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Abstract
Obesity is associated with inflammation, which can disturb genome stability. Tumor necrosis factor (TNF-α) polymorphism 
was found to affect TNF-α protein production and inflammation. Therefore, the present study illustrates the relationship 
between TNF-α polymorphism, the degree of inflammation assessed by serum high sensitivity C-reactive protein concentra-
tion (CRP-hs) and basal DNA damage in patients with obesity (BMI 30–34.9 kg/m2) and control subjects with proper body 
mass (BMI < 25 kg/m2). A total of 115 participants (75 obese premenopausal women; and 40 age-, and gender-matched 
controls) were included. Biochemical parameters (serum concentrations of total-cholesterol, HDL-cholesterol, LDL- cho-
lesterol, triglycerides, glucose, apolipoprotein AI, CRP-hs) and endogenous DNA damage (determined by comet assay) 
were measured. TNF-α G-308A polymorphism (rs1800629) was analyzed by PCR-RFLP (PCR-restriction fragments length 
polymorphism). An effect of TNF-α genotype on serum CRP-hs concentration was noted (p = 0.031). In general, carriers of 
the rare A allele of the TNF-α G-308A polymorphism had significantly lower endogenous DNA damage and serum CRP-
hs concentrations than GG homozygotes, however, the protective effect of the A allele was especially visible in non-obese 
women. Serum CRP-hs concentrations and levels of DNA damage (% DNA in tail) were significantly higher in obese than 
in controls (p = 0.001 and p < 0.0001, respectively). The adjusted multiple linear regression analyses revealed a significant, 
independent impact of obesity on DNA damage (p = 0.00000) and no effect of other covariates i.e. age, TNF-α genotype 
and serum CRP-hs concentration. Our study showed that obesity has a significant impact on the levels of endogenous DNA 
damage. Obesity abolished the protective effect of A allele of the TNF-α G-308A polymorphism on DNA damage and on 
inflammation development observed in non-obese A allele carriers.
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Introduction

Smoking, improper diet and environmental toxins have been 
recognized as main exogenous sources of DNA damage [1]. 
However, besides exogenous factor-caused DNA breaks, 
endogenous DNA damage and failure of DNA repair can 
disturb cell metabolism and function [2]. In cells, production 
of reactive oxygen species (ROS) and inflammation have 
been recognized to cause DNA lesions [3]. DNA damage 
has been found to be involved in aging and development of 
common diseases including cancer, atherosclerosis, meta-
bolic syndrome [4–6].

The Comet Assay is a sensitive and low-cost technique, 
which measures DNA damage in individual cells [7, 8]. In 
addition to DNA strand breaks (double strand breaks and 
single strand breaks), the modified Comet Assay serve 
to detect also oxidized bases, interstrand cross-links or 
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misincorporated uracil [9]. This method is widely used to 
determine the level of DNA damage, both resulting from 
exposure to environmental mutagens, as well as arising in 
the course of many diseases [10–12].

Obesity is a worldwide problem with increasing preva-
lence, associated with co-morbidities such as type 2 diabetes 
mellitus and cardiovascular diseases, and increased cancer 
risk [13–15]. Obesity is characterized by the, adipocyte 
hypertrophy, elevated production of reactive oxygen spe-
cies, cytokines, chronic inflammation, disturbances in insu-
lin and glucose metabolism [16–18]. Association between 
the occurrence of DNA lesions and enhanced body weight 
has been also reported [19–21]. Both inflammation and 
metabolic disturbances can cause DNA damage [22–24]. 
Moreover, the relationship between chronic inflammation 
and genomic instability has been observed in about 25% of 
human cancers [25–27].

Tumor necrosis factor-alpha (TNF-α) is a multi-func-
tional cytokine synthesized by adipocytes, preadipocytes, 
endothelial cells, smooth muscle cells, fibroblasts, leuko-
cytes and macrophages [28–31]. It can participate in regu-
lation of many cellular processes such as immune function, 
differentiation, proliferation, apoptosis and energy pathways 
[32, 33]. Variations in the TNF-α gene can affect TNF-α 
production and a significant effect of the polymorphism 
in the promoter region of the TNF-α gene at position -308 
(rs1800629) was reported [34–36]. Presence of the variant 
allele has been shown to increase the rate of transcription 
and production of the TNF-α protein [37–39]. G-308A poly-
morphism in the TNF-α gene has been associated with the 
development of inflammation and risk of cardiovascular dis-
eases [40–44]. A recent study revealed the predisposition of 
GG homozygotes to higher production of pro-inflammatory 
molecules resulting in their enhanced serum levels [45]. The 
G-308A polymorphism was also found to be associated with 
insulin sensitivity and increased production of leptin, sug-
gesting an impact of TNF-α gene on obesity and obesity-
related health complications [46]. Phillips et al. showed that 
patients carrying the GG genotype had elevated risk of meta-
bolic syndrome compared with carriers of the minor A allele 
[47]. However, large cohort studies in Chinese, Caucasians 
and Afro-Americans did not show a significant correlation 
between G-308A polymorphism and insulin resistance or 
obesity [48–51]. Recently published systematic review and 
meta-analysis have indicated an association between TNF-α 
G-308A gene polymorphism and the risk of ischemic heart 
disease [28, 52].

