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Abstract

Codon usage bias (CUB) results from the complex interplay between translational selection and mutational biases. Current
methods for CUB analysis apply heuristics to integrate both components, limiting the depth and scope of CUB analysis as a
technique to probe into the evolution and optimization of protein-coding genes. Here we introduce a self-consistent CUB
index (scnRCA) that incorporates implicit correction for mutational biases, facilitating exploration of the translational
selection component of CUB. We validate this technique using gene expression data and we apply it to a detailed analysis of
CUB in the Pseudomonadales. Our results illustrate how the selective enrichment of specific codons among highly
expressed genes is preserved in the context of genome-wide shifts in codon frequencies, and how the balance between
mutational and translational biases leads to varying definitions of codon optimality. We extend this analysis to other
moderate and fast growing bacteria and we provide unified support for the hypothesis that C- and A-ending codons of two-
box amino acids, and the U-ending codons of four-box amino acids, are systematically enriched among highly expressed
genes across bacteria. The use of an unbiased estimator of CUB allows us to report for the first time that the signature of
translational selection is strongly conserved in the Pseudomonadales in spite of drastic changes in genome composition,
and extends well beyond the core set of highly optimized genes in each genome. We generalize these results to other
moderate and fast growing bacteria, hinting at selection for a universal pattern of gene expression that is conserved and
detectable in conserved patterns of codon usage bias.
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Introduction

Protein-coding genes exhibit distinct patterns of codon usage,

known as Codon Usage Bias (CUB). These patterns can be

distinguished at three main levels: inter-genomic, intra-genomic

and intra-genic [1,2]. Among bacterial species, many causes are

thought to influence CUB. Differences in genomic %GC content

are the most obvious explanation for divergent patterns of codon

usage [3], but protein-coding sequences can be subject to further

mutational biases, like GC-skew [2,4], and to genomic architec-

tural constraints [5]. Codon usage bias is known to correlate with

tRNA abundance [6,7] and gene expression levels [8,9], suggest-

ing that translational selection also plays a substantial role in

shaping the genomic codon usage bias [10]. It has been shown that

similar principles apply to codon pairs and successive synonymous

codon pairs [11,12]. Translational selection on the CUB is

believed to originate from the limited availability of ribosomes and

tRNAs during fast-growth (the throughput hypothesis) [1,13,14] and/

or the cost associated with missense and nonsense errors during

protein translation (the accuracy hypothesis) [15–20].

Codon usage bias is typically measured using indices, which

assign a single score to each protein-coding sequence under

analysis [21]. Many CUB indices rely on a measurement of the

deviation of a gene’s codon usage from a putatively optimal codon

profile. Among these, the Codon Adaptation Index (CAI) has

gained the most widespread acceptance and has become a de facto

standard for analysis of codon bias and prediction of gene

expression [9,22–25]. Using the observed codon frequencies in a

reference set, CAI defines the weight (w(xyz)) of codon xyz (coding

for amino acid aa) as the ratio of the observed frequency of codon

xyz (fxyz) to that of the most frequent of the synonymous codons (fijk)

for amino acid aa. For any given gene sequence of length L (in

codons), the CAI score of the sequence is defined as the geometric

mean of the weights of its codons [22]:

CAI Gð Þ~ PL
c~1w Gcð Þ

� �1=L
,

where w Gc~xyzð Þ~ fxyz

maxijk?aa fijk

� �
ð1Þ

In order to predict gene expression, CAI presumes that a

reference set of highly expressed genes is known [22,26], but this is

most often not the case, especially for novel species or in large-

scale comparative genomics studies. This can be partially

circumvented by detecting orthologs of genes known to be highly

expressed in reference organisms, such as those encoding

ribosomal proteins in E. coli, in order to generate the reference

set in the organism of interest [27]. However, this method assumes
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that the nature of translational selection is conserved across

species. Furthermore, it implicitly assumes that translational

selection is the main contributor to CUB in the organism of

interest and that CUB is restricted mostly to a subset of proteins.

These assumptions may turn out to be false, potentially leading to

flawed inferences [15,26,28–30].

A reference set can also be derived through an iterative

algorithm capable of identifying a small set of genes that defines a

dominating and self-consistent CUB within a given genome [31].

The resulting self-consistent CAI (scCAI) does not presume the

existence of translational bias and can therefore be used to explore

the nature of the dominating codon usage bias in different species

[32]. However, this means that scCAI results must be analyzed

with additional methods in order to determine whether the

detected bias is due to translational selection or confounding

factors, like %GC content [31–33]. Several methods have been

proposed to facilitate the convergence of scCAI-like algorithms

onto the translational bias [25,33,34], but these heuristics still

make use of annotations for highly expressed genes to assist

convergence. Hence they presume both the existence and the

conservation of some form of translational bias, limiting their

applicability to groups of organisms on which the cause and nature

of translational bias are known to be conserved.

Recently we introduced a novel codon bias index, the Relative

Codon Adaptation index (RCA) capable of addressing composi-

tional biases directly in its formulation [35]:

RCA Gð Þ~ P
L

c~1
v(Gc)

� �1=L

,

where v Gc~xyzð Þ~ f (x,y,z)

f1(x)f2(y)f3(z)

ð2Þ

As in CAI, the RCA score of a coding sequence G is defined as

the geometric mean of the weights of each codon along its length L

(in codons). However, for each possible codon xyz the RCA

weights (v(xyz)) are defined as the ratio of the observed to

expected frequencies of this codon on the reference set. The

normalization of the v(xyz) weights in RCA was shown to improve

prediction of gene expression using a reference set of highly

expressed genes in the compositionally biased genome of

Mycobacterium smegmatis [35].

