (libraries) and available compatible hardware components, making them an affordable and effective development
choice for emerging applications in areas such as Smart Cities and Industry 4.0 [8,9]. This way, we consider a number of dif-
ferent open-source hardware platforms for the development of MSensorMob2-complaint units.

We exploit two well-defined hardware families when creating the MSensorMob2 prototypes: single board computers and
microcontroller boards. Based on those ‘‘hardware families”, we selected a group of popular boards to be used, as depicted in
Fig. 3.

Table 1 summarizes the selected boards to be exploited when creating MSensorMob2 units.
As can be seen, boards with different resources and processing power were selected, allowing us to compare the perfor-

mance of MSensorMob2 units under different hardware configurations. Additionally, besides the selected boards, we will
also consider an enhanced implementation pattern for the Raspberry Pi 3, exploiting the GrovePI + hardware framework
when creating the units with a different setting for the sensor devices (presented in Fig. 3).

Finally, as additional parameters, the dimension of the boards (Fig. 4a) and the perspective comparison of I/O pins among
them (Fig. 4b) are presented. Such parameters can be helpful when creating real units, specially when the number and types
of attached sensors, as well as their final dimensions for deployment, become important development issues to be
considered.
3.2. Bill of materials

Setting the global cost for a new hardware product is one of the most critical decisions. It needs to get the pricing esti-
mations as early as possible in order to achieve project budget decisions. The methodology used in this article was based on
average cost found on the websites of boards manufacturers and official retail partners. The results are described in Table 2
and Table 3, with amounts displayed in US Dollars (USD).
4. MSensorMob2 prototypes

We specified four groups of MSensorMob2 prototype configurations based on the components presented in Table 1, try-
ing to encompass different processing capabilities, I/O resources, embedded functionalities and budgets. These four config-
uration settings are described as follows:

� C1-Raspberry Pi prototypes: all prototypes developed using the Raspberry Pi Zero WH, Raspberry Pi 2B, Raspberry Pi 3B
and Raspberry Pi 4B. This group of prototypes was created using different versions of the Raspberry Pi boards, varying
only their performance according to hardware characteristics. In fact, since they have the same I/O pins, the physical con-
nections of the components are the same. Additionally, they all use the Raspbian Stretch operating system, excepting for
the Raspberry Pi 4B that employs the Raspbian Buster system (as defined by the manufacturer);

� C2-GrovePi + prototype: it is composed using the Raspberry Pi 3B with the GrovePi + HAT (Hardware Attached on Top).
The GrovePi + is a development framework that facilitates the interaction to analog and digital sensors, making them
‘‘plug-and-play”. In our prototype, we use a GrovePi + HAT along with Grove sensors and a Grove GPS receiver. As an
important remark, the Raspberry Pi 3 was the most recent Raspberry Pi model that we could find updated libraries for
this framework, so it was the adopted model for this configuration setting;

� C3-NodeMCU prototype: it is composed using the NodeMCU module, a development board with an integrated ESP8266
microcontroller;

� C4-Arduino prototypes: this configuration setting was created using different Arduino boards, assuming three different
models (Nano, Uno and Mega). Although having different hardware configurations and number and types of I/O pins,
the schematics for the three models were the same.

Since the implementation cost is an important development concern, Fig. 5 presents the estimated costs taking as refer-
ence the information in Table 2 and Table 3. In that figure, the cost of all employed components are accounted, excepting for
the costs of wires, resistors and breadboard, as they are only required in this prototyping phase.

Fig. 6 presents the defined hardware configurations for the developed prototypes, highlighting the employed sensor
devices and additional components. The ADC is used by all prototype groups, excepting for the C2 group that uses the
GrovePi + standard. Moreover, for the C4 group, the NodeMCU was used to provide Wi-Fi communication for the Arduino
boards. Particularly for the C4 group, although they have different I/O patterns, the usage of each of the three assessed Ardu-
ino models does not impact the construction of the prototype units, excepting for their dimensions, costs and energy con-
sumption, as discussed in this article.
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Fig. 3. All development boards and electronics components exploited for the construction of the MSensorMob2 prototypes.
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Table 1
Employed development hardware platforms. It is presented the processing frequency of the board (CPU), its local processing memory (RAM), the number and
type of the available I/O pins (Digital and Analog), the presence of embedded Wi-Fi capability and the existence of embedded support for a SD/microSD card.

Board CPU (MHz) RAM (KB) Digital Analog Wi-Fi SD card

Single board computer family
Raspberry Pi 4B 1500 2,000,000 28 0 YES YES
Raspberry Pi 3B 1200 1,000,000 28 0 YES YES
Raspberry Pi 2B 900 1,000,000 28 0 NO YES

Raspberry Pi Zero WH 1000 500,000 28 0 YES YES

Microcontroller board family
NodeMCU ESP8266 80 64 13 1 YES NO
Arduino Mega ADK 16 264 54 16 NO NO

Arduino Uno 16 32 14 6 NO NO
Arduino Nano 16 32 22 8 NO NO

Fig. 4. Parameters that may affect the deployment of the boards.

Table 2
Average cost for each development board.

