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Abstract

The development of morphological traits occurs through the collective action of networks of genes connected at the level
of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same
node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel
evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about
the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à-brac (Bab)
transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-
specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B)
and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE
underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By
reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we
demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities.
Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known
body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of
evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key
regulatory linkages.
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Introduction

Recurrence is a widespread phenomenon in evolutionary

biology [1], where similar derived traits have often been found

to evolve in parallel. This theme of recurrence extends to the

molecular level, as the same genes are often targeted by

evolutionary change to generate convergent phenotypes [2].

Illustrative examples include Pitx1 for pelvic reduction in

stickleback fish [3], Oca2 for cavefish albinism [4], svb for fruit

fly larval trichome loss [5], yellow for fruit fly wing pigmentation

spots [6], Mc1r for vertebrate melanism [7,8], and ATPa for

insect [9] and RNASE1 for monkey dietary specializations [10].

These examples of mechanistically biased evolution include

gene duplications [9,10], amino acid altering mutations [4,7–

10], and mutations that modify gene regulatory sequences

[6,11,12]. While the phenomenon of recurrent evolution of

regulatory sequences is now well established, a mechanistic

understanding of how transcriptional regulatory sequences

change function is still in its infancy. Specifically, does bias in

the path of evolutionary change extend to the level of individual

protein-DNA interactions in the regulatory sequences that

influence transcription?

Traits are generated during development through the combined

activities of cooperating genes [13–15]. Most genes are composed

of a coding sequence, and non-coding sequences that include one

or more cis-regulatory elements (CREs) that control a gene’s

overall expression pattern [16]. CREs possess binding sites for

numerous transcription factor proteins [17], where each unique

transcription factor and binding site(s) interaction can be

considered a ‘‘regulatory linkage’’. The types of linkages and their

organization form a ‘‘regulatory logic’’ that integrates the

regulatory state of a cell, and thereby directs a spatial and

temporal output pattern of gene expression [15]. For a given trait,

the multitude of genes, their coding and non-coding regions, and

CRE regulatory linkages present an abundance of mutational

targets to alter the phenotype. Hence, it might be expected that

the genetic path of evolution could proceed by many routes and

resultantly, would appear unpredictable in retrospect. However,

mutations that are pleiotropic often reduce fitness [18] and bear

considerable deleterious effects [16]. As a result, evolution may

more readily proceed by paths that minimize pleiotropy [19].

It is unclear whether and how pleiotropy constrains the path of

regulatory logic evolution: the gain and loss of binding sites for

transcription factors. Relatively few cases of CRE evolution have

PLOS Genetics | www.plosgenetics.org 1 August 2013 | Volume 9 | Issue 8 | e1003740



been characterized in sufficient detail [20–28], and often a

connection remains to be made between the causative mutations

and the molecular mechanisms of evolved activity [6,29–38].

Furthermore, a small number of studies have investigated the

pleiotropic consequences of a CRE’s evolution. Thus, an

important research goal is to advance a general understanding

of the paths by which CRE function evolves. Extant CREs appear

to be elegantly built with an intricate regulatory logic of

transcription factor binding sites, and yet, when a CRE’s function

changes, how many steps does it take? Do the relevant mutations

create or destroy binding sites for transcription factors that already

interact with the CRE, or do they represent new factor inputs? If a

model exists where independent paths of evolution can be traced

in parallel, one could assess the general attributes of successful

paths of CRE divergence. One suitable model is the sexually

dimorphic abdominal pigmentation exhibited among species

within the Sophophora subgenus of Drosophila, which includes the

model organism species Drosophila (D.) melanogaster.

The fruit fly abdomen consists of ten abdominal segments

(annotated A1–A10), the first seven of which are covered by dorsal

cuticle plates (tergites). For D. melanogaster, tergite pigmentation is

sexually dimorphic, where the male A5 and A6 tergites are

completely pigmented (Figure 1A) and female pigmentation is

typically restricted to a posterior stripe similar to that observed on

the more anterior A2–A4 tergites of both sexes (Figure 1B). These

sex-specific phenotypes are the outcomes of a regulatory network

that includes prominent genes from the body plan and sex

determination pathways. The HOX protein ABD-B is expressed

in segments A5 and A6 of both sexes [39,40], and positively

activates a melanin synthesis enzyme that generates dark color

[23]. While ABD-B provides body-plan positional information to

activate pigmentation enzymes, their male-limited expression

results from the sexually dimorphic expression of the tandem

duplicate bab1 and bab2 genes (collectively bab, Figure S3A). These

paralogous genes encode the transcription factors Bab1 and Bab2

(collectively Bab) that function as repressors of pigmentation

development [41,42]. In the pupal abdomen, both Bab1 [20] and

Bab2 [42] are expressed in the A2–A7 segments of females,

whereas male expression is limited to segments A2–A4.

Bab expression in female posterior abdominal segments is

controlled by a CRE located in the first intron of bab1 named the

dimorphic element (Figure S3A). This CRE contains regulatory

linkages with the Hox protein ABD-B and sex-specific DSX

protein isoforms through its possession of multiple binding sites for

these two transcription factors. Thus, the dimorphic element

functions as a sexually dimorphic genetic switch controlling Bab

expression. In males, ABD-B and DSXM (male DSX isoform)

binding to this CRE represses Bab expression in segments A5 and

A6; whereas in females, ABD-B and DSXF (female DSX isoform)

binding activates Bab expression at increasing levels from the A5

segment to the more posterior A7 segment [20].

The bab genes have been implicated in both intraspecific and

interspecific pigmentation evolution. Variation in female abdomen

pigmentation exists among D. melanogaster populations [43–46] and

in some cases this variation has been linked to genetic differences

at the bab locus [47,48]. Within the Sophophora subgenus of

Drosophila, large-scale differences in pigmentation have been

attributed to altered dimorphic element activity and consequent

Bab expression [20]. Furthermore, male-specific pigmentation and

underlying dimorphic Bab expression are inferred to be the

derived state, evolving from an ancestor with sexually monomor-

phic Bab expression and pigmentation [23]. This ancestor

possessed a CRE orthologous to the dimorphic element that

drove Bab expression in the A7 and A8 segments (presumptive

genitalia) of females [20], where it presumably regulated the

development of other dimorphic traits [41,42]. In the lineage of D.

melanogaster, the dimorphic element was modified to drive female-

specific expression in the more anterior A6 and A5 segments. This

expanded Bab expression pattern was essential to limit full tergite

pigmentation to the male A5 and A6 segments. Surprisingly, the

ancestral dimorphic element was inferred to have possessed both

the orthologous Dsx binding sites and 13 of the 14 Abd-B sites

found in the D. melanogaster CRE. An amalgam of changes were

introduced along an evolutionary path of greater than 30 million

years to arrive at the derived activity; including Abd-B binding site

number, Dsx site polarity, and the spacing between conserved

binding sites [20]. Whether gains and losses of other regulatory

linkages were a part of this transition remains unknown.

Moreover, the simplicity and multiplicity of the mutations that

occurred over this mesoevolutionary timescale [49,50] inspired

several questions: Do evolutionarily relevant mutations in the

dimorphic element occur over microevolutionary time scales?

Have orthologous dimorphic elements been repeatedly function-

ally modified? Do commonalities exist between independent cases

of dimorphic element evolution?

Here, we implicate alterations in the bab dimorphic element as

an underlying cause of the recurrently evolving diversity of female

abdomen pigmentation at both the intraspecific and interspecific

scales of comparison. Using this system to examine the evolution of

regulatory logic along parallel paths, we characterized the

mutational paths of dimorphic element divergence responsible

for the diversification of intraspecific phenotypes using a gene

reconstruction approach [51]. Inferring the ancestral dimorphic

element sequence of extant D. melanogaster populations, we found

that a small number of functionally-relevant mutations altered the

ancestral CRE’s regulatory activity to generate derived capabil-

ities. Intriguingly, mutations largely avoided the ancestral ABD-B

and DSX regulatory linkages, presumably to preserve the ancestral

function of this CRE in the A7 segment and genitalia where it

presides over other dimorphic aspects of abdominal development.

While not definitive, these results can be viewed to support the

notion that evolution can be biased to follow certain paths and

such biases can pertain not only to certain genes in a network, or

Author Summary

Trait development occurs through networks of genes that
are connected by interactions between transcription factor
proteins and binding site sequences within cis-regulatory
element (CRE) DNA sequences. These interactions enable
CREs to function as switches that control the expression of
a gene(s) they regulate. Little is known about the
molecular paths by which CREs evolve. Here, we identify
a CRE that has repeatedly been the target of mutations
that generate diverse pigmentation phenotypes on the
abdomen of Drosophila melanogaster and its close
relatives. By reconstructing and testing the ancestral form
of this enhancer in vivo, we demonstrate that individuals
from widely distributed Drosophila melanogaster popula-
tions possess modified forms of this CRE. Interestingly, the
majority of this divergence proceeded without modifying
previously identified binding sites for body plan and sex
determination transcription factors. This pattern of ex-
treme functional divergence, with contrasting conserva-
tion of transcription factor inputs may reflect strong
constraint against modifying regulatory sequences that are
required for expression in multiple body regions through
shared binding sites.

Cis-Regulatory Element Hot Spot for Evolution
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particular CREs, but that bias also permeates in how a CRE’s

encoded regulatory logic evolves.