TNF-α stimulates the production of C-reactive protein 
(CRP) and the development of inflammatory processes, and 
serum CRP concentration is commonly used as a marker 
of inflammation [53–56]. Furthermore, in vitro studies 
showed increased DNA damage as a result of TNF-α stimu-
lated ROS production [57]. TNF-α together with IL-1β and 

IFN-γ induced DNA damage in human cholangiocarcinoma 
cell line [58]. DNA damage and enhanced ROS levels were 
related to TNF-α—mediated senescence in HUVEC (human 
umbilical vein endothelial cells) [59].

The aim of our study was to assess the impact of the 
G-308A TNF-α polymorphism on CRP-hs levels and 
genomic stability measured by basal DNA damage in obese 
women.

Materials and methods

Subjects

The study participants were premenopausal women (Pol-
ish Caucasians from the Warsaw region). Among 115 par-
ticipants of the study, 75 were obese. Obesity was classified 
according to World Health Organization criteria [60] i.e., 
subjects with BMI ≥ 30 kg/m2 were considered obese. The 
obese women were consecutively recruited between Decem-
ber 2011 and June 2013 on the basis of clinical assessments 
from subjects who had been directed to the Outpatient Clinic 
at the National Food and Nutrition Institute in Warsaw due 
to obesity treatment. The gender- and age-matched control 
group (n = 40) of apparently healthy women with proper 
body mass (BMI not exceeded 25 kg/m2) was recruited from 
subjects directed for a routine general health screening. The 
study was conducted according to the guidelines laid down 
in the Declaration of Helsinki and the Local Ethics Com-
mittee at the National Food and Nutrition Institute approved 
all procedures involving human subjects. Written informed 
consent was obtained from all of the registered volunteers.

The recruited women were premenopausal, non- smok-
ing (for at least 5 years), had no history of alcoholism, and 
had no signs or symptoms of renal and hepatic disorders, 
endocrine disorders (e.g. disease of the thyroid, parathyroid, 
Cushing’s syndrome, polycystic ovary syndrome), autoim-
mune diseases, and cancer. Women within the last 3 months 
before the study were not receiving medications known to 
influence plasma lipid levels and did not use hormonal ther-
apy as well as did not report chronic use of dietary supple-
ments and anti-inflammatory drugs. Exclusion factors were 
also menopause, pregnancy, and lactation.

Anthropometric measurements

All subjects underwent a comprehensive medical evalua-
tion including medical history, physical examination and 
measurement of anthropometric parameters: body weight, 
body height, waist circumference, hip circumference accord-
ing to standardized procedures routinely performed in the 
Outpatient Clinic at the National Food and Nutrition Insti-
tute (Warsaw, Poland). The body waist circumference was 
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measured at the midpoint between the lower margin of the 
last rib cage and the top iliac crest by using a flexible inch 
tape. Measurements were taken in the morning, after an 
overnight fasting, at the same day, or the day before blood 
samplings. Based on anthropometric measurements the BMI 
and WHR (waist-hip ratio) indexes were calculated.

Blood analysis

Blood was collected after night fasting from all subjects and 
serum parameters were analyzed on the same day. Total cho-
lesterol, HDL-cholesterol, triglycerides, glucose, and insu-
lin were measured using standard techniques in a certified 
laboratory for clinical chemistry at The National Food and 
Nutrition Institute. The LDL cholesterol levels were calcu-
lated using the Friedewald formula. Residue serum was ali-
quoted and frozen at − 20 °C until analysis. CRP-hs concen-
trations were obtained using commercially available ELISA 
(Immundiagnostik AG, Germany), according to the protocol 
provided by the manufacturer. The serum concentrations of 
apolipoprotein AI were measured using monoclonal antibod-
ies against apolipoprotein AI (Pointe Scientific, USA) by the 
immunotubidymetric method.