Hardware development board

Board Cost (USD) Source

Single board computers
Raspberry Pi 4B (2 GB) 35.00 https://www.sparkfun.com

Raspberry Pi 3B 35.00 https://www.canakit.com
Raspberry Pi 2B 35.00 https://www.canakit.com

Raspberry Pi Zero WH 10.00 https://www.sparkfun.com

Microcontroller boards
NodeMCU ESP8266 7.95 https://www.pishop.us
Arduino Mega ADK 40.00 https://vilros.com
Arduino Uno REV3 23.00 https://vilros.com

Arduino Nano 20.50 https://vilros.com
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The schematic configuration of the defined prototypes can be seen in Fig. 7. Since the connection of the Grove compo-
nents is straightforward, requiring simple connections through the specified ports in their datasheets, the C2 configuration
setting is not described in that figure.
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Table 3
Average cost for each employed electronic component.

Electronic components

Component Cost (USD) Source

Sensors
DHT22 9.95 https://chicagodist.com

LDR 5 mm 2.30 https://sg.element14.com
UVM30A 18.30 https://abra-electronics.com

GrovePi Sensors
Grove DHT11 6.50 https://www.seeedstudio.com

Grove sunlight sensor 11.90 https://www.seeedstudio.com

GPS devices
Neo6mV2 17.00 https://www.amazon.com
Grove GPS 25.90 https://www.seeedstudio.com

Miscellaneous
ADC ads1115 14.95 https://www.adafruit.com

GrovePI+ 34.50 https://www.seeedstudio.com
SD module Arduino/ESP 6.30 https://abra-electronics.com

WiFi USB dongle 19.95 https://www.canakit.com

Fig. 5. Total estimated costs for all prototypes, according to the chosen core controller.
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5. Performance comparisons

After creating the MSensorMob2 prototypes, we performed a series of comparison tests in order to allow performance
assessment for different hardware configurations. Doing so, future implementations and deployments acquire additional
information when deciding the most suitable hardware options. For that, we defined a simple simulation scenario, with a
single unit for each of the defined prototype types.

The MSensorMob2 development framework defined six different states. Initially, we measured the execution time for the
INITIALIZE, SETUP, UPLOADING and UPDATING states, as presented in Fig. 8.

As expected, the reading of configuration files, the processing of the defined procedures and the execution of networking
functions will depend on the characteristics of the defined hardware. In Fig. 8, we could see that the Raspberry Pi boards
performed better in all states, excepting for the INITIALIZE state. One reason for that is the use of an Operating System by
the boards, which adds processing complexities when accessing and managing files. Differently, microcontroller-based units
8
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(a) C1. (b) C2.

(c) C3. (d) C4.

Fig. 6. Adopted hardware configurations for the four configuration settings of the developed prototypes.
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have a simpler file system structure, reducing the accessing time to the files even having lower processing power when com-
pared to the Raspberry Pi boards.

Concerning the UPDATING state, the nature of microcontroller-based boards imposes a natural restriction for updates to
the operation and configuration of the units. While single board computers like the Raspberry Pi family operate using an
operating system that is flexibly read and executed from a SD/microSD card, the C3 and C4 prototype configurations were
based on Arduino and ESP8266 boards that have programs and configurations stored on onboard flash memories, compiled
9



Fig. 7. Development schemes for the prototypes.
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and stored there through proper IDE (Integrated Development Environment). This way, the updating procedure has a limi-
tation in the microcontroller-based prototype configurations due to the impossibility of uploading a new firmware on the
flash memory while it executes the current firmware intermittently. Therefore, for the C3 and C4 prototype configurations,
it is recommended the execution of the MSensorMob framework as proposed by us in [5], which does not implement the
UPDATING state.

When the unit is not in the IDLE state, the MONITORING state is expected to be the most used state in a normal operation.
Actually, as defined in our previous work in [5], every unit will be configured with a monitoring frequency fs, which will be
read during the INITIALIZE state and eventually altered during the UPDATING state. Such sampling rate will indicate that,
every fs seconds, a new sample procedure will be initiated, resulting in the generation of a sample file composing all mon-
itored data retrieved from all active sensor devices attached to the MSensorMob/MSensorMob2 unit. For that, however, since
different hardware configurations may demand different processing times when executing a whole sampling procedure, we
have to define th as the required sampling processing time for the hardware configuration (prototype) h. This way, in order to
maintain a strict periodic monitoring frequency, the time between the completion of a monitoring sampling procedure and
the next sampling will be equal to ðfs� thÞ, assuming fs > th. Therefore, for very small values of fs, the minimum acceptable th
time may be prohibitive for some hardware configurations.

Fig. 9 presents the processing time of an entire sampling procedure, as well the measured energy consumption during
that period.