Results

Allelic Variation in a Sexually Dimorphic Cis-Regulatory
Element

Bab expression in the female A5 through A8 abdominal

segments of D. melanogaster is driven by the dimorphic element.

This regulatory activity evolved from an ancestral state limited

to the female A7 and A8 segments since the most recent

common ancestor of D. melanogaster and D. willistoni, species that

diverged over 30 million years ago [20,52]. It remained

unknown whether the functional evolution of this CRE was

limited to mesoevolutionary timescales, or whether recent

transitions in activity occurred over microevolutionary time-

scales to diversify pigmentation patterns. Thus, we surveyed

individuals from geographically diverse populations of D.

melanogaster to identify those that differ in the extent of

dimorphic abdominal pigmentation (Figure S1).

In contrast to the invariant male pigmentation phenotype

(Figure S1 and Figure 1A), the extent of pigmentation varied

greatly among the female A5 and A6 tergites (Figure S1, and

Figure 1B–H). Phenotypes ranged from unpigmented tergites

that bear only a posterior stripe of pigment (e.g. Figure 1B) to

complete A6 pigmentation (Figure 1H), extending in one

instance to the A5 tergite (Figure 1G). We suspected that these

‘‘Light’’ and ‘‘Dark’’ pigmentation phenotypes stem from

differences in Bab expression, due to dimorphic element alleles

with different regulatory activities. Indeed, sequencing of

dimorphic element alleles isolated from twenty seven separate

populations revealed many genetic differences (Figure S2). To

test whether the observed genetic variation could cause

divergent dimorphic element activities, we tested a subset of

these alleles for the ability to drive GFP reporter gene expression

(referred to as regulatory activity) in transgenic pupae. Relative

to a previously characterized dimorphic element allele [20], we

observed female regulatory activities ranging from 182610%

down to 962% (Figure 1B9–1H9), a 20 fold difference between

the extreme alleles. Additionally, the level of dimorphic element

activity generally correlated with the extent of female pigmen-

tation (Figure 1), suggesting that this allelic variation is not

coincidental but contributes to this variable phenotype.

bab Genotypic Variation Underlies Pigmentation
Variation

The correspondence between dimorphic element allele activity

and pigmentation was suggestive of causation. Hence, we

performed a series of genetic tests to further implicate the bab

locus, and more importantly, the dimorphic element. First, we

sought a genetic association between dimorphic element allele

genotype and pigmentation phenotype. Males from a stock that

produces a ‘‘Light’’ female pigmentation phenotype (called Light

1, Figure 1D and S1A) were separately crossed to females from

two different population stocks that exhibit a ‘‘Dark’’ female

pigmentation phenotype (called Dark 1, Figure 1G and S1AM;

and called Dark 2, Figure 1H and S1AJ). F1 siblings were crossed

to derive F2 progeny. The phenotypes of 102 F2 female progeny

from the Light 16Dark 1 cross were evaluated and 25, 54, and 23

respectively had Light, Intermediate, and Dark female pigmenta-

tion (Figure 2B–2D). This near 1:2:1 ratio (chi square p = 0.787) is

indicative that this variable phenotype is largely due to a single

semi-dominant gene. A subset of the F2 progeny were genotyped

for a BstXI restriction fragment length polymorphism (RFLP)

present in the Light 1 dimorphic element allele but not the Dark 1

allele. We found an invariant association between female progeny

with the Light (Figure 2B) and Dark (Figure 2D) phenotypes

respectively with homozygous genotypes for the Light 1 and Dark

1 dimorphic element alleles (Table S1). Moreover, females with an

intermediate phenotype were heterozygous for this RFLP. We also

found a similar genetic association for the F2 progeny hailing from

the cross of Light 1 and Dark 2 (Table S2). After backcrossing the

Dark 1 phenotype into the Light 1 genetic background for ten

generations, we found that two independent backcross lines

retained a Dark 1 bab locus haplotype (Figure S3F). Thus, the bab

locus or something in close linkage causes this strain’s Dark

phenotype.

We performed genetic complementation tests to rule out the

possibility that the genotype-phenotype associations were due to a

variant linked to the bab locus. Light 1 and Dark 1 individuals were

separately crossed to individuals with a bab locus null allele and

pigmentation phenotypes were assessed for F1 progeny. Homo-

zygous bab null mutants exhibit phenotypes present in both sexes,

including fusion of the TS5, TS4, and TS3 leg tarsal segments and

ectopic pigmentation on the A2–A4 segment tergites (Figure 2P

and 2H), and several phenotypes limited to females. These female

phenotypes include male-like pigmentation on the A5 and A6

Figure 1. Abdomen pigmentation correlates with the regulatory activity of dimorphic element alleles. (A) The A5 and A6 segment
dorsal tergites of D. melanogaster males are fully pigmented, (B–H) whereas the female A5 and A6 tergite pigmentation varies from ‘‘Light’’ to a male-
like ‘‘Dark’’ phenotype. (A9–H9) GFP-reporter transgene activity was measured in transgenic pupae at 85 hours after puparium formation (hAPF) and
activity measurements were represented as the % of the D. melanogaster CantonS allele female A6 mean 6 SEM. (A9) The regulatory activity of a male
CantonS pupae. The regulatory activity of alleles from the following locations were measured: (B9) Oaxaca, Mexico (called Light 2), (C9) Crete, Greece,
(D9) Kuala Lumpur, Malaysia (called Light 1), (E9) Mumbai, India, (F9) Kisangani, Africa, (G9) Uganda, Africa (called Dark 1), and (H9) Bogota, Columbia
(called Dark 2).
doi:10.1371/journal.pgen.1003740.g001

Cis-Regulatory Element Hot Spot for Evolution
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tergites, posterior to anterior transformations of the A6, A7 and A8

(genitalia) segment morphologies [41,42] (Figure 2H and 2L).

While the Light 1, Dark 1, and Dark 2 bab loci complemented the

bab null allele (bab-) with respect to the leg, A2–A4 tergite

pigmentation, and female A7–A8 segment phenotypes, only the

Light 1 locus fully-complemented the bab null allele with respect to

female A5 and A6 tergite pigmentation (compare Figure 2E to 2F

and 2G). These same patterns of complementation and non-

complementation were reproduced when Light and Dark lines

were crossed to a deficiency line that included the entire bab locus

(not shown), suggesting that the abdominal pigmentation pheno-

type is not due to mutations in the genetic background of the bab

null allele, but rather allelic variation at bab between Light and

Dark strains. Collectively, the most parsimonious conclusion from

the genotype-phenotype association, genetic mapping, and com-

plementation results is that the genetic basis for these Light and

Dark female pigmentation phenotypes reside largely within the bab

locus.

The failure of Dark lines to complement female A5/A6

phenotypes, whilst otherwise rescuing body-wide phenotypes of

Figure 2. bab locus allelic variation underlies phenotypic variation. (A) The A5 and A6 tergite phenotype for F1 females were intermediate to
those from the parental Light 1 and Dark 1 stocks. F2 females had pigmentation phenotypes that were (B) ‘‘Light’’, (C) ‘‘Intermediate’’, or (D) ‘‘Dark’’.
(E–P) Complementation tests for population stock bab loci with a bab locus null allele. (E) The Light 1 stock complemented the bab locus null allele
with regards to abdomen tergite pigmentation, whereas the (F) Dark 1, and (G) Dark 2 stocks failed to complement the null allele in segments A5 and
A6 but complemented the null allele for the A3 and A4 segments. Light 1, Dark 1, and Dark 2 stocks complemented the bab locus null allele for (I–K)
posterior abdomen phenotypes and (M–O) for the development of the leg tarsal segments. Females with a homozygous bab locus null genotype
displayed (F) ectopic pigmentation on segments A3 through A6, and (L) lacked bristles on the A6 and A7 ventral sternites and the genitalia (g) had
altered bristles and morphology. (P) Individuals with a homozygous bab locus null genotype had tarsal segments 5, 4, and 3 fused, and altered bristle
morphology on tarsal segments 2 and 3. Red arrowheads and black arrows respectively indicate the location abnormal posterior abdomen and tarsus
features.
doi:10.1371/journal.pgen.1003740.g002

Cis-Regulatory Element Hot Spot for Evolution
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the bab null allele, suggested the existence of regulatory mutations

underlying this phenotypic variation. Although a small number (6)

of non-synonymous mutations were found that could potentially

contribute to variation in abdominal pigmentation by altering Bab

protein function (Figure S4), we pursued the hypothesis that

relevant mutations would be located in the dimorphic element

since this CRE controls Bab activity in the segments where bab-

regulated phenotypes vary among the studied populations.

Variation in Bab1 and Bab2 Expression
Considering that the phenotypic effects of these naturally

occurring dimorphic element alleles and pigmentation phenotypes

were restricted to the A6 and to a lesser extent the A5 abdominal

segment (Figure 1), we suspected that mutations in the dimorphic

element could cause the observed differences in pigmentation.