A drawback of CAI when integrated into the iterative

algorithmic framework of scCAI is its propensity to converge

onto CUB patterns unrelated with translational selection, such as

%GC bias and %GC skew [31,32]. The enhanced performance of

RCA on genomes with biased composition suggested that

integrating RCA within the iterative framework of scCAI could

improve its convergence onto CUB patterns resulting from

translational selection. In order to integrate RCA into the iterative

paradigm, we first derived nRCA, a version of RCA that includes

explicit normalization for amino acid usage:

nRCA Gð Þ~ P
L

c~1
vn(Gc)

� �1=L

,

where vn Gc~xyzð Þ~ v(xyz)

maxijk?G c½ � v(ijk)ð Þ

ð3Þ

The expression for nRCA makes use of the RCAxyz weights of

Equation 2 to normalize for amino acid content using the

maximum synonymous codon weight, as in CAI (Equation 1),

providing an index that should be resilient to both amino acid and

compositional biases and can be directly integrated into the self-

consistency framework of Carbone et al. [32], yielding the self-

consistent normalized RCA, or scnRCA.

Among bacteria, differences in the pattern of codon usage are

thought to be due mostly to compositional biases and, specifically,

to diverging %GC-content [10]. This implies that, if present,

translational selection must act in response to mutational changes

in order to preserve the optimality of gene sequences through

coordinated changes in the concentration of tRNA species and the

codon usage patterns of gene sequences. To date, however, no

study has directly assessed the effects of mutational biases on the

codon repertoire and the genomic distribution of translational

selection. Using scnRCA, we analyze translational bias in the

Pseudomonadales, an order of taxonomically similar cold-adapted

bacteria with high or moderate growth-rates and markedly

dissimilar %GC content that provides a natural experiment in

which to examine the adaptation of translational codon usage to

genomic changes in %GC content. Our results show that scnRCA

correlates well with expression data, and we use this index to

validate recent reports on specific codon preferences, illuminating

the tradeoffs which drive the evolution of CUB. Finally, our

analysis of the Pseudomonadales reveals an unexpected degree of

conservation of codon optimization across the entire genome. We

extend these results to other moderate- and fast-growing bacterial

in distantly related phyla, suggesting that the signature of a

universal plan for gene expression among such bacteria is

preserved in genome-wide codon usage profiles.

Materials and Methods

Genome data
Genome sequences were retrieved from the NCBI via FTP. All

complete genome sequences available for the Pseudomonas and

Psychrobacter families were included. Representative species of

moderate and fast-growing Firmicutes, Actinobacteria and

Gammaproteobacteria were selected based on previous work

[32]. For species with available expression data the NCBI

GenBank accession number provided with the Gene Expression

Omnibus (GEO) record was used to retrieve the appropriate

genome sequence.

Gene expression data
Gene expression data for 32 bacterial species was obtained from

the NCBI Gene Expression Omnibus (GEO) database [36]. Gene

expression data for E. coli and proteome data M. smegmatis was

obtained from the M3D database [37] and Wang et al. [38],

respectively, as described previously [35]. All gene expression data

corresponds to experimental controls growing in early or mid-log

phase. GEO data was downloaded in native formats, manually

curated and stored in spreadsheet format for easier manipulation

(Table S1).

tRNA identification
Gene copy number for all organisms was estimated by scanning

the available genome sequences using the tRNAscan-SE software

with default parameters [39]. tRNA codon-anticodon pairs were

assigned using the standard genetic code.

Codon usage bias computation
Computation of codon usage bias for the scCAI and scnRCA

indices was performed using the scnRCA program, a standalone

Java application based on CAIJava [31]. The scnRCA program

operates on GenBank genome files or FASTA formatted files

containing open reading frames, and implements both the

Consistent Patterns of Translational Selection
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scnRCA and scCAI algorithms. The iterative algorithm begins by

including all protein-coding genes within an initial reference set.

CAI (wxyz) or nRCA (nRCAxyz) weights are computed and all

protein-coding genes are scored using the given index. The highest

scoring D-R fraction (where D is a pre-specified constant [2 by

default] and R is the iteration number) is selected as the Rth

reference set, weights are recomputed, all genes are re-scored

anew and the process is iterated until the reference set reaches a

predefined fraction F [1% by default] of the protein-coding genes

in the genome. In addition, the scnRCA program allows the user

to seed the algorithm with a provided reference set in FASTA

format or to start the process with a randomly chosen fraction F of

the genome. The algorithm halts when convergence is achieved

(i.e. no variation in weight values between successive iterations) or

a predefined maximum number of iterations (I) is reached. The

scnRCA scores for all genes in the last iteration are output to a file.

The scnRCA software and documentation are available for

download at: https://github.com/erilllab/scnRCA. Computation

of codon usage bias for the MILC, Ran & Higgs’ d and CDC

indices was performed with a custom Python implementation of

MILC and d [40,41] and with the C++ implementation of CDC

provided in [42]. For MILC and d, annotated ‘‘ribosomal protein’’

genes were used to construct the reference set in each genome.

