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ABSTRACT

Structural variation is an important cause of genetic
variation. Whole genome analysis techniques can
efficiently identify copy-number variable regions but
there is a need for targeted methods, to verify and
accurately size variable regions, and to diagnose
large sample cohorts. We have developed a techni-
que based on multiplex amplification of size-coded
selectively circularized genomic fragments, which is
robust, cheaper and more rapid than current multi-
plex targeted copy-number assays.

INTRODUCTION

Genetic variation occurs on multiple levels, from single
nucleotide polymorphisms (SNPs) to larger events invol-
ving contiguous blocks of DNA sequence that vary in
copy number between individuals. The structural diversity
in the human genome is much higher than previously
assumed, and attracts an increased interest within the
genetics community. It is now becoming increasingly clear
that submicroscopic variations are major contributors to
genetic diversity and human disease (1,2).

The interest in copy-number variation (CNV) has led to
the establishment of a number of analytical methods, using
either global or targeted approaches. Microarray-based
comparative genome hybridization (array-CGH) is a
commonly used global approach to CNV detection (3,4),
enabling genome-wide scans for detection of novel CNVs.
CGH arrays are manufactured with different resolution
and coverage, using different approaches to probe genomic
samples, ranging from BAC clones to short oligonucleo-
tides attached to the array surface (5). High-throughput
SNP analysis can also be employed for CNV-detection, as
revealed by long stretches of apparently homozygous loci
or unusual heterozygous signal ratios (6,7). Although
global array-based approaches can provide high resolution
data on CNVs in individuals, there remains a need for

simple, cost-efficient, accurate methods to validate and test
candidate CNVs across larger populations.
One established targeted approach for CNV analysis is

quantitative PCR (qPCR) (8). However, this technique
requires setting up a large number of replicate reactions
to score individual deletions and duplications, and is
generally not suitable for multiplexing. Similarly, fluores-
cence in situ hybridization (FISH) is a labor-intensive
technique which is not usually highly multiplexed, though
it is well-established in diagnostics laboratories. Examples
of multiplexed targeted copy-number analysis approaches
are Quantitative multiplex PCR of short fluorescent frag-
ments (QMPSF) (9), multiplex amplifiable probe hybridi-
zation (MAPH) (10) and multiplex ligation-dependent
probe amplification (MLPA) methods (11–13). In MLPA,
which has become perhaps the most commonly used one,
up to 40 loci can be analyzed in parallel.
Here, we present an approach based on the selector

technique (14), called multiplex ligation dependent
genome amplification (MLGA). In contrast to MLPA,
genomic DNA is amplified rather than probe molecules,
and a single probe is required for each target instead
of two. This leads to increasing reaction kinetics and
decreasing probe amplification background. Furthermore,
these shorter probes are easily manufactured by conven-
tional oligonucleotide synthesis. These properties allow
for cost-efficient design of custom MLGA assays with a
short turnover time. This is demonstrated in an accom-
panying paper, where a candidate duplication was verified,
sized, and diagnosed in a very cost-efficient approach
(Salmon Hillbertz,N.H.C. et al., Nat. Genet. in press).

MATERIALS AND METHODS

Selector probe design

A set of 14 human target genes were chosen on five
different chromosomes (Table 1). Sequences for each
target were collected from the Ensembl database (www.
ensembl.org, assembly NCBI 36, Oct 2005). These
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sequences were processed in the PieceMaker software (15)
to generate a set of restriction fragments using a
restriction enzyme of choice. A single fragment for each
target sequence was then chosen in such a way that the
fragments in each pool were between 100 and 400 nt in
length with each fragment having a different length, with a
minimum size difference of 6 nt.
Selector probes serving as templates for the circulari-

zation of each chosen target fragment (Table 1) were
designed using the ProbeMaker software (16). Each
selector consists of two synthetic oligonucleotides; a
target-specific selector probe (70–74 nt), and a universal
vector oligonucleotide (34 nt). Oligonucleotides were
synthesized by DNA Technology A/S, Denmark
(Table 2). The central part of each selector probe
is complementary to the vector oligonucleotide so that
hybridization between the two generates the recognition
sequence for the Hind III restriction enzyme and a
universal primer pair site for parallel PCR amplification.

The ends of the selector probes (18–20 nt each) have
sequences complementary to the ends of the restriction
fragments targeted for selection.

DNA samples

Six genomic DNA samples were extracted from blood
(Flexigene, Qiagen), collected with the appropriate per-
missions from individuals diagnosed with Down syn-
drome, and admitted to the Department of Clinical
Genetics, Uppsala University. DNA samples were also
extracted from the aneuploid cell cultures NA04626,
NA01416 and NA06061 (Coriell Cell Repositories) with
3, 4 and 5 X-chromosomes. Pooled samples of male and
female DNA from Promega (cat# G147A 20745001, cat#
G152 20215001) were used as references.