This hypothesis would be supported by differing levels and/or

patterns of Bab expression in the pupal abdominal epidermis for

females that develop different pigmentation phenotypes. Thus, we

characterized the pattern of Bab expression in the abdominal

epidermis at the end of pupal development when tergite

pigmentation is being specified. If the regulatory activity for the

dimorphic element alleles identified in reporter transgene assays

(Figure 1) were indicative of the endogenous Bab expression, then

Bab1 and Bab2 expression should be elevated in females with

Light tergite pigmentation compared to those with Dark

pigmentation. Consistent with this expectation, Bab1 and Bab2

were expressed robustly throughout the A2–A7 abdominal

segments of Light 1 females (Figure 3A and 3F), while Bab1 and

Bab2 expression were reduced in the A5 and A6 abdominal

segments of Dark 1 female pupae (Figure 3B and 3G, red

arrowheads). This reduction corresponds with the reduced

regulatory activity of this strain’s dimorphic element allele

(Figure 1G9) and where the pigmentation develops on adult

females (Figure 1G). Compared to Dark 1 females that possess

expanded pigmentation on the A5 and A6 tergites, expanded

pigmentation is limited to the A6 tergite of Dark 2 females

(Figure 1H). Consistent with the Dark 2 phenotype, the expression

of Bab1, but not Bab2, was reduced in the A6 segment and to a

lesser extent the A5 segment (Figure 3C and 3H). These patterns

of expression are consistent with the finding that the bab1 null

pigmentation phenotype is limited to the female A6 tergite,

whereas a bab2 null phenotype affects both the A6 and A5 tergite

[41]. We also characterized Bab expression in the developing

female genitalia and analia that respectively develop from the A8

and A9/A10 segments. In contrast to the reduced expression seen

in the A5 and A6 segments epidermis of Dark 1 females,

expression in these more posterior structures was comparable to

that observed for Light 1 females (compare Figure 3D and 3I to 3E

and 3J).

Collectively, the genetic and expression data strongly supports

the conclusion that the conspicuous Light and Dark female

pigmentation phenotypes are due, at least in part, to allelic

differences in dimorphic element regulatory activity. We were

interested in revealing how these modified regulatory activities

evolved. To accomplish this, it was essential to know the ancestral

sequence and regulatory state.

Resurrection of an Ancestral Dimorphic Element
Ancestral Sequence Reconstruction (ASR) has been an effective

approach to study the path of protein functional evolution [51,53].

This approach, to our knowledge, had been used only sparingly to

study CRE evolution in Drosophila [36], and primates [34,54],

presumably due to the fact that CRE sequences evolve at an

accelerated rate compared to protein coding sequence [55–57],

making reconstruction untenable when comparing organisms of

distantly-related taxa. In the case here, the dimorphic element

alleles share an ,98% sequence identity (Figure S2) and a most

recent common ancestor of extant Drosophila melanogaster popula-

tions that existed ,60,000 years ago [58]. Hence, we suspected

that the ancestral sequence for these populations could be

reasonably inferred.

The dimorphic elements from 27 populations of D. melanogaster

were sequenced and aligned to those from several outgroup

species. From this alignment (Figure S2), we used the principle of

parsimony to infer the nucleotide state at each position for the

most recent common ancestor of the D. melanogaster populations,

including 52 polymorphic sites; a sequence that was named the

‘‘Concestor element’’ [59]. For this sequence, the ancestral

nucleotide states were unambiguous at 44 of the 52 sites. To test

the robustness of this sequence’s regulatory activity to the

ambiguous eight sites, we tested alternate reconstructions that

differed in the nucleotide states for these sites. We determined the

regulatory activities for these reconstructions were comparable to

that for the Concestor element (See ‘‘Evolutionary Robustness in

Dimorphic Element Reconstruction’’, Figure S2 and S6). There-

fore, we sought to identify which of the 44 unambiguous derived

mutations were responsible for the diverse regulatory activities

possessed by the Light and Dark alleles. From this point forward,

the Concestor element sequence was utilized for the ancestral

sequence and regulatory activity state.

Several observations were made from a comparison of the

Concestor element sequence to the dimorphic element alleles

(Figure 4A–4E). First, the Concestor element possessed all of the

ABD-B (14) and DSX (two) sites that were characterized for the D.

melanogaster CantonS strain sequence [20]. Second, the Light 1, Light

2, Dark 1, and Dark 2 alleles respectively differ from the Concestor

element by 20, 20, 22, and 20 derived mutations (Figure 4A–4E,

vertical red lines), many of which are common to multiple alleles

(Figure S2). Third, we observed an excess of nucleotide

substitutions relative to indel mutations (Figure 4B–4E, thin versus

thick red lines). Fourth, of the known binding sites, the only site

gain/loss event caused by a derived mutation was ABD-B binding

site 10, which was lost in the Dark 1 and Dark 2 alleles (caused by

mutation ‘‘G’’, Figure S2).

With the dimorphic element alleles differing in regulatory

activity by up to 20 fold (Figure 1), we wanted to evaluate how

these activities compare to that of the Concestor element. The

regulatory activities were evaluated for the Light 1, Light 2, Dark

1, Dark 2, and Concestor element in a quantitative reporter

transgene assay [60]. The Concestor element drove GFP

expression in females throughout the epidermis of the A6 and

A7 abdominal segments and the genitalia, and at a comparatively

lower level in segment A5 (Figure 4A9 and 4A0). Compared to the

Concestor element’s regulatory activity, the Light 1 and 2 alleles’

activities were increased in the A6 segment to 18468% and

22068% of concestor, respectively (Figure 4B9 and 4C9).

Moreover, the Light 2 activity was increased in the A5 segment

and expanded into the posterior region of segment A4. Converse-

ly, compared to the Concestor element the A6 segment regulatory

activities for the Dark 1 and Dark 2 alleles were reduced to

5864% and 2763% respectively (Figure 4D9 and 4E9). Addi-

tionally, the range of regulatory activities for the A6 segment was

much greater than that for the A7 segment and genitalia

(Figure 4A0–4E0). These results demonstrate that the ancestral

dimorphic element for extant D. melanogaster populations drove

low, modest, and high levels of bab expression respectively in the

female A5, A6, and A7–A8 segments (Figure 4). This ancestral

regulatory element was modified by mutation events resulting in

Cis-Regulatory Element Hot Spot for Evolution
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derived alleles that include increased, expanded, and reduced

activities in the relatively more anterior abdominal segments. We

next sought to determine which of the derived mutations were

functionally-relevant to the evolved regulatory activities.

Derived Regulatory Activities Stem from Few
Functionally-Relevant Mutations

In order to identify allele sub-regions that possess functionally-

relevant mutations, we created a series of chimeric dimorphic

elements and quantitatively compared their regulatory activities to

that of the Concestor element. Each chimeric element was

composed in part of Light 2 or Dark 1 allele sequence and the

remaining sequence was from the Concestor element (Figure S5).

For the chimeric elements containing some Light 2 dimorphic

element sequence, most of this allele’s derived activity was

conveyed by the central ‘‘core’’ region that is occupied by the

previously characterized binding sites for the ABD-B and DSX

transcription factors. The Light 2 core flanked by Concestor

element sequences had a regulatory activity of 23965%,

compared to 153610% when the Concestor element core was

within Light 2 flanks (Figure S5E and S5F). A similar outcome was

found for the Dark 1 dimorphic element. When this allele’s core

sequence was flanked by Concestor element sequences, the

chimeric element had an activity of 5865%, whereas the

reciprocal swap had no regulatory activity effect (10662%;

compare Figure S5J to S5K). Thus, for these two derived

dimorphic element alleles, their unique regulatory activities

principally stem from mutations in the core region.

The Light 2 core region has seven derived mutations (referred to

as the ‘‘C’’, ‘‘F’’, ‘‘H’’, ‘‘J’’, ‘‘K’’, ‘‘L’’, and ‘‘N’’ mutations, Figure

S2), four of which also reside in the Light 1 core (C, F, K, and N).

We individually substituted each of these mutations into the

Concestor element in place of the ancestral nucleotide, and then

tested whether these substitutions caused measurable effects on

regulatory activity (Figure S6). Large mutational effects were only

measured for the C, F, and L mutations; respectively these

substitutions increased Concestor element activity to 14066%,

16066%, and 21564% (Figure S6G, 5I and 5J). The C mutation

is present in both the Light and Dark alleles being studied (Figure

S2) and hence, cannot account for their differences in regulatory

activity. When the F and L mutation were substituted together,

regulatory activity was measured at a nearly additive 24169%

(Figure S6S). The Light 1 core differs from that of Light 2 by

possessing a derived mutation, called ‘‘I’’ and lacking the L

Figure 3. Population level differences in Bab paralog expression. (A–C) The expression of Bab1 in the dorsal abdomens of female pupae at
85 hAPF. (A) Light 1 females display uniform Bab1 expression throughout segments A2-A6, whereas expression is reduced in the A5 and A6 segments
of (B) Dark 1 and (C) Dark 2 females. (D and E) Expression of Bab1 in the female genitalia (g) and analia (a) at 29 hAPF. (F–H) Bab2 expression in the
dorsal abdomen of female pupae is at 85 hAPF. Bab2 expression is (F) uniform throughout the A2–A6 segments of Light 1 females, (G) reduced in the
A5 and A6 segments of Dark 1 females, and (H) uniform throughout the A2–A6 of Dark 2 females. (I and J) Expression of Bab2 in the female genitalia
(g) and analia (a) is at 29 hAPF. Red arrowheads indicate segments where expression is reduced compared to more anterior segments, whereas
yellow arrowheads indicate the segments where Bab2 is expressed at a higher level than that observed for Bab1 for Dark 2 females.
doi:10.1371/journal.pgen.1003740.g003
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mutation. However, the I mutation had no affect on regulatory

activity when it was substituted into the Concestor element (Figure

S6M). Collectively, the derived regulatory activities of the Light 1

and 2 dimorphic element alleles both require the F mutation

(Figure 5D and 5I), and the further increased and spatially

expanded activity of the Light 2 allele requires the L mutation

(Figure 5E and 5J).

