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Ammonia nitrogen tolerance is an economically important trait of the farmed

penaeid shrimp Litopenaeus vannamei. To identify the genes associated with

ammonia nitrogen tolerance, we performed an extreme phenotype genome-

wide association study method (XP-GWAS) on a population of 200 individuals.

The single nucleotide polymorphism (SNP) genotyping array method was used

to construct the libraries and 36,048 SNPs were genotyped. Using the MLM,

FarmCPU and Blink models, six different SNPs, located on SEQ3, SEQ4, SEQ5,

SEQ7 and SEQ8, were determined to be significantly associated with ammonia

nitrogen tolerance. By integrating the results of the GWAS and the biological

functions of the genes, seven candidate genes (PDI, OZF, UPF2, VPS16,

TMEM19, MYCBP2, and HOX7) were found to be associated with ammonia

nitrogen tolerance in L. vannamei. These genes are involved in cell transcription,

cell division, metabolism, and immunity, providing the basis for further study of

the geneticmechanisms of ammonia nitrogen tolerance in L. vannamei. Further

candidate gene association analysis in the offspring population revealed that the

SNPs in the genes zinc finger protein OZF-like (OZF) and homeobox protein

Hox-B7-like (HOX7) were significantly associated with ammonia nitrogen

tolerance trait of L. vannamei. Our results provide fundamental genetic

information that will be useful for further investigation of the molecular

mechanisms of ammonia nitrogen tolerance. These associated SNPs may

also be promising candidates for improving ammonia nitrogen tolerance in

L. vannamei.
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Introduction

Litopenaeus vannamei is naturally distributed along the Pacific coast of Central and

South America. It is an important farmed penaeid shrimp that provides approximately

80% of the world’s total penaeid shrimp output (FAO 2020). Semi-intensive and

intensive cultivation methods are often adopted in the cultivation of L. vannamei to

realize large-scale cultivation. With these methods, a large amount of feed is placed in
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the aquaculture water, and the accumulation of residual bait

and feces leads to a deterioration in water quality and an

increase in the concentration of ammonia nitrogen (Romano

and Zeng 2013).

Ammonia nitrogen in aquaculture water has two forms:

non-ionic ammonia (NH3) and ionic ammonia (NH4+)

(Emerson et al., 1975). Non-ionic ammonia can diffuse

through the cell membrane and accumulate in the organs

of aquatic animals (Kır et al., 2004; Cobo et al., 2014), causing

organ damage and destroying the oxidant/antioxidant balance

of aquatic animals, resulting in oxidative stress and an

increased frequency of shrimp molting. Ultimately, this

results in a loss of membrane integrity, reducing the

immune capacity of shrimp and leading to death (Cheng

et al., 2015; Jin J. et al., 2017; Li N. et al., 2018; Liang et al.,

2019; Zhang et al., 2020).

To ensure sustainable development of L. vannamei

aquaculture, it is important to improve the germplasm of L.

vannamei and cultivate varieties with strong tolerance to high

ammonia nitrogen. At present, selection of L. vannamei is

generally based on population and family selection (Gjedrem

1985; Gjedrem and Baranski 2009;Wang 2013; Kong et al., 2020).

De Donato et al. (2005) used a population breeding method to

improve the average growth rate of L. vannamei by 35.5% after

multiple generations of selection. Zhang et al. (2016) reported

that the heritability of low dissolved oxygen tolerance of L.

vannamei was also low at 0.07 ± 0.03. In terms of ammonia

nitrogen resistance, Yuan et al. (2018) estimated the heritability

of high ammonia nitrogen tolerance traits of L. vannamei at

7 and 14 weeks using the restricted maximum likelihood (REML)

method, the traits were found to have low heritability (0.13 and

0.17). Li et al. (2016) also estimated the genetic parameters of

ammonia nitrogen tolerance traits of L. vannamei larvae and

found that the heritability of ammonia nitrogen tolerance traits

of larvae was low.