MLGA

Restriction digestion was performed for 30min at 378C
using 8 U of restriction enzyme Mnl I (Fermentas) and
200 ng genomic DNA in 5 ml of NEB4 buffer (New
England Biolabs) supplemented with 0.1mg/ml BSA. The
restriction enzyme was inactivated during 5min at 958C.
Much less DNA can be used, however, and as little as
12.5 ng genomic DNA has been used in successful assays
(Salmon Hillbertz,N.H.C. et al., Nat. Genet. in press).

Circularization of restriction fragments was performed
by adding 10 ml of a solution containing 33 nM vector
oligonucleotide, 0.15 nM of each selector, 14.5mM
MgCl2, 1.2mM NAD, 0.3U/ml Ampligase (Epicentre)
and 0.75�PCR buffer (Invitrogen) to the restriction
digested DNA. The reactions were incubated with the
following temperature profile: 958C for 5min, followed by
three cycles of 758C 5min, 658C 5min, 608C 5min, 558C
5min and 508C 10min. To enrich for circularized DNA,
15 ml of a solution containing 7.5U exonuclease I (New
England Biolabs), 0.13M Tris–HCl (pH 9.0), 3.4mM
MgCl2 and 0.02mg/ml BSA was added. The reaction was
incubated at 378C for 30min, followed by 708C for
10min to inactivate the enzyme.

Table 2. List of oligonucleotides (selectors, vector and primers) used in the MLGA protocol

Oligonucleotide Sequence (50 to 30)

AR GAAATCCTACCCTCCTCTTTACGATAACGGTAGAAAGCTTTGCTAACGGTCGAGTCTTGTAAGTCAAACATTAA
SRY_2 AGCCGAAAAATGGCCATTACGATAACGGTAGAAAGCTTTGCTAACGGTCGAGGCGATCAGAGGCGCAAGA
MADH4 TTAAACAGGCTGAATACTGGACGATAACGGTAGAAAGCTTTGCTAACGGTCGAGTGCTATTAATTGTAAGCTGT
SIM2 GCTGGAACATCCTCCTAAAAACGATAACGGTAGAAAGCTTTGCTAACGGTCGAGCTCCAGAGGCGGTGGCTC
L1CAM AACCAACTCCTCTTCTGCACGATAACGGTAGAAAGCTTTGCTAACGGTCGAGGGGACATGAGGCCATGAC
SOD1 TAGAGCGCTGAAGCCGGAACGATAACGGTAGAAAGCTTTGCTAACGGTCGAGTAGAACAGAGGCCAGCAA
TYMS TCTAAGCAGAAAGGTGGGTACGATAACGGTAGAAAGCTTTGCTAACGGTCGAGCCGCACTCGCTTGTGGTA
ABCC4 GGGTTTTCCCCTCATTCTTACGATAACGGTAGAAAGCTTTGCTAACGGTCGAGTGCTGTTGAGGTACATACAG
SERPINB2 TTGGCACAGGGAAGGAAGACGATAACGGTAGAAAGCTTTGCTAACGGTCGAGCAGGTATACCTGTTGTGAAT
BRCA2 ACATATTCTTCCTCATGTTGACGATAACGGTAGAAAGCTTTGCTAACGGTCGAGACAAAGGGAGGTGATCTAAG
STCH TCATGGTGATGGTGAAGAAAACGATAACGGTAGAAAGCTTTGCTAACGGTCGAGAGTTGAAGAGGTTTGGGC
SRY_1 ACTTACAGCCCTCACTTTCACGATAACGGTAGAAAGCTTTGCTAACGGTCGAGAGGCGAAGATGCTGCCGA
RPS6KA3 TTACTATCAGCCTCACATTTACGATAACGGTAGAAAGCTTTGCTAACGGTCGAGACCCCAGGTTGCTTACAT
NFATC1 CCTGGGGAATTCAGGGGCACGATAACGGTAGAAAGCTTTGCTAACGGTCGAGGGTATTTTCAAAGCCACTTG

Vector CTCGACCGTTAGCAAAGCTTTCTACCGTTATCGT
Fwd. primer AGCTTTGCTAACGGTCGAG
Rev. primer AGCTTTCTACCGTTATCGT

Table 1. List of target loci for the MLGA probe set

Gene/Probe name Chromosome Position in chromosome

Start (nt) Length (nt)

AR X 66 684 790 102
SRY Y 2715 319 112
MADH4 18 46 820 996 119
SIM2 21 37 017 473 132
L1CAM X 152 785 534 141
SOD1 21 31 954 636 157
TYMS 18 649 034 164
ABCC4 13 94 484 282 196
SERPINB2 18 59 706 873 213
BRCA2 13 31 792 206 236
STCH 21 14 669 412 252
SRY Y 2714 956 290
RPS6KA3 X 20 079 076 339
NFATC1 18 75 257 833 358