The Dark 1 core sequence possesses six derived mutations

that include: the ‘‘C’’, ‘‘D’’, and ‘‘G’’ mutations, each of which

also reside in the Dark 2 allele, and the ‘‘M’’ mutation that is

unique to the Dark 1. This core also has the ‘‘H’’ and ‘‘K’’

mutations that alter the C and T nucleotide expansions, though

these occur in the Light alleles and were found not to cause

significant regulatory effects (Figure S6L and S6O). Interesting-

ly, the G mutation had no measurable effect on activity (Figure

S6K), although it was the only one found to alter a known ADB-

B site among the surveyed dimorphic element alleles. We

conclude that the diversity of regulatory activities observed did

not involve changes to the regulatory linkage between ABD-B

and the dimorphic element. Testing the D and M mutations

highlighted the functional relevance of the D mutation. When

individually substituted into the concestor element, the D and M

mutations respectively altered regulatory activity to 6864% and

11863% of the Concestor element (Figure S6H and S6Q).

Though, when both the D and M mutations were substituted

together, the net result was an activity of 6863% (Figure S6T).

Thus, the strong effect of the D mutation is epistatic to the

moderate effect of M. As the complete Dark 1 core inserted

between Concestor element flanking sequences had a regulatory

activity of 5865%, one or more core mutations must further

reduce the Dark 1 allele’s activity, either by increments below

our capability to detect or through epistatic interactions.

However, the D mutation is responsible for most of this allele’s

reduced regulatory activity (Figure 5B and 5G).

We next sought to find mutations underlying the further

reduced regulatory activity of the Dark 2 allele. Like Dark 1, this

allele possesses the D mutation, indicating the existence of an

additional functionally-relevant mutation(s) in the core element.

The only mutation unique to the Dark 2 core region was a 9 base

pair deletion referred to as the ‘‘E’’ mutation. When the E

mutation was substituted into the Concestor element, regulatory

activity was reduced to 7862% (Figure 5C and 5H). Moreover,

the Dark 1 allele’s activity was 5864%. The addition of the E

mutation to this allele lowered activity to 3462%, near the

2763% activity of the Dark 2 allele (Figure S6U). Collectively, the

evolutionary paths of the Dark 1 and Dark 2 alleles include one

shared functionally-relevant mutation and one that is unique to

the Dark 2 allele.

Figure 4. Dimorphic element alleles diverged from an ancestral state. (A–E) To scale representations of various dimorphic elements,
including the (A, Concestor) inferred allele for the most recent common ancestor of extant D. melanogaster populations, and alleles from populations
with Light (B, Light 1; C, Light 2) and Dark (D, Dark1; E, Dark 2) female pigmentation phenotypes. Dark blue and yellow rectangles respectively
represent the fourteen ABD-B and two DSX binding sites. Thin and thick red lines respectively represent derived point and indel mutations. (A9–E9
and A0–E0) Comparison of GFP-reporter gene activities in female transgenic pupae was at 85 hAPF. Activity measurements are represented as the %
of the D. melanogaster Concestor element female (A9–E9) A6 mean 6 SEM and (A0–E0) A7 mean 6 SEM. Red upward and downward arrows
respectively indicate segments with increased and decreased regulatory activity. Yellow arrowhead indicates a region of expanded regulatory activity.
Lowercase letter ‘‘g’’ indicates expression in the genitalia.
doi:10.1371/journal.pgen.1003740.g004
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A Derived Mutation Disrupts a Conserved Transcription
Factor Binding Site

The derived E mutation deletes nine base pairs, and the 9th base

pair is the first base pair for a DSX binding site (called Dsx1,

Figure 5C), though this mutation creates a sequence that still

matches the consensus motif for Dsx binding [61]. Mutational

ablation of the Dsx1 site reduced the Concestor element’s

regulatory activity in the female A6 segment to 6766% and

raised activity in males from 662% to 7365% (Figure S6Y-

S6AA). This demonstrated that the Dsx1 site was necessary for

robust female-specific regulatory activity. A priori, the E mutation

could alter the quality of this Dsx1 site or reduce this allele’s

activity through other mechanisms. Such alternate mechanisms

include: removing a binding site for a neighboring transcriptional

activator, the formation of a novel binding site for a repressor, or

by placing the Dsx1 site close to an adjacent transcription factor

site. To obtain evidence supporting either of these mechanisms, we

Figure 5. Functionally-relevant mutations in dimorphic element alleles. (A) Dimorphic element allele phylogeny, including the outgroup
species D. simulans (D. sim.). Alignment of sequences encompassing the (B) ‘‘D’’ mutation, (C) ‘‘E’’ mutation, (D) ‘‘F’’ mutation, (E) and the ‘‘L’’
mutation. Black background color for the E mutation indicates the 1 base pair overlap for the derived deletion and the adjacent DSX binding site. (F–
J) Comparison of GFP-reporter activity in female transgenic pupae at 85 hAPF, represented as the % of the D. melanogaster Concestor element female
A6 mean 6 SEM. Red upward and downward arrow respectively indicate segments with increased and decreased regulatory activity. Yellow
arrowhead indicates expanded regulatory activity. Regulatory activities differing from the Concestor element due to the following derived mutations:
(G) D mutation; (H) E mutation; (I) F mutation; and (J) L mutation. (K) Summary for the female A6 regulatory activities for modifications to the E
mutation region. The Concestor element sequence is provided and the introduced modifications indicated by red bases. (L) Gel shift assays for
annealed oligonucleotide probes containing the wild type (Concestor element, lanes 1–7), E mutation (lanes 8–14), and mutant (Dsx1 KO, lanes 15–
19) Dsx1 binding site. The binding site sequences are included with mutant bases in red. For the Concestor element and E mutation probes, binding
reactions used increasing amounts of the DSX protein (from left to right: 0 ng, 8 ng, 16 ng, 31 ng, 63 ng, 125 ng, 250 ng, and 500 ng). For the Dsx1
KO probe, binding reactions used the following amounts of protein (from left to right: 0 ng, 8 ng, 31 ng, 125 ng, 500 ng). Blue and red arrowheads
point to the respective locations of single or pair of DSX monomers bound to the probe.
doi:10.1371/journal.pgen.1003740.g005
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created and measured the regulatory activities for a set of

modified Concestor elements with alterations to ancestral

sequence at the E mutation region (Figure 5K). First, we

introduced non-complementary transversions in the Concestor

element at the 2nd, 4th, 6th, and 8th base pairs of the E mutation

(E Scramble). Here, the 9th base pair and hence the consensus

DSX binding site was not altered, but the other mutations

would seemingly degrade an adjacent transcription factor

binding site. This set of mutations did not alter Concestor

element activity, indicating the E mutation did not delete a

binding site adjacent to that of the DSX site. To disentangle

regulatory effects due to the loss of sequence next to the Dsx1

site from loss of the 1st base pair of the DSX site, we created two

separate modifications to the Concestor element. One modifi-

cation was a deletion of the first eight base pairs of the E

mutation (called E8Del), and the second removed only the ninth

base pair of the E mutation, which is the first of the Dsx1 site

(called E Dsx1). Surprisingly, the 8 base pair deletion modestly

increased Concestor activity to 11863%, indicating that the E

mutation’s impact was not due to reduced spacing between the

Dsx1 site and a more remote transcription factor binding site.

The other modification, a deletion of only the 9th base pair of

the E mutation, reduced Concestor element activity to 8063%.

This reduction was nearly equal to that induced by the complete

E mutation (Figure 5K). Collectively, these results demonstrate

that the E mutation rendered the Dsx1 site less functional. One

possible mechanism is that the E mutation made a derivative

Dsx1 site with reduced affinity for the DSX protein. In order to

validate this possibility, we compared the binding of the DSX

DNA-binding domain (DBD) to the Concestor element, E

mutant, and knockout (KO) Dsx1 site sequences in gel shift

assays (Figure 5L). The Concestor element sequence was bound

with high affinity by the DSX protein, and specifically as the

KO site sequence is not readily bound (compare 5L lanes 1–7 to

lanes 15–19). In comparison, DSX bound the site with the E

mutation with reduced affinity compared to the wild type site

(Figure 5L, lanes 8–14). A shift of the Concestor Dsx1 site was

evident with as low as 16 ng of DSX protein, whereas binding of

the E mutant site was not detected with this amount of DSX,

but was with 32 ng (compare Figure 5L lane 3 to lanes 10 and

11). From these data, we estimate that the E mutation resulted

in a Dsx1 site with ,50% of the Concestor element site’s affinity

for the DSX protein.

Of the four prominent functionally-relevant mutations identified

for the Light and Dark dimorphic element alleles (Figure 5), only

one affects a known regulatory linkage. Specifically, the E

mutation weakens the regulatory linkage between DSX and the

dimorphic element by creating a lower affinity binding site. The

D, F, and L mutations appear unremarkable compared to the

other mutations that had no measureable regulatory effects (Figure

S6). Moreover, the D, F, and L mutations caused regulatory effects

comparable in magnitude to mutations implicated in the

mesoevolutionary expansion of dimorphic element activity into

the A6 and A5 segments [20]. Hence, it can be concluded that

short mutational paths are sufficient to evolve pronounced

alterations in this CRE’s activity. This conclusion inspired the

hypothesis that changes in female abdominal pigmentation may

frequently occur through the alteration of the dimorphic element

via similarly short paths.