The tAI index values were calculated using a Python implemen-

tation of tAI [23]. tRNA copy numbers inferred by tRNAscan-SE

were used to construct the table of Wi values in tAI. The code for

the tAI, MILC and d Python implementations is available for

download at: https://github.com/erilllab/oneill_et_al_2013.

Ortholog identification
Orthologous genes were detected by computing reciprocal best

BLAST hits for each pair of species examined in the study [43,44],

using BLASTP with default parameters and an E-value of 10210.

The analysis of sets of related species requires the identification of

orthologs shared by all the species in the set. We identify such

orthologs by locating k-cliques in a graph whose vertices are genes

and whose edges denote reciprocal best BLAST hits, where k is the

number of species. Cliques were identified using the NetworkX

package in Python (http://networkx.github.com/). Routines for

automating the reciprocal BLAST procedure can be found at:

https://github.com/erilllab/RBLAST.

Correlation with expression data
For each species under analysis, scnRCA/scCAI was run until

convergence on the reference genome sequence and all sequences

for protein-coding genes tagged as ‘‘ribosomal protein’’ were

pooled to create the MILC and d reference set. The scnRCA/

scCAI/MILC/d/CDC index values for each protein-coding gene

in the genome were matched by NCBI locus tags to all protein-

coding genes for which it expression data was available. When

multiple instances of the same gene were present in the array, the

same index value was assigned multiple times. For each expression

dataset, Spearman rank correlation coefficients were determined

independently for all available series, and the mean and standard

error of the correlation coefficients were computed (Table S2).

Evaluation of reference set term enrichment
A multi-genome analysis of term enrichment in the reference set

isolated by scnRCA was performed by comparing term frequency

in the reference set and the genome. The list of possible genomic

terms was defined as the concatenation of the GenBank

annotations [/product field] for every protein-coding gene in each

genome, and the reference set terms as the restriction of the

previous list to protein-coding genes that appear in the species’

reference sets. We computed the frequencies of each word in both

reference sets and genomes, defining the enrichment ratio as the

ratio of the former to the latter. Terms that appeared fewer than

10 times in the entire set of genomes were omitted. The cutoff of

10 counts prevents domination of the enrichment profile by rare

words in the reference sets which appear only once in the

genomes; such words trivially attain the maximum possible

enrichment ratio. (https://github.com/erilllab/refset_enrichment).

Evaluation of codon preferences
Codon preference was measured as the ratio between the

frequency of codons among reference set and genome protein-

coding genes. For individual codons and amino acids, the average

codon frequency in the reference set and in the genome was

computed on a given group of species and normalized per amino

acid. For N-ending codons, the occurrences of any N-ending

codon for one of the two- or four-box amino acids were used to

compute the relative frequency of each ending. To assess the

significance of enrichment/depletion of each possible ending,

reference set and genome frequency for each species were

considered as paired observations for a Wilcoxon signed-rank

test. Significance tests were conducted with the statistical

computing package SciPy (http://www.scipy.org/), using the

Benjamini-Hochberg procedure [45] to control the false discovery

rate at q = 5%. Two- and four-box amino acid groups were

analyzed separately.

Analysis of Spearman rank correlations
Preservation of codon usage bias across multiple species was

assessed by computing pair-wise Spearman rank correlations

between scnRCA values over all conserved ortholog pairs. The

significance of the observed correlations was evaluated by

computing the two-sided p-value given the sample size for each

pair of species using with the statistical computing package SciPy

(http://www.scipy.org/).

Analysis of genome-wide translational selection was performed

by computing the Spearman correlation between scnRCA values

of orthologs or between scnRCA values and expression levels

within a single species over a sliding window of 50% of the data

after sorting by scnRCA value. For each dataset, a randomized

control of equivalent sample size was generated from the bivariate

uniform distribution and used to sample the distribution of the

Spearman r statistic under the null hypothesis that the data are

uncorrelated. The experimental and control distributions of the

Spearman r statistic were compared by binning observations every

five percentiles and computing Wilcoxon ranked-sum tests of each

set of experimental observations against their respective controls.

Code availability
All Python and R scripts used in this work are available for

download at: https://github.com/erilllab/oneill_et_al_2013 under

the GPL3 license.

Results and Discussion

scnRCA enhances the isolation of translational bias in
mutationally biased genomes

To validate the hypothesis that the correction for genomic

biases in scnRCA should enhance its ability to identify the effects

of translational selection, we conducted a comprehensive bench-

marking of scnRCA using available microarray expression data for

moderate- and fast-growing bacterial species with and without

compositional biases (Table S3). The efficiency of the scnRCA

algorithm at isolating the translational bias reference set was

Consistent Patterns of Translational Selection
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assessed by computing the correlation of scnRCA scores with gene

expression values, as well as previously introduced indices that

measure how highly the index scores ribosomal proteins, assess its

correlation with %GC content and evaluate the strength of the

convergence to the reference set [31–33]. In all cases, the

performance of the scnRCA algorithm was compared directly

with the original scCAI implementation [31], with the MILC and

d indices, which use annotated ribosomal proteins to define the

reference set [40,41], and with the CDC index, which computes a

direct estimate of deviation from the genomic average [42].