Traditional breeding methods have long cycles and limited

genetic progress (Montaldo and Castillo-Juárez 2017),

especially for traits that cannot be measured directly and

have low heritability. Marker-assisted breeding (MAS), which

enables direct selection breeding of individuals with the aid of

molecular markers tightly linked to the trait, is widely used in

the genetic breeding of marine animals because it is associated

with high genetic stability and discrimination (Ribaut and

Hoisington, 1998; Lu et al., 2019). Yu, (2014) established a

method to identify single nucleotide polymorphisms (SNPs) in

L. vannamei, using high-throughput next-generation

sequencing transcriptome data, 96,040 SNP markers of L.

vannamei were successfully identified. Several studies have

identified transcriptomic changes and differentially expressed

genes in L. vannamei after high ammonia nitrogen stress. Xiao

et al. (2019) identified several pathways and genes involved in

ammonia nitrogen tolerance in L. vannamei based on

comparative transcriptomic and metabolomic analyses of

ammonia-tolerant and ammonia-sensitive L. vannamei

families. Lu et al. (2016) identified 12 SNPs associated with

ammonia nitrogen tolerance in L. vannamei using marker-trait

correlation analyses.

Previous transcriptomic and metabolomic analyses have

focused on the genetic bases of ammonia tolerance in

shrimp. Quantitative trait loci (QTL) linkage mapping is an

essential method for identifying relevant genes. Zeng et al.

(2020) constructed a high-density genetic map of L. vannamei

and mapped a QTL associated with ammonia nitrogen tolerance.

Due to limitations of marker density, QTL analysis only

identified one gene, LOC113809108, annotated as the ATP

synthase g subunit.

Genome-wide association study (GWAS) can be used to

identify functional genes in a genome. Until now, genes related

to economic traits of important aquatic animals have been

identified by GWAS, including catfish (Ictalurus punctatus) (Jin

Y. et al., 2017; Li Y. et al., 2018), carp (Cyprinus carpio) (Zhou

et al., 2018), and large yellow croaker (Larimichthys crocea)

(Dong et al., 2019; Liu et al., 2020). Wang (2017) conducted a

GWAS on growth and disease resistance traits of L. vannamei,

identifying 52 SNPs significantly associated with body length,

47 SNPs associated with body weight, and 108 SNPs associated

with Vibrio resistance. Jones et al. (2020) performed a GWAS

for L. vannamei sex and found a QTL located on LG42.44 that

was significantly associated with sex, but no related genes were

annotated. Sun, (2021) performed GWAS analysis of L.

vannamei growth and resistance to white spot syndrome

virus (WSSV), found multiple significant loci and speculated

that these two traits were controlled by micro-efficient

polygenes. However, no study has investigated SNPs

associated with ammonia nitrogen tolerance in L. vannamei

using a GWAS.

Traditional GWAS analysis genotype-phenotype

associations using large number of genotyped individuals,

making GWAS an expensive analytical approach. The high

cost of GWAS analysis is primarily related to the number of

samples analyzed and the price of genotyping. To reduce

costs, scientists have developed a GWAS approach in which

only extreme samples are sequenced; this is referred to as

an extreme phenotype genome-wide association study

(XP-GWAS) (Yang et al., 2015). XP-GWAS is effective in

reducing genotyping efforts, enabling low-cost and

highly effective SNP screening (Dong et al., 2016; Wan

et al., 2018).

In this study, we assessed ammonia nitrogen tolerance traits

in L. vannamei using an XP-GWAS. Six different analysis

methods were used to identify loci significantly associated

with ammonia tolerance traits in L. vannamei and successfully

mapped to potential genes associated with ammonia nitrogen

tolerance. Finally, we confirmed that the use of XP-GWAS is

feasible in L. vannamei, and is a cost-saving approach to

genotyping.
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Materials and methods

Material collection

All animal experiments were carried out following the

National Institute of Health’s Guide for the Care and Use of

Laboratory Animals. The animal protocols were approved by the

Animal Ethics Committee of Guangdong Ocean University

(Zhanjiang, China). Shrimp were reared by the shrimp

breeding company Guoxing Aquaculture Science and

Technology Co., Ltd. in Zhanjiang City, Guangdong Province,

P.R. China. In March 2020, we established 38 different families,

and each family was cultured separately. After 1 month,

10 families were randomly selected and we moved

30 individuals from each family into the same pool for

common environment breeding, each family was fluorescently

labeled by visible implant elastomer. After 2 months of culture,

20 shrimps from each family were randomly selected for the high

ammonia nitrogen stress experiment.

High ammonia nitrogen challenge test

A population of 200 individuals was used for the challenge

experiment (weight, 5.24 ± 2.07 g; body length, 77.49 ± 10.85 mm).