Correspondence between Dimorphic Element and
Interspecific Pigmentation Evolution

In the oriental lineage of the Sophophora subgenus, males of

extant species generally are fully pigmented on the A5 and A6

tergites [23]. Female pigmentation is more variable, ranging from

the complete absence of pigmentation like that seen for D. fuyamai,

to a more male-like pattern like that seen for D. yakuba (Figure 6).

Bab2 expression was found to be robustly sexually dimorphic for

D. fuyamai [42], and Bab1 expression is reduced in the A5 and A6

segments of females (Salomone and Williams, unpublished data).

These observations suggest that differences in Bab expression

contribute to these different female pigmentation patterns.

Multiple mechanisms could underlie these differences in Bab

expression, including a change in the activity of or the expression

pattern for a trans-acting regulator of the dimorphic element (trans-

regulatory evolution). An alternative mechanism is through

changes in orthologous dimorphic elements that result in differing

responses to a conserved set of trans-regulators (cis-regulatory

evolution).

An effective test to distinguish between instances of cis- and trans-

regulatory evolution is to compare the activities of CREs in a

common genetic background and observe whether reporter

expression patterns resemble that of the host species (trans-

regulatory evolution) or the species from which the CRE was

derived (cis-regulatory evolution) [62]. We isolated orthologous

dimorphic elements from D. yakuba, D. fuyamai, and an outgroup

species D. auraria (from the Sophophora montium group) that is

also sexually dimorphic for pigmentation and Bab expression

though limited to the A6 segment [42]. The regulatory activities

for these orthologous CREs were evaluated in transgenic D.

melanogaster pupae and normalized to the Concestor element

(Figure 6). The D. auraria dimorphic element exhibited an A6

segment regulatory activity of 5163% of the Concestor

element’s activity (Figure 6Q). The regulatory activity of the

D. fuyamai element was 209610% (Figure 6O) and extended

into segments A5-A2. The A6 regulatory activity for D. yakuba

was 6267% (Figure 6M). These results support a scenario

where evolutionary changes in the extents of female posterior

abdomen pigmentation for the presented clade (Figure 6)

occurred, at least in part, via cis-regulatory evolution that

altered the activity of orthologous dimorphic elements. Inter-

estingly, of the 14 ABD-B and two DSX sites typical of the D.

melanogaster dimorphic element, the orthologous D. yakuba and D.

fuyamai sequences had the same 13 of the 14 ABD-B sites and

both DSX sites (Figure S2B). Even the D. auraria dimorphic

element, the most distantly related in this comparison, possessed

12 ABD-B sites and both DSX sites. Thus, like the situation for

the D. melanogaster dimorphic element alleles, the functional

diversification of these orthologous CREs occurred largely, if

not entirely, by modifying CRE properties other than the ABD-

B and DSX regulatory linkages.

Discussion

Here, we have shown that the D. melanogaster dimorphic

element, a CRE that regulates a suite of sexually dimorphic

traits, has alleles of strikingly different regulatory activities that

impact just one of these traits, female abdomen pigmentation.

By reconstructing the ancestral dimorphic element sequence for

these alleles and determining its regulatory activity, we were

able to identify the derived mutations responsible for the

divergent activities of various alleles. These functionally-relevant

mutations were few in number, each responsible for measure-

able effects on regulatory activity, and all but one modify a

property other than the known ABD-B and DSX regulatory

linkages identified previously [20]. Furthermore, we discovered

that species related to D. melanogaster harbored evolutionarily

relevant mutations in this same CRE, altering its regulatory
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activity in magnitudes and patterns comparable to the D.

melanogaster alleles. These CRE modifications likely contribute to

the divergent patterns of abdomen pigmentation for females of

these species. These interspecific differences in dimorphic

element activity occurred in the absence of noteworthy

alterations to the known ancestrally encoded body plan and

sex-determination pathway regulatory linkages. As a result, this

CRE’s regulatory activity in the terminal body segments (A7

and genitalia) has been conserved, while activity in more

anterior segments has diverged. Collectively, this study can be

interpreted to support a model where recurrent evolution can be

biased to target certain genes and CREs (Figure 7A–7C), while

preserving certain ancestral linkages (Figure 7D).

Genetic Networks, CREs, and the Predictability of
Evolution

The collaborative interactions of genes during development are

hierarchically structured through the formation of a gene network

at the level of expression [15]. At the top of these networks are

patterning genes, prominently transcription factors that can form

connections directly with CREs of differentiation genes, or with

CRE(s) of intermediate level transcription factors that act as

Figure 6. Interspecific evolution of pigmentation and dimorphic element activity. (A) Phylogeny for species that differ in the extent of
sexually dimorphic pigmentation. (B–I) Dorsal view of adult abdomens, pigmentation of the (E) D. yakuba female A5 and A6 segments is more (D)
male-like, whereas pigmentation is altogether absent on the A5 and A6 segments of (G) D. fuyamai females. (J–Q) Comparison of GFP-reporter gene
activity in female transgenic pupae at 85 hr APF. Activity measurements are represented as the % of the (K) Concestor element female A6 mean 6
SEM for (M) D. yakuba, (O) D. fuyamai, and (Q) D. auraria.
doi:10.1371/journal.pgen.1003740.g006
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‘‘Input-Output switches’’ [15,19]. For the latter, the inputs are

converted into a regulatory output that is directed to multiple

target genes. On one hand, mutations altering a patterning gene

may be sufficient to alter a network’s phenotype, but these highly

pleiotropic mutations tend to alter other phenotypes too, typically

in a deleterious manner [63]. On the other hand, mutations

altering the function of a single differentiation gene, while

generally less pleiotropic often are insufficient to alter a phenotype.

For these reasons, evolution may be biased to target Input-Output

genes, an expectation that has been observed for several traits [19].

In the D. melanogaster pigmentation network, the bab genes

function as an Input-Output node through the dimorphic

element’s integration of patterning inputs that include body plan

(ABD-B) and sex determination (DSX) pathway inputs (Figure 7A).

These inputs are converted into a female-specific pattern of

expression that culminates in the repression of the differentiation

genes yellow and tan in females [23,31] (Figure 7C). In principle,

changes in the expression or activity of a patterning gene,

differentiation gene, or the Input-Output gene (bab) could alter

pigmentation phenotypes. In application though, it is logical that

bab expression and dimorphic element encodings were modified as

those alterations minimize negative pleiotropic effects while being

sufficient to alter the female pigmentation phenotype. For

example, ectopic yellow expression failed to create additional

melanic pigmentation [64,65], and changes in either DSX or

ABD-B expression result in ectopic abdominal pigmentation in

addition to several other trait phenotypes [20,23,66]. Thus,

sufficiency for pigmentation is counterbalanced by the negative

pleiotropic affects for these genes. In contrast, increased Bab

expression in the A5 and A6 segments was sufficient to suppress

pigmentation, and ectopic abdomen pigmentation develops in bab

heterozygous and homozygous null mutant females (Figure 2E and

2H).

Bab though is not dedicated to pigmentation [41,42]. In the

pupa, Bab expression includes the leg tarsal segments, abdomen

epidermis, sensory organ precursor cells, oenocytes, and dorsal

abdominal muscles, and each of these expression patterns are

governed by a modular CRE (s) [20]. Thus, Bab itself is highly

pleiotropic, however it’s CREs are far less pleiotropic. For this

reason, mutations altering female pigmentation would maximize

sufficiency and minimize pleiotropy if they occurred in the

dimorphic element, an expectation borne out in this study.

Pigmentation of the A5 and A6 segments, though, is only one of

many traits influenced by the regulatory activity of the dimorphic

element. This CRE drives Bab expression in the female A7 and A8

segments, regulating numerous female-specific traits, including the

size, shape, trichome density, and bristle morphologies of the

resident dorsal tergites and ventral sternites [41]. As expression in

these more posterior segments require the ABD-B and DSX

regulatory linkages, these regulatory linkages remain highly

pleiotropic. For this reason, it seems logical that evolution would

disfavor mutations that have deleterious consequences to these

linkages and favor mutations that alter other CRE properties. This

scenario reflects how dimorphic element function was modified in

both the intraspecific and interspecific comparisons presented here

as well as the long term conservation of the ABD-B and DSX

linkages previously described [20].