The comparison between scCAI and scnRCA shown in Figure 1

reveals that the application of nRCA to the iterative algorithm

framework systematically de-correlates the resulting index from

gene %GC3 content (by 22% on average). This indicates that the

content normalization inherent to scnRCA allows the iterative

method to disregard compositional biases, increasing its ability to

converge onto the underlying translational bias. As a result,

scnRCA provides a considerable increase in correlation with

expression data for genomes that exhibit compositional biases. The

decrease in correlation between CUB index and genome %GC

bias introduced by scnRCA can be quite dramatic, as in the case of

Mycoplasma gallisepticum (68% decrease) or Pseudomonas fluorescens

(63% decrease), essentially reversing the inability of scCAI to

identify the translational reference set and correlate with

expression data in these organisms (Figure 1). Furthermore,

scnRCA can also compensate for other types of mutational bias

known to hinder convergence of scnCAI, such as %GC-skew, as

demonstrated by its correlation with expression data in the

Neisseriaceae. In most cases, the improved correlation with

expression data is associated with higher ribosomal scores (Table

S2), which can be used as proxy for translational bias [31,32].

Nonetheless, the results obtained for several species, such as

Bacillus subtilis or Chlamydophila pneumoniae, illustrate that the de-

correlation from %GC3 content is sufficient to improve correla-

tion with expression data (Table S2). This can be true even in the

absence of improved ribosomal scores, a fact that is corroborated

by the comparison of scnRCA with the MILC and d indices.

These indices operate on a pre-defined reference set generated

through orthology or annotation analysis of ribosomal proteins.

The results of scnRCA are comparable to those of MILC and d,

further validating the notion that scnRCA is able to converge on

the underlying translational selection signal in spite of substantial

genomic biases. Adopting the self-consistency framework allows

scnRCA to focus on the translational selection component of

CUB, providing improved correlation with expression data in

comparison to CDC, which is based on a statistic conceptually

similar to scnRCA but is not designed to isolate translational

selection (Figure 1). Even though scnRCA is not prejudiced by a

predefined reference set, the results presented here indicate that its

implicit correction for content biases allows it to isolate transla-

tional bias in the genomes of moderate and fast growing bacterial

species without incurring the risks of directly transporting the

reference set through orthology or annotation of ribosomal

proteins [30]. These findings recommend scnRCA as an unbiased

method for studying translational codon bias across species.

Pseudomonas and Psychrobacter reveal consistent
patterns of reference set enrichment

The genomes of Pseudomonas and Psychrobacter species present

markedly divergent %GC content profiles (62.762.4 and

42.6761.2, respectively) that have resulted in distinct patterns of

codon usage. We exploited the improved performance of scnRCA

on compositionally biased genomes to analyze the 12 available

complete genome sequences of Pseudomonas and Psychrobacter species

and their specific patterns of codon usage. Based on the consistent

correlation of scnRCA with expression data (Figure 1), we used the

self-consistent reference set identified by scnRCA as a proxy to

define the set of genes under maximal translational selection (or

effectome) within each organism [46]. An analysis of enrichment

in gene annotation terms (Figure S1) reveals that the genetic

makeup of the derived reference sets is in accordance with

previous reports [27,32,46,47]. As expected, ribosomal proteins

and translational machinery such as elongation factors make up a

significant fraction of the reference set (36-fold average enrich-

ment). This is complemented by heat and cold shock genes,

oxidative stress enzymes (e.g. superoxide dismutase) and major

metabolic enzymes (e.g. succinyl-CoA synthetase). To assess the

generality of these results, we analyzed the composition of the

reference set inferred by scnRCA among moderate- and fast-

growing species of two distant phyla with similar %GC-biases (the

Actinobacteria and the Firmicutes), as well as representatives of

other Gammaproteobacteria families (Table S3). In agreement

with previous reports [46–48], none of the components identified

above, including cold-shock genes, is enriched exclusively in the

Pseudomonadales, suggesting that the functional composition of

the effectome is largely conserved among moderate- and fast-

growing bacteria.

It seems well established that, in bacteria, %GC content is one

of the main drivers of codon usage bias [3,49], but its specific

interplay with translational bias is not fully understood. Codon

usage bias has long been known to correlate with the concentra-

tion of tRNA species in fast-growing organisms [6,50] and this has

led some authors to propose that tRNA availability is mainly

responsible for the translational component of codon usage bias

[51]. Comparative genomics analyses have also revealed that the

set of most abundant tRNAs remains fairly constant among

bacteria, in spite of significant changes to genome %GC content

[52]. Abundant tRNAs favor U and avoid A in the first anticodon

position, seemingly opting for anticodons capable of reading the

maximum number of synonymous codons [52]. This suggests a

framework in which genomic %GC content modulates a basic

organizational plan laid out by tRNA preferences [49,52,53].

Our analysis of the Pseudomonadales using an unbiased CUB

index provides a unique window into the interplay between

translational selection, tRNA gene copy number and composi-

tional bias. The influence of genomic %GC content on codon

usage is clearly visible when analyzing the %GC content of the

derived reference sets. In both groups, the %GC content of

reference sets (59.460.6% for Pseudomonas and 44.560.09% for

Psychrobacter) is well in line with the genomic average (62.762.4

and 42.6761.2, respectively). This has led to distinct patterns of

codon usage, resulting in a moderate correlation in reference set

codon frequencies (rs = 0.5060.01) between the two genera. A

more detailed analysis, however, reveals both significant differ-

ences and similarities in the adaptive strategies of both groups. The

most substantial differences are located in amino acids encoded by

6 synonymous codons (R, S and L; Figure 2). The Pseudomonas, for

instance, show a preference for the two-box codon AGC to code

for S in the genome, and for the four-box codon UCC to encode

this amino acid in the reference set, whereas the Psychrobacter rely

on UCA and UCU for the reference set and appear to use AGU,

AGC, UCA and UCU similarly for the genome. More dramat-

ically, the Pseudomonas exploit the four-box CUG codon almost

exclusively to code for L, in stark contrast to the Psychrobacter. This

correlates well with the presence of tRNA(CAG) genes in the

Pseudomonas, which are absent in all Psychrobacter species. However,

we find that the overall correlation between tRNA copy number

and the rate at which codons are preferentially used in the

Consistent Patterns of Translational Selection
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reference set is not very strong (rs = 0.2960.03 and