An ammonia nitrogen stress concentration of 93 mg/L was used

based on the results of the semi-lethal high ammonia nitrogen

concentration of 96 h in preliminary experiments. For stress

experiments, 20 shrimps from each family were placed in a 3 ×

3 m test pool. After 7 days of suspension, the concentration of

ammonia nitrogen was adjusted to 93 mg/L by adding analytical

grade ammonium chloride.

During the experiment, water was replaced daily, the water

temperature was maintained at 26 ± 2°C, the pH was maintained

at 8.1 ± 0.2, the salinity was maintained at 30 ± 1, and the

dissolved oxygen was maintained at 6–8 mg/L. Deaths were

observed each hour and the survival time was recorded.

Shrimp were considered dead if they lay on the pool floor

with no touch response. After the time of death was recorded,

the muscle tissues of each shrimp were preserved individually in

absolute ethanol for subsequent DNA extraction. The

experiment was concluded until all shrimp had died.

DNA extraction

To reduce costs and improve efficiency, we chose extreme

individuals for experiments based on Dong et al. (2016). We

classified individuals according to survival time and selected 30%

of the individuals who died first (Sensitive group) and 30% of the

individuals who died last (Tolerance group) for DNA extraction

and subsequent analysis. DNA was extracted from the muscle of

each shrimp (n = 120) with the EasyPure® Genomic DNA Kit

(TRANSGEN BIOTECH) in the Nanhai Economic Shrimp

Breeding and Culture Laboratory. The quality and

concentration of extracted DNA was determined by agarose

testing and a NanoDrop 2000 UV spectrophotometer

(Thermo Fisher). DNA was stored at −20°C until further use.

Phenotype and genotype statistics

Resistance to high ammonia nitrogen was measured as the

number of hours to death. We used the Genobaits® Prawn 40K

Panel developed by MOLBREEDING® (Hebei, China) as the

genotyping method: it integrates the relevant SNPs including

WSSV resistance, ammonia nitrogen tolerance, and feed

conversion efficiency, SNPs were filtered using plink v1.9

(Chang et al., 2015). SNPs were filtered according to the

following parameters: “plink --file GWAS --geno 0.1 --maf

0.01 --hwe 1e-5 --recode --out SNP”.

Statistical methods

We used six different models to implement GWAS, including

General Linear Model (GLM), Mixed Linear Model (MLM),

Compressed MLM (CMLM), Settlement of MLM Under

Progressively Exclusive Relationship (SUPER), Fixed and

random model Circulating Probability Unification (FarmCPU)

and Bayesian-information and Linkage-disequilibrium

Iteratively Nested Keyway (Blink). All the GWAS analyses

used the GAPIT R package (Lipka et al., 2012). MLM can be

described as: y = Xα + Qβ + Kµ + e, where y is the vector of

phenotypic records (survival time after stress), X is the genotype

matrix, α is the genotype effect vector, Q is the fixed effect matrix,

β is the fixed effect vector including population structure and

body length, K is the random effect matrix (kinship matrix), µ is

the random effect vector, and e is the residual vector (Zhang et al.,

2010). GLM only considers the effect of the genotype matrix and

does not include fixed and random effects. CMLM clusters

individuals into groups and fits genetic values of groups as

random effects in the model to avoid false negatives in MLM

(Li et al., 2014). In SUPER, only the associated genetic markers

are used as pseudo Quantitative Trait Nucleotides (QTNs) to

derive kinship, which can improve the statistical power

compared to using overall kinship from all markers (Wang

et al., 2014). FarmCPU and Blink are multilocus models that

use a modified MLM method, multiple loci linear mixed model

(MLMM), incorporate multiple markers simultaneously as

covariates in a stepwise MLM to partially remove the

confounding between testing markers and kinship (Liu et al.,

2016; Huang et al., 2019; ; Kaler et al., 2019). The −log10 (p-value)

of each SNP across the genome was calculated to illustrate the

GWAS results. The threshold p-value for genome-wide

significance was calculated using Bonferroni correction based
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on the estimated number of independent markers. Considering

the marker number and the number of genotyping populations,

loci that ranked in the top 200 in the results of all GWAS model

analyses were finally included as significant SNPs.