The Relationship between CRE Sequence and Functional
Conservation

Our findings provide a unique contrast with previous investi-

gations of the relationship between CRE conservation and CRE

evolution. Although Drosophila non-coding DNA, including CRE

sequences, evolves slower than synonymous sites [55], several well

studied CREs were found to undergo substantial sequence

evolution without matching regulatory activity evolution. During

Drosophila embryonic development, the pair-rule gene even-skipped

(eve) is expressed in seven stripes along the anteroposterior axis,

with the second stripe of eve expression being specified by the stripe

2 element (S2E) CRE. In D. melanogaster, the S2E possesses binding

sites for four transcription factors that collectively specify the eve

Figure 7. Pigmentation gene network model and the evolution of an ancestral CRE regulatory logic. (A–C) Schematic of the hierarchical
structure of the D. melanogaster pigmentation gene network. Direct regulation is represented as solid connections and dashed connections represent
connections where regulation has not been shown to be direct. Activation and repression are respectively indicated by the arrowhead and nail-head
shapes. This network includes an (A) upper level of patterning genes, including Abd-B and dsx respectively of the body plan and sex-determination
pathways, (B) a mid-level tier that integrates patterning inputs, (C) and a lower level that includes pigmentation genes whose encoded products
function in pigment metabolism. Although Abd-B directly regulates the pigmentation gene yellow, sexually dimorphic expression of the yellow and
tan genes results from the sexually dimorphic output of the bab locus that acts to repress tan and yellow expression in females. (D) A model for the
evolution of diverse dimorphic element regulatory activities. The common ancestor of D. melanogaster populations and related species possessed a
dimorphic element with both DSX and ABD-B regulatory linkages and that drove expression in the female A6–A8 segments. This ancestral regulatory
logic was recurrently modified to increase the levels and expand the segmental domain of activity, or to decrease and contract activity. These
changes occurred amidst the preservation of the core ABD-B and DSX regulatory linkages, perhaps though the loss (TF 3) and/or gain (TF 4) of other
transcription factor linkages.
doi:10.1371/journal.pgen.1003740.g007
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expression output [67,68]. The orthologous S2E from the species

D. pseudoobscura differs in sequence for numerous binding sites, the

overall content of binding sites, and spacing between conserved

binding sites [69,70], yet the orthologous S2Es function equiva-

lently in vivo [71]. Hence, the S2E is an exemplar as to how

selection acting at the level of the character (eve stripe expression)

can accommodate a surprising amount of CRE evolution.

Similarly, CRE sequence evolution without corresponding func-

tional evolution was found between Drosophila species for the

sparkling (spa) CRE that directs cone cell expression for the dPax2

gene [72]. The content and spatial proximity of binding sites for

neurogenic ectoderm enhancers (NEEs) evolved in order to

conserve expression pattern outputs in response to changing

regulatory inputs [24]. These case studies, demonstrate how CRE

sequence conservation is not a prerequisite for CRE functional

conservation.

In contrast, we found little divergence in the content and

sequence of known binding sites for the D. melanogaster dimorphic

element alleles and orthologous sequences. At the sequence level,

these CRE alleles and orthologs respectively posses identities of

,98% and ,80%. Indeed, the vast majority of binding sites in the

dimorphic element have been conserved for over 30 million years,

showing conservation to D. willistoni [20]. At the functional level,

these CREs exhibited striking differences in their regulatory

activities (Figure 4 and Figure 6). Thus, in contrast to S2E, spa,

and the NEEs, the dimorphic element demonstrates how CREs

can derive dramatic changes in function that drive phenotypic

divergence, with little-to-no alteration to the characterized pre-

existing regulatory linkages.

Integrating CRE Evolution into the Context of the Gene
Locus

While the regulatory activity of the Light and Dark dimorphic

elements alleles correlated with female A5 and A6 pigmentation

(Figure 1), some outcomes suggest that these variant sequences are

affected by other features within or perhaps outside of the bab

locus. For instance, the Light 2 and Dark 2 alleles exhibit the

highest and lowest regulatory activities respectively. Surprisingly,

the Light 1 and Dark 1 alleles and their intermediate regulatory

activities are associated with the more extreme Light and Dark

female pigmentation phenotypes. At the expression level, Bab1

and Bab2 showed similar patterns in females from the Light 1

(prominent expression in segments A5 and A6) and Dark 1

(reduced expression is A5 and A6) strains (Figure 3). In the Dark 2

strain, Bab1 but not Bab2 expression was reduced in females.

Several possible explanations might explain the uncoupled

expression of the Bab paralogs in Dark 2. For example, it is

possible that a separate, as of yet unidentified CRE controls Bab2

expression. However, a screen of the entire ,160 kb locus failed

to identify such a CRE [20]. A second possibility is that a

mutation(s) in the Dark 2 allele has paralog-specific regulatory

effects, perhaps by modifying an interaction with the promoter for

bab1 but not that of bab2.

Another possible explanation would involve the existence of

CREs that coordinate communication between bab1 and bab2. In

such a scenario, the Dark 2 allele could contain mutations that

alter interaction with coordinating elements to result in paralog-

specific expression patterns in the female A5 and A6 segments.

This possibility is consistent with observations of bab locus

evolution in another population where females differ in A6

segment pigmentation [47]. For this population, fine-scale genetic

mapping found that three disparate non-coding regions of the bab

locus collaborate to compose a major effect QTL [48]. One of

these regions spans the dimorphic element, though no mutations

reside with this CRE’s core element. The other two regions

include an intergenic sequence between bab1 and bab2 and a large

sequence that includes the bab2 promoter. In the future, it will be

important to understand what roles these other regions serve, and

how they may interact with polymorphisms in the dimorphic

element to produce paralog-specific effects on gene expression.

Resurrecting Ancestral Cis-Regulatory Elements
With the centrality of CREs and their evolution to the

diversification of phenotypic traits [16,73], a major obstacle to

reaching this goal is understanding the processes by which CRE

regulatory logics were modified to contemporary forms [74].

Often studies of CRE evolution involve comparisons of two

divergent derived regulatory states, where one sequence assumes

the role of a surrogate for the ancestral function

[20,21,35,65,74,75]. This approach has been successful in making

inferences about the ancestral states for regulatory linkages and

identifying gains and losses of other key derived transcription

factor binding sites. However, it is important to acknowledge a key

limitation of this comparative approach; a CRE derived from an

outgroup species that serves as a surrogate for the ancestor has also

evolved along a unique lineage since divergence.

Studies into the evolution of divergent protein activities

encountered a similar problem when comparing extant proteins

forms [53]. For several cases, key amino acid residues necessary for

a derived function were identified. When substituted into the

surrogate ancestral protein, these changes were insufficient to

impart the derived function and thereby indicating that the paths

of evolution were more intricate. As a solution, the reconstruction

of ancestral protein sequences, combined with functional testing of

inferred ancestral proteins has allowed a more realistic simulation

of evolutionary events. As a result, inferences about the paths of

protein evolution were made that likely would not have been

found from comparisons of extant proteins [51,53].

A more ideal research program to study CRE evolution would

include reconstruction of ancestral CREs as a starting point to

trace the paths of evolutionarily relevant mutations. To our

knowledge, few studies have used CRE reconstruction [34,36,54].

For one study, a novel optic lobe expression pattern for the D.

santomea Nep-1 gene occurred via the modification of a CRE that

drove an eye field pattern of expression for an ancestor that existed

,0.5 million years ago [36]. Importantly, by reconstructing and

evaluating the ancestral CRE, the wrong conclusion - that this

optic lobe activity evolved de novo – was avoided and the correct

conclusion was found - a latent optic lobe CRE activity was

augmented into a robust derived state. In our study, had the

Concestor element not been reconstructed, the Dark 1 and Dark 2

dimorphic element sequences would have been considered

hypomorphic CRE alleles compared to the robust wild type-like

activity of the Light 1 and Light 2 alleles. The Light alleles

possessed activities more similar to a previously characterized

dimorphic element allele [20] and consistent with the narrative of

D. melanogaster being a sexually dimorphic species where females

lack posterior abdominal pigmentation. Reconstruction of the

dimorphic element revealed a more complex reality, where neither

alleles were good surrogates for the ancestral state. Using ancestral

sequences as a starting point, we found that the evolutionary paths

for these alleles to be short in number of steps (one to two

mutations) and in time frame (in the last ,60,000 years) [58].

Thus, demonstrating how simple and rapid an existing CRE

regulatory logic can evolve.

The cases of Nep1 optic lobe CRE and the bab dimorphic

element evolution demonstrate the utility for reconstructing

ancestral CRE states; though it must be pointed out that these
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cases involved comparisons of very closely-related species/

populations. As a result of these short time frames for divergence,

the extant CRE forms differ at fewer than two percent of the

nucleotide sites. This made possible ancestral sequence recon-

struction by the principle of parsimony. However, not all

compelling instances of functional CRE evolution occur over

similarly short time frames. Therefore, studies will need to

reconstruct CREs that existed further in the past and for which

the method of parsimony will need to be replaced by methods of

maximum likelihood-based inference coupled with the testing of

multiple alternate reconstructions [51].

Materials and Methods

Fly Stocks and Genetic Manipulations
D. melanogaster populations from disparate geographical regions

were obtained from the San Diego Drosophila Stock Center and are

identified in Figure S1. Dark 1 stock was obtained from M. Rebeiz

[29], stocks for other species were obtained from S.B. Carroll.

Reporter transgenes in Figure 1 were introduced into the attP site

VK00006 on the X chromosome [76], all other reporter

transgenes were introduced into the attP2 site on chromosome

3L [77]. Complementation test progeny were obtained by crossing

individuals from a D. melanogaster population stock to a line

possessing the bab locus null allele babAR07 [41]. The homozygous

bab null genotype was a heteroallelic combination of the babAR07

and the deficiency chromosome Df(3L)BSC799 for which the

entire bab locus is deleted.

Sequencing bab Gene Exons and Splice Junctions
bab1 and bab2 protein coding exons from Light 1 and Dark 1 bab

loci were amplified by PCR (Primer details in Table S3), cloned

into the pGEMT-Easy vector (Promega), sequenced by the Sanger

method (DNA Analysis LLC), and the resulting chromatograms

were analyzed using the Staden software package [78].