rs = 0.3260.02 for Pseudomonas and Psychrobacter, respectively). In

accordance with previous results [52], tRNA copy number

remains fairly constant, with only a weak pattern of tRNA gene

loss and gain trailing the dominating %GC bias. As a

consequence, we obtained weaker and less consistent correlations

(Drs = 20.1760.03) with gene expression on both groups when

applying the tAI index, based on tRNA abundance [23], than with

scnRCA.

In order to match the %GC content of the genome, reference

sets in Pseudomonas and Psychrobacter must necessarily use different

sets of preferred codons. For instance, C-ending codons show a

consistently higher frequency in both the genome and reference set

of Pseudomonas, whereas U-ending codons are much more frequent

in Psychrobacter. Despite these differences, we observe consistent

trends of reference set codon enrichment (defined as the ratio of

frequencies for each codon between reference set and genome) in

both groups. Among two-box amino acids (C, D, F, H, N, Y, Q, E

and K; Figure 3; Figure S2), C- and A-ending codons are enriched

in the reference set (Wilcoxon signed-rank test p,0.01 in both

cases). The same pattern of C-ending enrichment is observed for

the three-box amino acid isoleucine (I; Figure S3). This is in

agreement with previous results and with the presence in all these

genomes of genes for cognate tRNAs of C- and A-ending codons,

and the corresponding absence of genes for cognate tRNAs of U-

and G-ending codons [13,52,54–57]. In fact, there is a substantial

correlation between reference set enrichment and cognate tRNA

copy number for two-box amino acid codons (rs = 0.6960.03).

This trend is reversed in four-box amino acids (A, G, P, T and V;

Figure 4; Figure S4), where U-ending codons are preferentially

used in the reference set (Wilcoxon signed-rank test p,0.01)

[58][41]. In comparison to two-box amino acids, the enrichment

of U-ending codons might appear counterintuitive because there

are no cognate tRNAs for these codons, which are recognized by

modified tRNAs, in either group of species. Accordingly,

correlation between reference set enrichment and cognate tRNA

copy number for four-box amino acid codons is weak and negative

(rs = 20.1360.03).

Four-box amino acids in the Pseudomonadales hence provide a

clear picture of the complex interplay between compositional bias

and translational selection and its projection as a difference in

magnitude between codon frequency and enrichment. When

coding for threonine (T), for instance, the Pseudomonas show two-

fold enrichment for codon ACU, yet ACC remains the most

frequent codon (82%) in highly expressed genes, as one would

expect given the high genomic %GC content of these organisms

(Figure S4). Conversely, the Psychrobacter display a similar two-fold

enrichment for ACU, but in this case the selective enrichment

leads to ACU being the most frequent threonine codon (62%)

among highly expressed genes. This disparity in magnitudes and

trends helps to explain why some of these patterns were not

detected earlier and illuminates the history of conflicting

arguments regarding the strength of mutational and translational

biases. Depending on how ‘‘optimal codons’’ are defined and what

method is used to infer codon usage bias, one may conclude that

codon usage bias is predominantly dictated by %GC content

[49,53] or translational selection [13,58]. The results of codon

enrichment analysis can be extended to the full group of

Firmicutes, Actinobacteria and Gammaproteobacteria without

loss of generality. In this larger set, we observe also a preference for

C- and A-ending codons (p,0.01 in both cases) and positive

correlation with tRNA copy number (rs = 0.7160.02) in two-box

amino acids, as well as a preference for U-ending codons (p,0.01)

and negative correlation with tRNA copy number (rs =

20.0660.03) in four-box amino acids. The use of scnRCA hence

enables us for the first time to simultaneously detect in a single

analysis all previously reported two-box and four-box patterns of

enrichment across a broad range of phyla and mutational biases,

Figure 1. Benchmarking of codon usage bias indices with expression data. Spearman correlation of scCAI, scRCA, MILC, d and CDC indices
with expression data for different bacterial species as a function of the global %GC content of each species genome. Supporting data for this figure
(number of replicates for expression values, number of annotated ribosomal proteins, etc.) is provided in Table S2.
doi:10.1371/journal.pone.0076177.g001
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corroborating the insights on codon optimality drawn from the

Pseudomonadales and further validating the use of scnRCA as a

tool to probe into the effects of translational selection on genomic

sequences.

The genome-wide distribution of scnRCA values shows
significant conservation across bacteria

The substantial difference in genomic %GC content for

Pseudomonas and Psychrobacter species imposes different constraints

on codon usage bias within and among protein coding genes.