Chromosome position according to Ensembl assembly NCBI 36,
October 2005.
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Amplification of selected targets was performed by
adding 6 ml of the reaction (�40 ng DNA) to 19 ml PCR-
mix, containing 0.9�PCR buffer (Invitrogen), 0.66mM
MgCl2, 0.33mM dNTP, 0.13 mM each of forward and
reverse primer, 5U Hind III (Fermentas) and 0.5U
Platinum Taq DNA polymerase (Invitrogen). Hind III
was added in the PCR-mixture to create a linear template
for the PCR amplification, decreasing the risk of amp-
lifying multiple laps of the circular DNA template.
Temperature cycling was performed as follows: 378C
for 30min, 958C for 5min followed by 30 cycles of 958C
15 s, 558C 30 s and 728C for 60 s followed by 728C for
10min.

PCR products were analyzed using an Agilent
Bioanalyzer 2100TM instrument and quantified using the
Agilent 2100 expert software, version B.02.02.SI238.

RESULTS

The MLGA technique employs a number of enzymatic
processing steps (Figure 1a). In brief, sample DNA is first
restriction digested to generate genomic fragments with
defined ends. DNA is then denatured and mixed with
a pool of selector probes and a thermostable DNA ligase
to allow hybridization and circularization of the corre-
sponding target fragments. The sample is treated with
exonuclease I to enrich for circularized DNA, and finally,
the circularized fragments are PCR amplified using a
universal primer pair. The selector probes are designed
such that the amplified fragments are of different size,
allowing for rapid and simple detection and quantifica-
tion using electrophoretic separation. In order to
evaluate the approach on a model system for CNV,
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I. Restriction digestion (Mnl I)

II. Ligation with selector
and vector

III. Exonuclease
treatment (Exo I)

Target 1
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Figure 1. (a) Multiplex ligation-dependent genome amplification (MLGA), reaction scheme. (I) Genomic DNA is digested by restriction enzyme to
generate targets with defined ends. (II) Each MLGA probe consists of two oligonucleotides, one selector oligo of 70–74 nt (green) and one general
vector oligo of 34 nt (red). MLGA probe together with DNA-ligase forms circular DNA of target molecules after denaturation and hybridization.
(III) To reduce background signal in the assay, undesirable, linear DNA is degraded by exonuclease I (Exo I). (IV) Multiplex PCR is facilitated by
using universal primers that hybridize to a sequence in the vector. PCR products are analyzed using the Agilent Bioanalyzer 2100TM electrophoresis
system. (b) Data from an MLGA set of 14 probes targeting loci on human chromosomes 13, 18, 21, X and Y. The upper graph shows the resulting
elution diagrams from analyses of male and female DNA pools.
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selector probes targeting 14 different loci on human
chromosomes X, Y, 13, 18 and 21, were designed to
analyze male and female genomic DNA (Figure 1b). To
obtain relative quantification, each peak area was normal-
ized by dividing with the sum of areas of all peaks
originating from autosomal targets. The ratios of each
individual probe area were then compared between the
male and female DNA samples. The results show only
marginal differences in autosomal peak ratios between
the male and female samples, and the expected lack of
Y-chromosome and duplication of X-chromosome signals

in the female sample compared with the male sample
(Figure 1b).

DNA samples prepared from six different Down
syndrome patients were analyzed using the same probe
set to confirm that duplications of autosomal chromo-
somes can be detected. All chromosome 21 probes show
a ratio around 1.5 indicating a trisomy, as expected
(Figure 2a). In order to test the linearity and sensitivity
of copy-number measurements, a series of cell lines
carrying 1, 2, 3, 4 and 5 copies of the X-chromosome
were analyzed. Normalization was performed by dividing
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Figure 2. (a) DNA samples prepared from six different Down syndrome patients, three males and three females, were analyzed with a set of 14
selector probes distributed over chromosomes 13, 18, 21, X and Y. Data was normalized by dividing each peak area with the sum of the peak areas
of all non chromosome 21 probes. On the x-axis, probes are ordered according to chromosomal position. Ratios between patient and reference
DNA sample values are shown on the y-axis, using sex-matched reference samples. (b) Graph shows the response of X targeting probes to an
increasing number of chromosomes. On the x-axis samples with 1–5 copy of chromosome X are shown, where samples for 1X is male, 2X is female
and 3–5X are aneuploid cell cultures from Coriell Cell Repositories. To illustrate the results, each normalized value was divided by the 2X diploid
sample value.
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each peak area with the sum of the autosomal peak areas
(Figure 2b). The increase in signal is linear with a slope of
0.5 units per additional X-chromosome, implying that
the MLGA method is accurate and sensitive enough to
quantify a broad range of copy-number changes.