Introgression, Fine-Scale Genetic Mapping, and
Association Testing

The Dark 1 female phenotype was introgressed for up 10

generations into the Light 1 genetic background. For each

backcross generation, female progeny with a phenotype interme-

diate to that of the Light 1 and Dark 1 females (Figure 2C) were

selected and mated to Light 1 males. Following 10 generations of

backcrossing, male and female progeny were mated to generate

pure lines for which females exhibited the Dark 1 phenotype

(Figure S3F). Four bab locus marker genotypes were determined by

PCR. These markers include #3, a BstXI restriction fragment

length polymorphism (RFLP), and markers #1, #2, and #4 for

which the PCR products differ in size when amplified from the

Light 1 and Dark 1 stocks. PCR primers and population stock-

specific allele sizes are provided in Table S4. For the RFLP

analysis, the BstXI Fwd 1 and BstXI Rvs 1 primers (Table S4)

were used to amplify a ,381 base pair (bp) product from F2

progeny genomic DNA. PCR products were purified and digested

with the BstXI restriction endonuclease and then size fractioned

by agarose gel electrophoresis. PCR products from the Light 1

allele were cut into fragments of 235 and 146 bp, whereas

products from the Dark 1 and Dark 2 alleles remained at 381 bp.

The to-scale representation of the bab locus shown in Figure S3

was made using the Gene Palette software tool [79].

Genetic association tests were performed by crossing individuals

from Dark 1 and separately Dark 2 stocks with individuals from

Light 1 stock. F1 progeny were then intercrossed to generate an F2

generation. The abdomens of adult F2 progeny were imaged and

then used to extract genomic DNA from (DNeasy Blood & Tissue

Kit, Qiagen) for genotypic assays. F2 progeny genomic DNAs

were then genotyped for the BstXI RFLP.

Immunohistochemistry
Pupal abdomens were dissected for immunohistochemistry at

,29 and ,85 hours after puparium formation (hAPF), the former

a time point when Bab1 and Bab2 are expressed in the developing

genitalia and analia and the latter a time point when the

dimorphic element drives high levels of reporter gene expression in

the A5–A7 segments, and downstream targets of bab repression

have begun to be expressed in males [23,31]. The primary

antibodies used were rabbit anti-Bab1 [20] and rat anti-Bab2 [80]

at a dilution of 1:250 and 1:400 respectively. The secondary

antibodies used were goat anti-rat Alexa Fluor 488 (Invitrogen)

and goat anti-rabbit Alexa Fluor 647 (Invitrogen) at a dilution of

1:500. The expression patterns presented are consistent with

patterns seen in replicate specimens.

Ancestral Sequence Reconstruction
Thirty one dimorphic element sequences were isolated from

twenty seven world-wide populations of D. melanogaster. These

sequences were used as an ingroup and aligned to seven outgroup

sequences from related species by the Chaos+Dialign alignment

tool [81]. From this alignment (Figure S2), using the parsimony

principle we reconstructed the sequence (named the ‘‘Concestor

element’’) possessed by the most recent common ancestor of the

surveyed D. melanogaster population stocks. This ancestral recon-

structed sequence was synthesized (GenScript) for use in reporter

transgene analyses.

Outgroup species relationship were based on a published

phylogeny [23]. Polymorphic sites among D. melanogaster popula-

tion alleles are distinguished in the alignment as red text on a black

background. D. melanogaster dimorphic element alleles in the

alignment are referred to as mel.##.#, which refers to the species

name, stock number (from the San Diego Drosophila Species

Stock Center), and the clone number assigned to the sequence

cloned into the BPS3aG vector. Sequence references that include

‘‘Ug’’, were isolated from chromosome extractions from a Uganda

Africa population [29,82]. Orthologous dimorphic element

sequences for outgroup species are referred to by the species

three letter abbreviation and clone number assigned to the

sequence when cloned into the BPS3aG vector.

Derived mutations in the region where characterized ABD-B

and DSX binding sites reside [20], referred to as the ‘‘core’’

(Figure S5), are identified by a alphabetic letter designation above

the nucleotide position (Figure S2). Polymorphic sites in regions

flanking the core were assigned a numerical designation that is

listed above the variable nucleotide position in the alignment. The

characterized binding sites for ABD-B (14 sites for D. melanogaster)

are indicated by white text on a blue background, whereas the two

DSX binding sties (Dsx1 and Dsx2 sites) are indicated by black

text on a yellow background. The sites were previously found to be

bound by these transcription factors in vitro [20] and their

sequences respectively match the empirically derived consensus

motifs for ABD-B (TTTAY) and DSX (RNNACWAWGTNNY)

[61,83]. Ambiguously reconstructed Concestor element nucleotide

states are indicated as blue or black text on a gray background.

The ggcgcgcc and cctgcagg sequences respectively at the 59 and 39

ends of the dimorphic sequences are not part of the endogenous

bab sequences, but are respectively AscI and SbfI restriction

endonuclease sites that were included by PCR for cloning into

the BPS3aG vector. The polymorphic BstXI restriction endonu-
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clease site (CCANNNNNNTGG) is indicated by white text on a

dark red background (Figure S2).

Reporter Transgenes
GFP reporter transgenes were used as a proxy to measure the in

vivo gene-regulatory activity of CREs. In brief, CREs are cloned

into a vector upstream of the green fluorescent protein (GFP)

coding sequence forming a ‘‘reporter transgene’’. Transgenes were

individually inserted into the D. melanogaster germline at the same

genomic location via site-specific integration methods to avoid

confounding position effects, which permits a quantitative

comparison of CRE regulatory capabilities [20,60,77] (BestGene

Inc.). All dimorphic element sequences were amplified using the

sub1orthoF1 and dimorphic Rvs1 primers that were designed to

sequences conserved between species from the most divergent

Sophophora lineages (Table S5). Dimorphic elements were cloned

into the AscI and SbfI sites in the vector BPS3aG, a vector derived

from the S3aG vector [60] by the inclusion of a 119 bp sequence

from the bab2 promoter inserted between the BamHI and XhoI

sites.

Regulatory activities were determined as the mean GFP

intensities and standard error of the mean (SEM) for female

dorsal abdominal segment A6 expression as previously described

[20,60]. For each transgene, a preliminary analysis was done for

several independent transgenic lines to gauge the level and pattern

of activity and variation between replicate specimens. Regulatory

activities were then determined using three or more newly

acquired specimens that were at the same developmental time

point (85 hAPF). The samples sizes (n) for Figure 1A9–1H9

respectively were: 5, 8, 9, 4, 6, 8, 11, and 4. The samples sizes (n)

for Figure 4A9–4E9 respectively were: 34, 9, 6, 6, and 3. The

samples sizes (n) for Figure 5F–5J respectively were: 34, 10, 6, 11,

and 14. In Figure 5K, the n values for Concestor, E scramble,

E8Del, Dsx KO, E Dsx1, and Concestor+E respectively were: 34,

15, 28, 23, 22, and 6. The samples sizes (n) for Figure 6K, 6M, 6O,

and 6Q respectively were: 9, 3, 6, and 18. The samples sizes (n) for

Figure S5B–S5L respectively were: 6, 6, 6, 10, 7, 6, 6, 6, 8, 14, and

6. The samples sizes (n) for Figure S6A–S6AA respectively were:

34, 44, 6, 9, 6, 3, 45, 10, 6, 11, 12, 14, 15, 22, 23, 14, 22, 12, 13,

30, 21, 15, 28, 22, 23, 17, and 6. Activities reported in Figure 1

were normalized to an allele from the CantonS strain [20]. All other

regulatory activities used the Concestor element transgenic lines

for normalization.

Derived mutations that alter dimorphic element function were

mapped by the construction and transgenic evaluation of chimeric

reporter transgenes [74]. In brief, a series of chimeric dimorphic

elements were constructed in which a broad region(s) from the

Concestor element was combined with the complementary region

from a Light or Dark dimorphic element allele. Regions of alleles

sufficient to impart some of the evolved activity on an otherwise

Concestor element were refined to find smaller regions responsible

for or contributing to the activity differences. This culminated with

tests of individual mutations.

Evaluating Robustness in Dimorphic Element
Reconstruction

Ancestral sequence inferences occur with a certain degree of

ambiguity that can result in incorrect evolutionary conclusions.

One way to estimate the confidence in a particular reconstruction,

is to test the function of other possible ancestral sequences [51]. In

the reconstructed Concestor element sequence, we were uncertain

of the ancestral nucleotide state at eight sites (sites 1, 17, 19, H, K,

27, 30, and 31; Figure S2A). Two of these sites were the ‘‘H’’ and

‘‘K’’ mutations that respectively occur at repeat tracts of C and T

nucleotides. The difference in number of nucleotides among the

surveyed alleles ranged between 0–7 for the C tract and 0–3 for

the T tract (Figure S2). Length differences occur in the Light 1

allele and both Dark alleles, suggesting these differences would not

be responsible for the allele-specific regulatory activities. To test

this suggestion, we made two modified Concestor elements, one

where four C nucleotides were added to the H mutation site, and

the other where three T nucleotides were added to the K mutation

site. These alterations had no significant effect on the Concestor

element’s regulatory activity (Figure S6L and S6O), thus,

supporting that this reconstruction was robust to inference

uncertainty at these two sites, and ruling out the H and K

mutations as being functionally-relevant. We also synthesized an

ancestral sequence, called Concestor 2, which differed from the

Concestor element at six sites (Figure S2; sites 1, 17, 19, 27, 30,

and 31). While this sequence had an activity of 12561% of the

Concestor element (Figure S6B), this difference was quite modest

compared to the activities of the Light and Dark alleles. Moreover,

this result supported the evolutionary conclusion that the

regulatory activity of the dimorphic element possessed by the

most recent common ancestor of the surveyed population stock

alleles was intermediate to the alleles with reduced and increased

activity in the female A6 segment. Chimeric constructs and tests of

derived mutations were done using the Concestor element

sequence.