Having analyzed the effect of this mutational bias on specific

codon preferences, we used the computed scnRCA values to

evaluate the impact of %GC content on the genome-wide

Figure 2. Codon and tRNA frequency distribution among six-
box amino acids. Average amino acid-normalized frequencies of
codons in the reference set, of codons in all protein-coding genes and
of gene copy number for their cognate tRNAs. For each codon, the
three leftmost series correspond to values for Pseudomonas species and
the three rightmost to average values for Psychrobacter species. The
amino acid is displayed on the top right. Vertical bars indicate the
standard error of the mean.
doi:10.1371/journal.pone.0076177.g002

Figure 3. Average codon and tRNA frequency distribution for
two-box amino acids. Average two-box codon-normalized frequen-
cies of different ending codons in the reference set and in all protein-
coding genes, and of gene copy number for the different ending
cognate tRNAs. For each codon, the three leftmost series correspond to
values for Pseudomonas species and the three rightmost to average
values for Psychrobacter species. Different codon endings are denoted
by the corresponding IUB representation. The respective amino acids
are displayed on the bottom right. Vertical bars indicate the standard
error of the mean.
doi:10.1371/journal.pone.0076177.g003

Figure 4. Average codon and tRNA frequency distribution for
four-box amino acids. Average four-box codon-normalized frequen-
cies of different ending codons in the reference set and in all protein-
coding genes, and of gene copy number for the different ending
cognate tRNAs. For each codon, the three leftmost series correspond to
values for Pseudomonas species and the three rightmost to average
values for Psychrobacter species. Different codon endings are denoted
by the corresponding IUB representation. The respective amino acids
are displayed on the bottom right. Vertical bars indicate the standard
error of the mean.
doi:10.1371/journal.pone.0076177.g004

Consistent Patterns of Translational Selection

PLOS ONE | www.plosone.org 6 October 2013 | Volume 8 | Issue 10 | e76177



Figure 5. Correlation in scnRCA scores between the Pseudomonas and the Psychrobacter. Plot of average scnRCA scores for each of the 791
identified conserved homologs between Pseudomonas and Psychrobacter species. For each axis, scnRCA values correspond to the average among all
species with available complete genome sequences in the represented genus. Genes corresponding to ribosomal proteins and replication-associated
proteins (e.g. DNA polymerase), as determined by annotation tags, are identified with different markers. Ribosomal proteins were defined as those
having the term ‘‘ribosomal protein’’ in its GenBank annotation. Replication-associated proteins were defined as those having any of the following
terms in their annotation: ‘‘chromosome replication’’, ‘‘chromosome segregation’’, ‘‘DNA gyrase’’, ‘‘DNA polymerase’’ and ‘‘DNA topoisomerase’’.
doi:10.1371/journal.pone.0076177.g005

Figure 6. Species pair-wise correlation in scnRCA values vs. pair-wise correlation in genome codon frequency. Plot of pair-wise
Spearman correlations coefficients among all species for both scnRCA values in orthologous genes (Y-axis) and genome codon frequencies (X-axis).
Correlation of scnRCA values for each pair of species was computed on all available orthologs (i.e. as in Figure 5). For each codon and genome, the
genome codon frequency is defined as the codon frequency over all protein-coding genes in each genome. Correlation in genome codon
frequencies was computed on the 61-component genome codon frequency vector of each species. Several group-specific pairings (e.g. Firmicutes vs.
Pseudomonas) are highlighted using different markers.
doi:10.1371/journal.pone.0076177.g006
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organization of translational bias. Using reciprocal best BLAST

hits to define homologs among all Pseudomonas and Psychrobacter

species, we analyzed the genome-wide distribution of scnRCA

scores among 791 conserved homologs. The results shown in

Figure 5 reveal a remarkable correlation between the scnRCA

values of conserved homologs of Pseudomonas and Psychrobacter, with

a Spearman correlation coefficient of rs = 0.81. In light of the

divergent %GC of the two genera, this correlation cannot merely

be due to sequence-level conservation. Furthermore, analysis of

gene expression data for the four Pseudomonadales species for

which datasets are available shows that pair-wise species correla-

tion coefficients for expression data are also high, even if lower

than those observed for scnRCA (Table S4). This difference is

most likely due to the noisy nature of array data and, in particular,

to low correlation values between P. aeruginosa and other

Pseudomonadales [23]. These results indicate that scnRCA values

capture a relevant component of gene expression that is preserved

among genomes, providing a more resilient indicator of transla-

tional selection.