Candidate gene annotation

We annotated candidate genes around the significant SNPs

based on the reference genome of L. vannamei (NCBI assembly

ID: ASM378908v1). To do this, we defined a region that was

expected to contain causative genes. Because the SNPs detected

in this study are on different scaffolds, we assumed they have

independent effects on investigated traits, so we defined an

independent region that 300 kb upstream and downstream of

each SNP to search candidate genes. To annotate the genes, we

used the BLAST + tool to generate a sequence alignment using

the non-redundant protein database (NCBI), the reference

genome used in this study is ASM378908v1.

Candidate gene association analysis

To validate the association of SNPs with high ammonia

nitrogen tolerance traits in L.vannamei, we performed High

ammonia nitrogen stress on a progeny population with

150 shrimp. Based on the results of the semi-lethal high

ammonia nitrogen concentration of 48 h in preliminary

experiments, ammonia nitrogen stress concentration was set to

383 mg/L. SNPs of gene HOX and OZF were examined by direct

sequencing of PCR products (Sangon Biotech, Shanghai),

information of primers designed for this procedure is listed in

Table 1, all primers were synthesized by Shanghai Sangon Biotech.

Comparison of the means of survival time among different

genotypes was conducted by χ2-test using SPSS version 24.0.

Significance level for the analysis was specified at p < 0.05.

Results

Descriptive statistics of phenotypic values

The average body weight and body length of individual

shrimp were 5.24 ± 2.07 g and 77.49 ± 10.85 mm,

respectively. Mortality was observed beginning at 14.5 h after

the start of stress and lasted until 136 h (Figure 1), the median

lethal time (LT50) was 98 h. Statistical analysis revealed that

the mortality data of L. vannamei were approximately

normally distributed. Besides, the range of survival time in

the sensitive and tolerant groups was 14.5–88 h and

110–136 h, respectively.

Genotyping and genome-wide
association study analysis

We assessed the SNP quality and excluded 2,845 SNPs with a

call rate that lower than 90%, 5,569 SNPs with minimum allele

frequency that lower than 0.01, and 945 SNPs with significant

deviation from Hardy–Weinberg equilibrium (p < 0.00001).

After filtering, 36,048 quality compliant SNP loci were

retained for GWAS analysis. We evaluated these eight models

for false positives and false negatives based on the Q-Q plots

(Figure 2). The results show that model MLM, CMLM,

FarmCPU and Blink can control false positives and false

negatives, whereas GLM and SUPER exhibit severe false

TABLE 1 The primers designed for the identification of SNPs in candidate gene.

Primer ID Primer sequence (59-3’) Length (bp)

HOX7 Forward: TAGCACACCGCATTTCCTCA 895

Reverse: CTTTCCCTATCCAACCAGCA

OZF Forward: CCGATTGGATGCCTTTGGA 995

Reverse: GCTTCTCTGTTGTATGTGCTCTTT

FIGURE 1
The death numbers of shrimp in different time after ammonia
nitrogen stress.
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positives. Considering that the results of CMLM are completely

consistent with MLM, we only Integrated the results of MLM,

FarmCPU and Blink, thus a total of six SNPs were selected

(Table 2). The GWAS results are presented as Manhattan plots

(Figure 3), and a Venn diagram was plotted to represent the

intersection of the top 200 significant loci from these three

models (Figure 4). The details of these top 200 significant loci

can be found in Supplementary Data Sheet S1. Because the

currently available L. vannamei genome is still at the scaffold

level, with a large number of scaffolds, we concatenated the

scaffolds into nine sequences (SEQ1–9). The six associated SNPs

are scattered over SEQ5, SEQ4, SEQ3, SEQ7, and SEQ8.

Candidate genes

The significant SNPs identified by the GWAS were used as

probes to find the closest candidate gene up- and downstream

according to its position on the genome. Seven candidate

genes were found in the vicinity of the six SNPs detected

FIGURE 2
Quantile-quantile (QQ) plots of the six models. (A) GLM. (B) MLM. (C) CMLM. (D) SUPER. (E) FarmCPU. (F) Blink.

TABLE 2 Markers associated with ammonia nitrogen tolerance of L. vannamei.