The processing time for the MONITORING state will depend on multiple parameters associated to the hardware config-
uration of the boards, the software components and the employed sensor devices. For the implemented prototypes, the Rasp-
10



Fig. 8. Time spent in each of the states, excepting MONITORING.
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berry Pi boards performed better in terms of processing time, probably due to their enhanced processing power and I/O
structure, but they consumed more energy. As an interesting remark, the C2 configuration (Raspberry Pi 3 with GrovePi+)
had a very low value of th, which is a reflection of the exclusive sensors integration; for the traditional DHT22, which is a
temperature/humidity sensor, the reading time is high, but the corresponding Grove DHT11 temperature/humidity sensor
operates much faster due to its characteristics and the dedicated microcontroller in GrovePi + HAT for sensors readings.

After execution of the tests with the implemented prototypes, we achieved different results that could support the choos-
ing of the best hardware configurations when creating MSensorMob2 units. Actually, although elapsed times and consumed
energy are relevant information, there are other important parameters that should be also considered, such as combined
costs, dimensions, programming libraries and purchase availability. In this sense, after careful analyses, we concluded that
the hardware configuration based on the Raspberry Pi Zero WH board had the better average performance when combining
all aforementioned parameters, being indicated for usual multi-sensor monitoring functions in multiple scenarios. However,
since this is not a strict recommendation, any other configurations could be adopted, but we favor the ones that can imple-
ment all sates of the MSensorMob2 framework.
6. Deployment and security issues

The development of multi-sensor units may be an important breakthrough for the designing and operation of a lot of
emerging IoT applications. In this context, sensing applications targeted at the concurrent monitoring of multiple scalar
and multimedia data may benefit from the adoption of sensor units that encompass multiple sensor devices. Actually, the
11



Fig. 9. Performance comparisons during the MONITORING state.

F. Oliveira, D.G. Costa and I. Silva HardwareX 10 (2021) e00243
scope of such type of applications is wide enough to foster the development of flexible multi-sensor units, with special atten-
tion to applications such as emergencies detection [10], smart farming [11], urban monitoring [12], among others.

The performed implementations, experiments and analysis in this article are important contributions to support such sce-
narios, indicating actual possibilities for real-world applications. However, beside budget, hardware configurations and the
operation of the proposed framework, other issues should be also considered when exploiting the flexibility of multi-sensor
units. And these issues are particularly relevant when taking into account the mobile nature of a monitoring scenario. As an
example, the work in [12] adopts multi-sensor units to monitor environmental variables associated to the quality of cycle
paths concerning the health and safety of cyclists. In that work, the units are expected to be attached onto bikes, which nat-
urally adds physical concerns about the proper position of the units, as well as their firm attachment to the bikes (units
should not fall on the ground while a bike is moving). In a different perspective, the use of directional sensors like cameras
also impose some challenges concerning the position of the cameras and the achieved Field of View. Additionally, obstacles
and coverage failures may also jeopardize the effectiveness of the deployed multi-sensor units. In all these cases, the proper
planning and execution of deployment strategies, as well as the physical characteristics of the units (as previously dis-
cussed), should also be part of the implementation and management details of any proposed approach for mobile multi-
sensors monitoring.

Other relevant issue is security. Multi-sensor units will typically be part of a networked system, providing sensed data
and sometimes reacting to different types of requests. In the proposed MSensorMob2 framework, for example, while the
units are able to transmit stored sensed data using a wireless connection during the UPLOADING state, they also react to
re-configuration request in the UPDATING state. In general, for flexible configurable monitoring units in a lot of applications,
such behavior may be common, specially for systems designed to operate (and react) during long periods of time. As a con-
sequence, such systems may face different security threats, which may compromise the effectiveness of the systems in
unpredictable ways [13]. Actually, although a myriad of solutions have been proposed to enhance the security of
Internet-based systems, with efficient solutions to provide authenticity, integrity and confidentiality, IoT systems may
behave differently, specially in mobile monitoring scenarios. Moreover, dependability and availability concerns may also
emerge in some cases, depending on the networking infrastructure and the level of failures that are expected to be supported
by the employed solution. Thus, all these issues should be considered carefully, in order to provide acceptable levels of secu-
rity/dependability while not reducing the attainable performance of the systems [14,15].

Therefore, although we provided important information to select the proper hardware platform and configurations of the
required electronic components, there are other issues that should be considered when designing, implementing, operating
and maintaining any monitoring system based on multi-sensor units. Depending on the particularities of the applications,
such considerations may also impact the choosing of the hardware components, further extending the conclusions of this
work.
7. Conclusions

The development of multi-sensor units may be an important breakthrough for the maturation of emerging IoT applica-
tions, specially when hardware frameworks are created to support the development of such units. Nevertheless, the devel-
opment of architectures and firmwares should be also combined with the analyses of implementation, deployment and
12
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performance issues, bringing hardware frameworks to a more realistic setting. In this article, open-source hardware plat-
forms were considered to support the creation of multi-sensor units for mobile applications with long disconnection periods.
For that, a previously proposed framework was adopted as reference, being also extended to incorporate a new updating
functionality. The resulting designed and implemented prototypes are then good practical examples of howmonitoring units
following the proposed framework could be implemented.

As future works, we want to further evaluate the construction of MSensorMob2 units, adopting different hardware
boards. Additionally, 3D case printing will be also considered when assessing deployment issues of the units. Finally, security
issues of connected units will be evaluated and discussed in future experiments.
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