Genotype analysis

Genomic DNA was extracted from peripheral white blood 
cells of whole-blood samples using DNA Mini Kit (A&A 
Biotechnology, Poland). Extracted DNA samples (100 ng) 
were amplified to obtain a fragment including the polymor-
phic region of TNF-α G-308A gene (rs 1,800,629), as pre-
viously described [61] by using the following primers: F5′-
AAT​AGG​TTT​TGA​GGG​CCA​TG-3′ and R5′-GGG​ACA​CAC​
AAG​CAT​CAA​GG-3′. Approximately 100 ng of DNA was 
amplified by thermal cycling using the DNA polymerase kit 
(BioLine, London, UK) in 25 µL of PCR mixture contain-
ing 2.5 mM MgCl2, 0.4 mM of each deoxyribonucleotide 
triphosphate (dNTP, New England Biolabs, USA), 1 U Taq, 
and 100 pM of each primer. Polymerase chain reaction con-
ditions included an initial denaturation at 94 °C for 5 min 
followed by 35 cycles of 94 °C for 15 s, 55 °C for 30 min, 
and 72 °C for 15 s, with a final extension at 72 °C for 7 min. 
The amplified DNA samples containing a polymorphic site 
was digested with the restriction enzyme NcoI (New Eng-
land Biolabs, USA) and products were run on agarose gel 
electrophoresis. Digestion of the 151 bp fragment carrying 
the G allele was giving 139 bp and 12 bp fragments, while 
the fragment with the A allele remained intact. About 20% 
of all samples were randomly selected for repeated geno-
typing for confirmation. Concordance between repeats was 
100%.

Comet assay

DNA integrity was determined by the use of alkaline single-
cell gel electrophoresis (comet assay), based on previous 
reports [62, 63]. Lymphocytes were obtained from 1 mL hep-
arinized blood by centrifugation in a density gradient; then 
50 µL of lymphocytes (1–3 × 105 cells/mL) was distributed 
with 50 µL of 2% low-melting-point agarose on a micro-
scope slide precoated with 0.5% normal agarose. The slides 
were incubated for 1 h in a freshly prepared cold (4 °C) lysis 
solution (2.5 M NaCl, 100 mM EDTA-Na2, 10 mM Tris, pH 
10.0–10.5) with 1% Triton X-100. Next, the slides were left 
in a horizontal gel electrophoresis tank with alkaline electro-
phoresis buffer (300 mM NaOH, 1 mM EDTA-Na2, pH > 13.0) 
for 40 min at 4 °C. Electrophoresis was performed under fol-
lowing conditions: 20 min, 35 V (1 V/cm), 300 mA. Slides 
were then washed with a neutralizing solution (0.4 M Tris, 
pH 7.5), and stained with DAPI (20 µg/ml).Nikon Eclipse 
50i fluorescence microscope (×400 magnification) and Lucia 
Comet Assay software version 4.81 (Laboratory Imaging, 
Prague, Czech Republic) was used to analyze 100 comets on 
each slide. From each subject three blood samples were ana-
lyzed in duplicates. Of the data obtained, % DNA in the tail 
was chosen for further analysis as a DNA damage parameter. 
The chemicals were supplied by Sigma–Aldrich.

Statistical analysis

All statistical calculations were performed with the Statis-
tica software (version 12.0). The distribution of variables 
was tested by Shapiro–Wilk test. Differences in continuous 
parameters were tested using Mann–Whitney U-test. Spear-
man correlation analyses were performed for the relation-
ships among the variables. Non-continuous variables were 
tested with a Chi square test. Allele frequencies for TNF-α 
variants were calculated with the gene counting method. 
Hardy–Weinberg equilibrium (HWE) was determined by 
Pearson’s χ2 goodness-of-fit test. CRP-hs was dichotomized 
as ≥ 3 mg/L versus otherwise (< 3 mg/L) based on the well 
accepted cut-off point (of 3 mg/L) indicating elevated CRP-
hs associated with an increased risk for CVD [64]. Regres-
sion analyses were performed using generalized linear mod-
els. Odds ratios (OR) with 95% confidence intervals (95% 
CI) were calculated using logistic regression. Results were 
expressed as means ± SD or percentages, and p < 0.05 was 
considered statistically significant.

Results

Characteristics of the studied subjects are summarized in 
Table 1. Obese and control subjects (non-obese) were in 
similar age. There were substantial differences in serum 
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concentrations of total cholesterol, triglycerides, LDL-
cholesterol, and blood pressure between studied groups 
(p < 0.05). While no differences in HDL-cholesterol, apoli-
poprotein AI and glucose concentrations were found. Serum 
C-reactive protein (CRP-hs) concentrations as well as mean 
level of DNA damage (% DNA in tail) were significantly 
higher in obese than in controls (Table 1).