Number SNP position SNP p-value (MLM) p-value (Blink) p-value (FarmCPU)

1 SEQ7 A/C 6.95E-06 1.29E-08 1.25E-10

2 SEQ8 A/C 5.47E-05 5.45E-08 9.91E-09

3 SEQ5 T/C 1.90E-04 8.93E-04 0.0019

4 SEQ4 A/G 3.17E-04 0.0017 9.15E-04

5 SEQ3 A/G 0.0011 0.0032 0.0013

6 SEQ5 A/C 0.0045 4.24E-04 0.0066
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(Table 3): PDI (protein disulfide-isomerase-like), OZF (zinc

finger protein OZF-like), HOX7 (homeobox protein Hox-B7-

like), RENT2 (regulator of nonsense transcripts 2-like),

VPS16 (vacuolar protein sorting associated protein

16 homolog), TMEM19 (transmembrane protein 19-like)

and MYCBP2 (E3 ubiquitin protein ligase mycbp 2-like).

Analysis of these genes revealed that they are related to

immune defense, apoptosis, growth, osmoregulation, and

molting.

Association analyses of candidate genes

Based on the p-value and the annotated gene function of the

identified markers, we selected gene homeobox protein Hox-B7-

like and zinc finger protein OZF-like for candidate genes

association analyses in a progeny population. The average

body weight and body length of individual shrimp in this

progeny population were 15.73 ± 6.02 g and 117.70 ±

14.67 mm, respectively. Survival time ranged from 10.5–180 h

FIGURE 3
Manhattan plot of −log10 P for the GWAS of ammonia nitrogen tolerance.
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and the median lethal time (LT50) was 76.5 h. After genotyping

these SNPs of two genes in the progeny population, SNPs of

HOX7 and OZF were significantly associated with ammonia

nitrogen tolerance (Table 4). In the HOX7 A>C locus, the

distribution of the two different genotypes, AA and AC,

showed significant difference in survival time after high

ammonia nitrogen stress, with 76.5 h and 92.7 h, respectively,

and the individuals with AA genotype had a significantly higher

survival time than those with the AC genotype. In the OZF T>C
locus, the mean survival times of individuals with genotypes TT,

TC and CC were 77.6 h, 85.3 h and 55.7 h, respectively,

individuals with the TT and TC genotypes survived

significantly longer than those with the CC genotype.

Discussion

Several studies have investigated genes associated with

ammonia nitrogen resistance in L. vannamei, but many of

these were based on transcriptome screening of SNPs for

association and QTL linkage analysis (Xiao et al., 2019).

Transcriptome analysis can be used to find a large number of

differentially expressed genes, but it is difficult to discern which

genes are responsible for the trait of interest. QTL analysis can

only detect a few loci for economic traits, and thus lacks

precision. In L. vannamei, association analysis with ammonia

nitrogen resistance based on genetic variation within the genome

has not yet been reported. To our knowledge, this is the first

report about GWAS of ammonia nitrogen tolerance in L.

vannamei. A number of SNPs significantly associated with

ammonia nitrogen tolerance were identified by using MLM,

FarmCPU and Blink models. However, the p-value of these

SNPs is relatively low, which could confirm previous

speculations that ammonia nitrogen tolerance is highly

polygenic and may be controlled by many genes with

moderate to low effects (Lu et al., 2016; Zeng et al., 2020).

FIGURE 4
Venn plot based on the top 200 significant sites obtained
from different statistical models.

TABLE 3 Candidate genes found by GWAS of ammonia nitrogen tolerance.

Number Name Annotation SNP position Distance (kb) Function

1 MYCBP2 E3 ubiquitin-protein ligase MYCBP2-like SEQ7 U111.7 developmental

2 PDI protein disulfide-isomerase-like SEQ8 U20.8 immune response

3 OZF zinc finger protein OZF-like SEQ5 exon DNA replication

4 UPF2 regulator of nonsense transcripts 2-like SEQ4 U147.5 immune response

5 VPS16 vacuolar protein sorting-associated protein 16 homolog SEQ3 U293.9 metabolism

6 TMEM19 transmembrane protein 19-like D194.4 cell transcription

7 HOX7 homeobox protein Hox-B7-like SEQ5 intronic cell division

TABLE 4 Association analysis result of SNPs in the genes HOX7 and OZF.

Genes SNP Genotype ST (h) Number χ2 p-value

HOX7 CCCTTGTTCACTATAGACCTTCGTA [A/C]GGCTCACTGACACTATGTGGTAGAT A/A 76.5 122 6.940 0.008

A/C 92.7 28

OZF AAACGTTTTGCATGTGACGTGTGTG [T/C]CAAGAAATTCTCTTCTCGGAGTAAG T/T 77.6 64 9.414 0.009

T/C 85.3 75

C/C 55.7 11
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Generally, Bonferroni correction is used to avoid false

positives. However, the Bonferroni-corrected p-value is too

strict in GWAS (Spencer et al., 2009; Hong and Park 2012).