To gauge the extent to which scnRCA values are conserved

among more distantly related species, we analyzed the correlation

of scnRCA values among the previously defined set of moderate-

and fast-growing species (Table S3). Figure 6 plots the pair-wise

species Spearman correlation coefficients for scnRCA values as a

function of the correlation in genome codon frequencies for each

pair. As expected, organisms belonging to the same phylogenetic

group present the strongest correlations, both in terms of scnRCA

values and genome codon frequencies. For instance, the Pseudo-

monas present an average rs of 0.6860.006 for scnRCA values and

of 0.9860.002 for genome codon frequencies. More generally, the

plot also shows evidence of increasing correlation in scnRCA

values as a result of closer genome codon frequencies (rs = 0.56,

Pearson r = 0.54), but the slope of the linear regression is small

(b = 0.14) and induced mostly by within-group correlations, such

as the Pseudomonas, discussed above. This moderate dependency of

scnRCA correlation on codon frequencies is illustrated by the

relationship between the Psychrobacter and the Gammaproteobac-

teria, which generates two distinct clusters in Figure 6. Psychrobacter

species present significantly better correlation in terms of codon

frequency with other low %GC Gammaproteobacteria, like

Haemophilus influenzae or Vibrio cholerae, but this translates only into

a marginal increase in scnRCA correlation (from an average rs of

0.6060.005 to 0.6660.004). Overall, the plot shows a remarkable

stability in the pair-wise correlation of scnRCA values across

genomes (rs = 0.5660.004) even among distantly related species

with negatively correlated codon usage profiles and genome %GC

contents, such as the Pseudomonas and the low %GC Firmicutes. To

test whether this effect was due solely to correlation in scnRCA

values among highly expressed genes, we performed a sliding-

window analysis of inter-species pair-wise correlations, which

reveals the contribution to the observed Spearman correlation

(Figure 6) from different intervals of scnRCA values. The sliding-

window analysis (Figure 7) reveals that the scnRCA correlation

signal is present and statistically significant throughout the whole

range of scnRCA values (Table S5; Table S7; Figure S5).

Correlation coefficients peak for high scnRCA ranges, but

maintain on average significantly large values for the low scnRCA

ranges, suggesting that the whole genome is under selection for

CUB optimization. This result is supported by an equivalent

sliding-window analysis of the correlation of scnRCA with

expression values for the species analyzed here, which also reveals

lower but consistent and statistically significant correlation of

scnRCA values with expression across the whole range of scnRCA

values (Figure S6; Table S6; Table S7).

To date, most genomic analyses of CUB across bacteria have

focused on a subset of highly optimized genes that can be set apart

from the rest of the genome by algorithmic or statistical means.

For the most part, this core set of genes, or effectome, has been

analyzed by means of Gene Ontology (GO), Clusters of

Orthologous Genes (COGs) or gene annotation word counts

(Figure S1), leading to qualitative assessments of the function and

evolutionary mechanism for selection of these genes [46–48,59].

Here we use scnRCA to conduct for the first time a systematic

analysis of conservation of CUB patterns across multiple bacterial

species. The stability of the observed correlations in scnRCA

values and their presence throughout the entire range of scnRCA

values provide evidence that translational selection operates

consistently on the whole genome. Even though models for the

evolution for CUB predict that the whole genome should be under

selection for CUB, the usually weak correlation of genes with low

index values with noisy expression estimates has prevented a

thorough investigation into the consistency of this effect [23,60].

The genome-wide analysis of conservation of CUB across distant

genomes with divergent %GC content using an unbiased

estimator of CUB provides the means to analyze directly the

degree of translational selection across the genome. Our results

indicate that translational selection is stronger than conventionally

assumed among genes not belonging to the effectome [1,47].

Furthermore, the presence of correlation in CUB values across the

Figure 7. Sliding-window analysis of inter-species pair-wise
correlation. Plot of pair-wise Spearman correlations coefficients (blue)
among all species for scnRCA values (Y-axis) in orthologous genes as a
function of the position of the center of a sliding window (X-axis)
spanning half the total number of pair-wise conserved homologs,
sorted by scnRCA value. The leftmost point on the X-axis corresponds
to the window encompassing the lowest half of the scnRCA values
among the orthologs between any two given species. The rightmost
point on the X-axis corresponds to the window encompassing the
highest half of the scnRCA values among the orthologs between any
two given species. Correlation of scnRCA values for each pair of species
was computed on all available orthologs between both species.
Window positions have been normalized to the total number of
conserved homologs in each pair of species to allow consistent
overlaying. The p-values associated with each Spearman correlation are
reported in Table S5. For each set of pair-wise homologs a randomized
control of equal sample size is also shown (grey). The difference
between the observed and control distributions of the Spearman r
statistic are statistically significant across the whole range of scnRCA
values. The results of Wilcoxon signed-rank tests against the paired
randomized controls are reported in Table S7.
doi:10.1371/journal.pone.0076177.g007
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genome points to the existence of a shared organizational plan for

gene expression among moderate and fast-growing bacteria. This

agrees with and expands on previous results based on the

compositional analysis of effectomes [46,47]. Our results show

that the stability in effectome composition reported in previous

work extends spatially to encompass the whole genome, but also

logically to incorporate preservation of specific optimization

arrangements across genomes. With hindsight, the existence of

such an organizational plan might seem like a foregone conclusion;

moderate- and fast-growing bacteria obviously share a set of basic

metabolic requirements and constraints related to growth and it is

therefore to be expected that these should be reflected in their

genetic organization. However, conservation of broad gene

expression patterns need not necessarily result in highly correlated

CUB values. Our results therefore hint at a fine-grained structure

to the basic expression profile of moderate- and fast-growing

bacteria and pave the way for further analyses of its connection

with metabolic and growth processes.

Supporting Information

Figure S1 Word cloud of enriched annotation terms for
the Pseudomonadales. The word cloud was generated by

constructing a list of terms in which the count of each word is

proportional to its enrichment ratio, using the worldle.net web

service (http://www.wordle.net/). Notable is the predomi-

nance of terms associated with translational machinery; the heat-,

cold- and oxidative-shock responses; and central carbon metabolism.

(PDF)

Figure S2 Codon and tRNA frequency distribution for
two-box amino acids. Average two-box amino acid-normalized

frequencies for codons in the reference set and in all protein-

coding genes, and of gene copy number for the different ending

cognate tRNAs. For each codon, the three leftmost series

correspond to values for Pseudomonas species and the three

rightmost to average values for Psychrobacter species. The respective

amino acids are displayed on the top right. Vertical bars indicate

the standard error of the mean.