Among all studied subjects the distribution of TNF-α gene 
alleles was in Hardy–Weinberg equilibrium (χ2 value = 2.68, 
p = 0.100). The frequency of the rare A allele of the TNF-α 
gene G-308A polymorphism was 17.4%. 71% of the stud-
ied women carried the GG genotype (wildtype), 24%—the 
GA genotype and 5%—the AA genotype. As reported in 
Table 2, no statistically significant difference in frequency of 
the three genotypes of G-308A TNF-α polymorphism among 
obese and non-obese was found. However, the prevalence 
of obesity was higher among subjects with GG genotype 
than among A allele carriers (71% and 50% respectively, 
p = 0.026). Due to the low frequency of the AA genotype 
statistical analyses were performed for A allele carriers (GA 
and AA genotypes pooled) and GG homozygotes.

Study participants’ characteristics according to the 
G-308A TNF-α polymorphism are presented in Table 3. 
In GG homozygotes higher diastolic blood pressure was 
observed. No statistically significant difference in mean 
values of BMI and WHR between analyzed groups was 
recognized. Carriers of the GG genotype had higher lev-
els of DNA damage as well as higher CRP-hs serum con-
centrations compared to the A allele carriers (3.55 ± 1.70% 
vs. 2.80 ± 1.29%; p = 0.025 and 4.06 ± 2.07  mg/L vs. 
2.92 ± 2.15 mg/L, respectively, p = 0.0001).

In studied group DNA damage was significantly corre-
lated with BMI, WHR, systolic and diastolic blood pres-
sure as well as total cholesterol, LDL cholesterol, and serum 
CRP-hs concentrations (Table 4). The observed association 
between DNA damage and BMI was not affected by the 
TNF-α genotype. However, an impact of the TNF-α geno-
type on the associations between DNA damage and WHR 
and serum CRP-hs was observed. Only among A allele car-
riers a strong, positive correlation between DNA damage 
and WHR was observed (R = 0.784, p = 0.00004). Also in A 
allele carriers but not in GG homozygotes, a positive corre-
lation between DNA damage and serum CRP-hs concentra-
tion was recognized (Table 4, R = 0.578, p = 0.0003).

Table 1   Clinical and 
biochemical characteristics of 
the study population

Data are presented as means ± standard deviations (SD)
p value from Mann–Whitney U-test
BMI body mass index, WHR waist-hip ratio, CRP-hs high sensitivity C-reactive protein

Non-obese (n = 40) 
mean ± SD

Obese (n = 75) mean ± SD p value

Age (years) 36 ± 10 38 ± 6 0.325
BMI (kg/m2) 21.04 ± 1.75 32.73 ± 1.93 0.000
WHR 0.80 ± 0.06 0.88 ± 0.05 0.000
Systolic blood pressure (mmHg) 115.20 ± 11 126.99 ± 18.21 0.000
Diastolic blood pressure (mmHg) 74.17 ± 8.95 82.33 ± 8.46 0.000
Total Cholesterol (mg/dL) 174.20 ± 32.16 202.67 ± 35.07 0.000
HDL-Cholesterol (mg/dL) 61.37 ± 12.42 59.72 ± 15.47 0.549
LDL-Cholesterol (mg/dL) 96.32 ± 28.86 122.20 ± 30.05 0.000
Triglycerides (mg/dL) 88.55 ± 32.89 105.33 ± 43.61 0.030
Glucose (mg/dL) 83.56 ± 8.72 84.77 ± 8.26 0.719
Apolipoprotein AI (mg/dL) 157.02 ± 32.51 158.72 ± 27.61 0.922
CRP-hs (mg/L) 2.96 ± 1.71 4.13 ± 2.26 0.001
DNA damage (%) 1.60 ± 0.44 4.25 ± 1.22 0.000

Table 2   The distribution of genotypes and alleles of TNF-α G-308A 
polymorphism in obese and non-obese subjects

HWE Hardy–Weinberg equilibrium; p value from χ2 test

Non-obese 
(n = 40) N (%)

Obese (n = 75) N (%) p value

Genotypes
 GG 23 (57.5%) 58 (77%) 0.0851
 GA 14 (35%) 14 (19%)
 AA 3 (7.5%) 3 (4%)
 HWE, p 0.674 0.096
 GG 23 (57.5%) 58 (77%) 0.0264
 A (AA and GA) 17 (42.5%) 17 (23%)