DISCUSSION

The MLGA is a multiplex targeted approach for copy-
number analysis, which seems well-suited for CNV
measurement and validation. MLGA has several advan-
tages over the commonly used multiplexed targeted copy-
number assay MLPA. First, MLGA probes are easier and
cheaper to manufacture, as only one probe is required
per locus and they are similar in size and relatively short
(70–74 nt). Extensive purification is not required since the
probes do not need functional ends in contrast to MLPA
probes, and also no modification of the 50 end. Second,
a uni-molecular circularization reaction is inherently
more rapid and efficient than a bi-molecular ligation
reaction (17). Moreover, probe amplification methods,
such as MLPA, suffer from probe-dependent and target-
independent amplification artifacts (17). Therefore, very
low concentrations of probes are used in the MLPA,
resulting in a requirement for long hybridization times to
saturate the target sequences.

For assays that could be applied in the diagnostic
setting, time is a critical factor. With MLGA, the total
assay time, including electrophoresis, is 5 h, relative to the
�24 h assay time for the MLPA. Another important
aspect for custom loci is the turn-over time in assay
design, particularly when sizing duplications/deletions,
which typically requires an iterative process to map
the chromosomal break points. An MLGA assay can be
set up in �5 days, including oligonucleotide design and
synthesis, and two rounds of experimental optimization
and verification of the assay. Finally, the MLGA assay
can potentially create longer PCR products than MLPA,
since the length of the product is defined by the genomic
DNA sequence rather than by the length of synthetic
probes. This flexibility in PCR product length may allow
for higher levels of multiplexing.

In a separate study, we applied the technique for verifi-
cation and sizing of a CNV (Salmon Hillbertz,N.H.C.
et al., Nat. Genet. in press). We investigated a suspected
duplication involving an SNP identified during the course
of genome-wide SNP analyses of different dog breeds.
The distance between the closest flanking SNPs was
930 kb, so we initially designed MLGA probes with
100 kb spacing over 2Mb, including a fragment containing
the SNP. Two probes, including the fragment with the
SNP, responded with a 2-fold increase in homozygous
dogs compared with control fragments, and with 1.5-fold
increase in heterozygous dogs, thus verifying that the
region indeed was duplicated. We then designed a new set
of probes with 10 kb spacing, flanking the copy-number
positive fragments, to try tomore precisely define the size of
the duplication. Using a final set of probes, the duplicated
region could be defined sufficiently well to design a PCR
primer pair that amplified across the duplication break

point. The PCR fragment was sequenced and the size of
the duplication was determined to be 133.4 kb. Finally,
a diagnostic MLGA assay was compiled to screen 72 dogs.
The phenotype, experimental details and implication of
the duplication are described in Salmon Hillbertz,N.H.C.
et al., (Nat. Genet. in press)
One potential disadvantage compared to the MLPA

approach, is that a larger proportion of the sequence
in the final PCR product is defined by genomic DNA
sequences. This can potentially introduce a bias in
amplification rates due to the diversity in sequence. This
though can be addressed by applying stringent criteria
during the in silico design process of each probe set. From
a number of applied MLGA projects, we have learnt that
75–80% of designed selector probes reproducibly select
a fragment of the intended size. There may be several
reasons for this non-complete assay conversion rate. We
have previously shown that high GC content (>60%) in
the selected fragment decreases the probability of a probe
being successful (14). The GC content can affect both
the circularization and PCR amplification yield, possibly
due to secondary structures interfering with probe and
primer hybridization and/or extension. Such secondary
structures may also be present in DNA fragments with
a lower GC-content, escaping our GC-content design
threshold.
We expect to be able to develop better design criteria to

improve success as more assays are developed and can be
evaluated. Since selected fragments are in the order of
100 bp and CNVs are often in the order of several
kilobases, positional constraints on design are quite low.
There are, on average, four selectable restriction fragments
to choose among per kilobase of genomic DNA sequence,
since we are using restriction enzymes with 4 bp recogni-
tion sequences. It is possible to further increase freedom of
design by introducing a site-specific cleavage of the target
strand, making the design only depending on a restriction
recognition site at the 30 end of the target fragment
(14). The first-trial success rate among different DNA
samples is about 90–95% (data not shown). Data
from failing subjects can be rescued by collecting new
DNA samples.

ACKNOWLEDGEMENTS

We would like to thank Brian Peter of Agilent
Laboratories for DNA samples, preliminary data and
advice on the article. This work was supported by the
Wallenberg Foundation, the Olle Engkvist Byggmästare
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