In the present study, the genome-wide significance threshold

was approximately 1.38 × 10−6 after Bonferroni correction, no

SNPs exceeding the threshold were found in MLM, nor were

only 2 SNPs exceeding the threshold found in FarmCPU and

Blink. Considering the small sample size and large number of

SNPs, the corrected significant threshold is too strict to identify

candidate markers. Similar results were reported from a GWAS

of growth and disease resistance traits in L. vannamei using

reduced-representation genome sequencing (Wang 2017;

Wang et al., 2019a; Wang et al., 2019b; Yu et al., 2019; Lyu

et al., 2021). However, Sun (2021) performed a GWAS of L.

vannamei growth and WSSV resistance by resequencing and

found many SNPs that reached the threshold after Bonferroni

correction. It is possible that because of the large number of

repetitive sequences in the genome of L. vannamei, methods

such as simplified genome sequencing and gene chips cannot

allow accurate mapping due to low marker density, high-

density markers covering the whole genome range are

required for detection. Therefore, we widened the range of

significant SNP loci for screening candidate genes to the top

200 significant. At the same time, in order to improve the rigor

of the results, only the top 200 significant SNPs in all three

analytical models (MLM, FarmCPU and Blink) simultaneously

were considered to be significantly associated with high

ammonia nitrogen tolerance in this study. MLM is one kind

of single SNP analysis methods, some studies have found that

multilocus models performed better than single locus models

(Liu et al., 2016; Wen et al., 2018), the result of the Q-Q plot in

this study also shows that the MLM model controls false

positives while causing false negatives. However, as the most

commonly used analysis model in current GWAS research, we

still considered the results obtained by MLM analysis, and

finally a total of 6 SNPs were found.

The SNPs related to ammonia nitrogen tolerance found in

this study mainly have functions related to cell transcription,

cell division, metabolism, and immunity. Ammonia nitrogen

tolerance may stimulate physiological reactions in L. vannamei,

triggering gene transcription, replication, and the immune

response. Zinc finger protein OZF is a member of zinc finger

family and function to bind DNA, RNA, protein, and lipid

substrates (Andrea, 2001; Hall, 2005; Sonia et al., 2020). Zuo

et al. (2018) found that another member of the zinc finger

family, single C4-containing zinc finger protein can affect DNA

replication and positively regulate the expression of various

antimicrobial peptides, thus indirectly participating in the

antibacterial response of L. vannamei. HOX7 is a member of

the HOX gene family, which encodes transcription factors that

regulate cell division (Zou and Jiang, 2008). HOX genes specify

cell fates in animal embryos, and influence body weight gain

(Lee et al., 2014). UPF2 is a conserved nonsense-mediated

mRNA decay factor. Nonsense-mediated mRNA decay, also

called mRNA surveillance, is an important pathway used by all

organisms to degrade mRNAs that prematurely terminate

translation, and consequently eliminate the production of

aberrant proteins that could be harmful. In the UPF trimeric

complex, UPF2 and UPF3b cooperatively stimulate both

ATPase and RNA helicase activities of UPF1 (Johnson et al.,

2019). VPS11, a component of the vacuolar protein sorting

(VPS) subunit C, composed of VPS11, VPS18, VPS16, and

VPS33A proteins, is involved in the tethering of endosomes,

lysosomes, and autophagosomes (Bröcker et al., 2012; Li et al.,

2012). The TMEM19 gene is a novel gene with no known

function. Based on current reports of transmembrane (TMEM)

protein family members, TMEM proteins are involved in

intercellular and intracellular signal transduction and

immune-related diseases, as well as many physiological

processes, such as forming ion channels in the plasma

membrane, activating signal transduction pathways, and

mediating cell chemotaxis, adhesion, apoptosis, and

autophagy (Li, 2007). However, no gene directly related to

ammonia nitrogen tolerance was identified near the SNP

sites screened in this study. This might be due to the

sequencing method used. LOC113809108 (ATP synthase g

subunit), a gene previously identified to be associated with

ammonia nitrogen tolerance through QTL mapping studies,

was not identified in this study, possibly due to the small marker

density of the microarray. Therefore, further screening in large

populations by re-sequencing will be necessary.