(PDF)

Figure S3 Codon and tRNA frequency distribution for
isoleucine. Average isoleucine-normalized frequencies for co-

dons in the reference set and in all protein-coding genes, and of

gene copy number for the different ending cognate tRNAs. For

each codon, the three leftmost series correspond to values for

Pseudomonas species and the three rightmost to average values for

Psychrobacter species. Vertical bars indicate the standard error of the

mean.

(PDF)

Figure S4 Codon and tRNA frequency distribution for
four-box amino acids. Average four-box amino acid-normal-

ized frequencies for codons in the reference set and in all protein-

coding genes, and of gene copy number for the different ending

cognate tRNAs. For each codon, the three leftmost series

correspond to values for Pseudomonas species and the three

rightmost to average values for Psychrobacter species. The respective

amino acids are displayed on the top right. Vertical bars indicate

the standard error of the mean.

(PDF)

Figure S5 Distribution of nRCA values for orthologous
cliques. Distributions of nRCA values for orthologous cliques

shared between the full set of bacterial species analyzed in this

work, sorted by median value.

(PDF)

Figure S6 Sliding-window analysis of correlation be-
tween scnRCA and expression levels. Plot of pair-wise inter-

species Spearman correlations coefficients (Y-axis, blue) assessing

the correlation between scnRCA values and expression levels as a

function of the position of the center of a sliding window (X-axis)

spanning half the total number of pair-wise conserved homologs

sorted by scnRCA value. The leftmost point on the X-axis

corresponds to the window encompassing the lowest half of the

scnRCA values among the orthologs between any two given

species. The rightmost point on the X-axis corresponds to the

window encompassing the highest half of the scnRCA values

among the orthologs between any two given species. Correlation

of scnRCA values with expression data was assessed on all 32

species for which expression data was available (Table S1).

Window positions have been normalized to the total number of

conserved homologs in each species pair to allow consistent

overlaying. The p-values associated with each Spearman correla-

tion are reported in Table S6. For each set of pair-wise homologs a

randomized control of equal sample size is also shown (grey). The

difference between the observed and control distributions of the

Spearman r statistic are statistically significant across the whole

range of scnRCA values. The results of Wilcoxon signed-rank tests

against the paired randomized controls are reported in Table S7.

(PDF)

Table S1 Gene expression data for 32 bacterial species.
Gene expression data was obtained from GEO, selecting for

control samples in experiments performed on exponential-phase

growth, and mapped to GenBank CDS locus tags.

(CSV)

Table S2 Index correlation benchmark with expression
data. Spearman correlation of scCAI, scRCA, MILC, CDC and

Ran & Higgs’ d with expression data for different bacterial species.

The average and standard error of the Spearman correlation rs,

number of array samples (S#) and replicates (R#) and GEO

accession number, are shown together with the ribosomal (Rib.),

strength (Str.) and %GC3 content (Cont.) criteria for the scCAI and

scnRCA methods, the number of annotated ribosomal proteins

(RP#) used for the MILC method, and the genomic %GC content

of each species. The ribosomal criterion (Rib.) is computed as the

mean Z-score of scCAI/scnRCA values for ribosomal proteins

against scCAI/scnRCA values for all protein-coding genes in the

genome. The strength criterion (Str.) is computed as the mean Z-

score of scCAI/scnRCA values for the isolated reference set

against scCAI/scnRCA values for all protein-coding genes in the

genome. The %GC3 content (Cont.) criterion is computed as the

correlation between scCAI/scnRCA values and gene %GC3

content for all protein-coding genes in the genome (see Carbone et

al. (2003) Bioinformatics,19:16, 2005-2015).

(PDF)

Table S3 Doubling times for bacterial species. Minimal

doubling times and reference PMID numbers for the bacterial

species analyzed in this work. Doubling times were extracted from

the literature. Bacteria were defined as moderate-growing if their

doubling times were less than 6 h, and fast-growing if their

doubling times were less than 1 h.

(CSV)

Table S4 Pair-wise correlation in expression and
scnRCA values. Expression and scnRCA pair-wise Spearman

correlation coefficients among Pseudomonas and Psychrobacter species.

(CSV)

Table S5 Statistical significance of pair-wise Spearman
rank correlation coefficients for scnRCA –scnRCA

Consistent Patterns of Translational Selection

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | e76177



correlations. Spearman rank correlation coefficients and

associated p-values for all the Spearman rank correlation

coefficients used to generate Figure 7.

(CSV)

Table S6 Statistical significance of pair-wise Spearman
rank correlation coefficients for scnRCA-expression
correlations. Spearman rank correlation coefficients and

associated p-values for all the Spearman rank correlation

coefficients used to generate Figure S6.

(CSV)

Table S7 Statistical significance of pair-wise correla-
tions in expression and scnRCA values. Distributions of

Spearman rank correlation coefficients for pair-wise scnRCA-

scnRCA and scnRCA-expression correlations in Figure 7 and

Figure S6 (respectively) are compared to the null distribution of

correlation coefficients by generating for each dataset a random-

ized, uncorrelated control dataset of equal size. Experimental and

control correlation coefficients were binned by the midpoint of the

sliding window and compared using Wilcoxon signed-rank tests.

The reported T statistic is the minimum of the sums of the signed

ranks greater or lesser than zero, as given in the SciPy

implementation of the Wilcoxon test.

(CSV)
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