Gel Shift Assays
Gel shift assays used the DSX DNA-binding domain proteins

and wild type and mutant Dsx1 sites as previously published [20].

Sequences for oligonucleotides used for gel shift assay probes are

presented in Table S6. Reverse complementary oligonucleotides

were synthesized (Integrated DNA Technologies) that contain the

Concestor element, E mutation variant, and a null mutation for

Dsx1 site sequence, each flanked by endogenous dimorphic

element sequence. Each oligonucleotide was biotin-labeled on

their 39 end using the DNA 39 End Biotinylation Kit (Thermo

Scientific). Labeled complementary oligonucleotides were an-

nealed by standard protocol to make binding sites for gel shift

assays. Labeling efficiency for each binding site was determined

using a quantitative Dot Blot assay (DNA 39 End Biotinylation Kit,

Thermo Scientific). All gel shift reactions included 20 fmol of one

labeled binding site and GST-DSX DNA Binding Domain (DBD)

fusion protein [20] in General Footprint Buffer (50 mM HEPES

pH 7.9, 100 mM KCl, 1 mM DTT, 12.5 mM MgCl2, 0.05 mM

EDTA, 17% glycerol). For each binding site, a reaction was done

that included an amount of DSX protein ranging from 500 ng

down to 8 ng. For each binding site, a control reaction was done

that lacked DSX protein. Binding reactions were carried out for

30 minutes on ice. Reactions were then separated through a 5%

non-denaturing polyacrylamide gel for 2 hours at 200 V. Follow-

ing electrophoresis, reactions were transferred and cross linked to a

Hybond-N+ membrane (GE Healthcare Amersham) for chemilu-

minescent detection using the Chemiluminescent Nucleic Acid

Detection Module and manufacture’s protocol (Thermo Scientif-

ic). Chemiluminescent images were taken using a BioChemi gel

documentation system (UVP). The results shown in Figure 5 were

representative of those obtained in independent replicate exper-

iments (n = 3).

Imaging of Fly Abdomens
Whole-mount images were taken using an Olympus SZX16

Zoom Stereoscope outfitted with an Olympus DP72 digital

camera. Projection images for immunohistochemistry and reporter

transgenes where obtained using an Olympus Fluoview FV 1000
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confocal microscope and software. All TIFF images used in a

specific comparison were processed through the same modification

using Photoshop CS3 (Adobe).

Supporting Information

Figure S1 Abdomen pigmentation phenotypes for Drosophila

melanogaster population stocks. (A-AN) Whole mount images of

adult male and female dorsal abdomens. Geographic locations for

the populations from which lab stocks were started are listed and,

when applicable, in parentheses are the Drosophila Species Stock

Center stock numbers. Representative images for the stocks

referred to as (A) Light 1 population, (D) Light 2, (AM) Dark 1,

and (AJ) Dark 2.

(TIF)

Figure S2 Sequence alignments for dimorphic elements. (A)

Annotated alignment of dimorphic elements used to reconstruct

ancestral sequences (Concestor and Concestor 2) from extant D.

melanogaster populations. Dimorphic elements from D. mauritiana

(mau.5), D. sechellia (sec.38), D. simulans (sim.33), D. yakuba

(yak.25), D. lucipennis (luc.41), D. eugracilis (eug.20), and D. fuyamai

(fuy.9) were used as out groups. (B) Annotated alignment of

orthologous dimorphic elements from D. melanogaster Light 1

allele, D. yakuba (D. yak), D. fuyamai (D. fuy), and D. auraria (D.

aur). White font on purple background indicates the AscI and

SbfI restriction enzyme sites that were introduced for cloning

purposes. Red font on black background indicates polymor-

phisms among the population-stock alleles. At the top of

alignment is the number or letter designation assigned to each

polymorphism. Ambiguous sites in the reconstructed concestor

sequences are indicated by a gray background color. Charac-

terized ABD-B and DSX binding sites are indicated respectively

by white font on a blue background and black font on a yellow

background. The BstXI restriction enzyme site used for

genotyping is indicated by white font on a maroon background.

(DOC)

Figure S3 Mapping of the bab genotype-phenotype associa-

tion. (A) To scale representation of the ,155 kb bab locus,

where the bab1 and bab2 genes are situated between the

CG13912 and trio genes. Exons are indicated as the tall

rectangles, and sites and directions for each gene’s transcription

are indicated by the black arrows. The location of polymorphic

markers used to establish bab loci haplotypes are indicated by

‘‘1’’, ‘‘2’’, ‘‘3’’, and ‘‘4’’, and downward projecting red lines.

Polymorphism 3 is the BstXI site polymorphism that resides

within the Light 1 and Light 2 dimorphic element alleles. Blue

dot with arrow indicates location of the dimorphic element.

Representative female phenotypes (B–F) for the A5 and A6

segment tergites (Left) and the inferred bab locus haplotypes

associated with the pigmentation phenotype (Right). (B) Dark 1

and (C) Light 1 specimens were homozygous for alternate

nucleotide states at the four bab locus markers, establishing a

Dark 1 and Light 1 haplotypes (Black and Yellow bars

respectively). (D) Female F1 progeny from Dark 1 and Light 1

cross were heterozygous for bab locus markers. (E) Phenotypi-

cally Dark F2 progeny from parental Dark 1 and Light 1 cross

were homozygous for the Dark 1 nucleotide state at each of the

four evaluated bab locus markers. (F) Following 10 generations

of backcrossing the Dark 1 phenotype into the Light 1 genetic

background, a pure line was established where females exhibit

the Dark 1 phenotype. This line was homozygous for the Dark 1

nucleotide state at each of the four evaluated bab locus markers.

(TIF)

Figure S4 Protein coding sequence variation for the bab alleles.

To scale representations of the (A) Bab1 and (B) Bab2 proteins,

including the BTB Domain (red) and Bab conserved domain (CD,

blue). The positions of nonsynonymous differences between the

Light 1 and Dark 1 sequences are annotated and compared to the

amino acid states for the D. melanogaster genome strain and the

outgroup species D. sechellia. The aligned DNA sequences for (C)

bab1 and (D) bab2 protein-coding exons and adjacent splice donor

and acceptor sequences (shown with black text on gray

background.

(DOC)

Figure S5 Chimeric dimorphic elements map functionally-

relevant derived mutations to the core region. (A) To scale

representation of the dimorphic element, with ABD-B and DSX

binding sites shown as blue and yellow rectangles respectively.

Green dashed lines indicate the positions where central core

dimorphic element sequences were joined with flank sequences.

Blue dashed line indicates the position where left and right halves

of various dimorphic elements were joined. (B–L) GFP-reporter

gene activity in female transgenic pupae at 85 hAPF. Activity

measurements are represented as the % of the D. melanogaster

Concestor element female A6 mean 6 SEM. The illustration

above each image indicates the sequence composition of the

evaluated dimorphic elements. Gray, yellow, and brown colors

respectively indicate sequence from the Concestor element, Light

2 dimorphic element, and the Dark 1 dimorphic element.

(TIF)

Figure S6 Regulatory activity effects of derived dimorphic

element mutations. (A-AA) GFP-reporter gene activities in

female transgenic pupae at 85 hAPF. (A) The Concestor

element’s mean activity measurement in the dorsal A6 segment

was set as 100%, all other regulatory activities (B-AA) are

reported as a percentage of the Concestor element’s activity 6

the standard error of the mean (SEM). For each reporter

transgene, a representative image is presented. (C–F) Activities

for population stock dimorphic element alleles. (G–R) Activities

for Concestor elements with a substitution of a single mutation.

(S and T) Activities for Concestor elements substituted with two

Light 2 (S) and two Dark 1 (T) derived mutations. (U) The

regulatory activity of the Dark 1 allele that included the E

mutation. (V) The Concestor element’s regulatory activity when

the native sequence at the site of the E mutation was altered by

non-complementary transversion at every 2nd base pair. (W)

The Concestor element’s regulatory activity when the first 8 of 9

base pairs of the E mutation were deleted. (X) The Concestor

element’s regulatory activity when only base pair 9 of the E

mutation was deleted. (Y) The Concestor element’s regulatory

activity when the Dsx1 Site was mutated. (Z) The Concestor

element’s regulatory activity in males when the Dsx1 Site was

mutated. (AA) The Concestor element’s regulatory activity in

males relative to its activity in females.

(TIF)

Table S1 Association between pigmentation phenotype and bab

dimorphic element genotype.

(DOC)

Table S2 Association between pigmentation phenotype and bab

dimorphic element genotype.

(DOC)

Table S3 Primers used to PCR amplify D. melanogaster bab

protein coding exons and their splice junctions.

(DOC)
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Table S4 Primers used for PCR-based genotyping of the D.

melanogaster bab locus.

(DOC)

Table S5 Primer combinations used to amplify and clone

dimorphic element alleles and orthologous sequences.

(DOC)

Table S6 Oligonucleotides used to make gel shift assay binding

sites.

(DOC)
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