In this study, one SNP A>C in the intron of gene

HOX7 and one SNP T>C in the exon of gene OZF were

screened. Qian et al. (2013) found one SNP which was a

synonymous mutation in the coding region of cathepsin

CTSL gene of L. vannamei. After analysis, the SNP site had

a significant effect on the growth characteristics of L.

vannamei. Chen et al. (2016) analyzed single nucleotide

polymorphisms of gene CAT and its correlation with low

hemolytic oxygen tolerance traits in L. vannamei, found that

one SNP, g.155 A>G, belonging to the synonymous mutation

Gln→Gln, was screened in the CAT sequence and significantly

associated with low hemolytic oxygen tolerance traits in L.

vannamei. In our study, the SNP of HOX7 is a synonymous

mutation Lys→Lys, the SNP of OZF is a nonsynonymous

mutation Leu→Pro. As several studies have described,

nonsynonymous SNPs change their encoded amino acid

sequence, thus affecting gene functions and interactions

(Wang and Moult, 2001; Ng and Henikoff, 2006; Teng

et al., 2008). Synonymous SNPs did not change the

encoded amino acid sequences, but base changes may

indirectly affect the structure of the original gene, thereby

affecting selective clipping and clipping efficiency of the gene,

altering mRNA folding and the protein synthesis rate,

ultimately affecting mRNA stability and the translational

process of the gene (Liao and Lee, 2010). In addition, the
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other four SNPs located in the intergenic region were not

studied in this paper, because it is a very complicated process for

intergenic SNPs to affect gene function. However, in the genome, the

number of SNPs located in the intergenic region is much more than

that located inside the genes, and some intergenic SNPs located in

the promoter or enhancer even have more substantial effects

(Hoogendoorn et al., 2004; Mishiro et al., 2009; Wagschal et al.,

2015), so in the follow-up papers, we will continue to explore the

functions of intergenic SNPs.

Compared with methods such as transcriptome analysis

and QTL mapping, GWAS are costly because they require

SNP genotyping across the genome of hundreds of

individuals (Korte and Farlow 2013). The number of

individuals to genotype can be reduced to reduce costs,

although this also decreases accuracy. Some research teams

have investigated extreme phenotypes in maize and large

yellow croaker using XP-GWAS (Yang et al., 2015; Dong

et al., 2016). GWAS of economic traits in the large yellow

croaker with different numbers of extreme phenotypes

revealed that 60% of the extreme phenotypic samples gave

similar results as a GWAS with whole phenotypes, thus

saving 40% of the genotyping and DNA extraction costs

(Wan et al., 2018). We also performed XP-GWAS using

60% of extreme phenotypic samples and found several

significant SNPs associated with ammonia nitrogen

tolerance. Although the p-values of these SNPs did not

reach the Bonferroni-corrected p-value threshold in MLM,

the results were similar to those obtained by Wang et al.

(2019a) in their GWAS of the resistance of L. vannamei

against Vibrio parahaemolyticus, which involved analysis

of whole individuals.

Quantitative traits are often influenced by multiple genes

with small effects, so the benefit of conducting MAS depends

on the effect of each SNP (Meuwissen et al., 2001). Previous

GWAS have shown that resistance traits are not controlled by

a major effect of one QTL, but by several polygenic genes with

minor effects (Liu et al., 2015; Correa et al., 2017; Jin Y. et al.,

2017). The results of this study also indicate that there may not

be a major QTL that contributes to ammonia nitrogen

tolerance of L. vannamei. Thus, the implementation of

MAS may not be successful. Similar to our findings, Correa

et al. (2015) performed a GWAS to assess the resistance of

Atlantic salmon to Piscirickettsia salmonis; they concluded

that it was due to a micro effect polygenic trait with low

p-values for SNPs associated with this trait, suggesting that

genomic selection will be a more efficient approach to such

traits. Molecular information from genotyped SNPs may be

incorporated in breeding programs through the application of

genomic selection (Goddard and Hayes, 2007), where effects

of all genotyped SNPs are included without the need to surpass

a determined threshold of significance (Meuwissen et al.,

2001). Such an approach should be evaluated to determine

the usefulness of genotyped SNPs for ammonia nitrogen

tolerance.
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