Alleles
 G allele 60 (75%) 130 (87%) 0.0262
 A allele 20 (25%) 20 (13%)
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When obese and non-obese carriers of studied genotypes 
were analyzed separately, obesity not TNF-α genotype was 
found to affect DNA damage as higher levels of DNA dam-
age occurred in obese compared to non-obese. Obese women 

carrying GG genotype had only slightly more DNA damage 
(% DNA in tail) than obese A allele carriers (4.37 ± 1.27% 
and 3.84 ± 0.97%, respectively; p = 0.084). Also among non-
obese women non-significant allele effect on DNA damage 

Table 3   Clinical and 
biochemical characteristics of 
the study population according 
to TNF-α G-308A gene 
polymorphism

Data are presented as means ± standard deviations (SD)
BMI body mass index, WHR waist-hip ratio, CRP-hs high sensitivity C-reactive protein
Mann–Whitney U-test: *p = 0.037, **p = 0.0001, ***p = 0.025

A allele carriers (n = 34) 
Mean ± SD

GG genotype carriers 
(n = 81) Mean ± SD

Age (years) 36 ± 10 37 ± 7
BMI (kg/m2) 27.11 ± 6.15 29.3 ± 5.70
WHR 0.83 ± 0.08 0.86 ± 0.05
Systolic blood pressure (mmHg) 120.62 ± 14.80 123.68 ± 17.77
Diastolic blood pressure (mmHg) 77.19 ± 9.50 80.33 ± 9.33*
Total cholesterol (mg/dL) 193.91 ± 38.92 192.28 ± 35.78
HDL-cholesterol (mg/dL) 59.97 ± 11.20 60.43 ± 15.68
LDL-cholesterol (mg/dL) 114.16 ± 32.47 112.79 ± 32.01
Triglycerides (mg/dL) 101.88 ± 41.59 98.49 ± 40.77
Glucose (mg/dL) 85.60 ± 9.59 84.09 ± 7.85
Apolipoprotein AI (mg/dL) 154.40 ± 22.70 159.45 ± 31.36
CRP-hs (mg/L) 2.92 ± 2.15 4.06 ± 2.07**
Tail DNA (%) 2.80 ± 1.29 3.55 ± 1.71***

Table 4   Spearman correlations 
between DNA damage (% DNA 
in tail) and biochemical and 
anthropometric parameters

BMI body mass index, WHR waist-hip ratio, CRP-hs high sensitivity C-reactive protein

Variables All subjects 
(n = 115) R p value

A allele carriers 
(n = 34) R p value

GG genotype car-
riers (n = 81) R p 
value

Age (years) 0.183
0.0502

0.092
0.605

0.205
0.066

BMI (kg/m2) 0.725
0.00000

0.788
0.00000

0.687
0.00000

WHR 0.304
0.0064

0.760
0.00004

0.075
0.579

Systolic blood pressure (mmHg) 0.454
0.00000

0.508
0.003

0.387
0.0004

Diastolic blood pressure (mmHg) 0.381
0.00003

0.288
0.110

0.369
0.0007

Total cholesterol (mg/dL) 0.283
0.0022

0.306
0.078

0.300
0.0067

HDL-cholesterol (mg/dL) − 0.007
0.941

− 0.314
0.069

0.077
0.491

LDL-cholesterol (mg/dL) 0.273
0.0032

0.304
0.080

0.281
0.011

Triglycerides (mg/dL) 0.162
0.084

0.207
0.239

0.180
0.108

Glucose (mg/dL) 0.162
0.084

0.413
0.070

0.413
0.304

Apolipoprotein AI (mg/dL) − 0.048
0.706

− 0.150
0.566

− 0.056
0.707

CRP-hs (mg/L) 0.286
0.002

0.578
0.0003

0.177
0.113
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was observed (1.49 ± 0.43% in GG and 1.75 ± 0.41% in A 
allele carriers; p = 0.057). The G-308A TNF-α polymor-
phism was found to affect serum CRP-hs concentrations 
only in non-obese women. Mean serum CRP-hs concentra-
tion was significantly higher in non-obese women with GG 
genotype than in non-obese A allele carriers (p = 0.0001), 
while among obese participants similar CRP-hs levels were 
observed (Fig. 1).

Taking into account the degree of inflammation, higher, 
but not significant incidence of elevated serum CRP-hs 
concentrations (≥ 3 mg/L) was found among obese sub-
jects: (OR 1.97 95% CI 0.88–4.41, p = 0.095). Additionally, 
logistic regression analysis identified GG genotype as a risk 
factor for elevated CRP-hs (≥ 3 mg/L) only in non-obese 
women (Table 5). The odds of CRP-hs ≥ 3 mg/L in non-
obese women with GG genotype was 50 times greater than 
in non-obese women with A allele (p = 0.0001, OR 50.00, 
95% CI 6.95–359.75). Multiple linear regression analy-
ses revealed also a significant interaction effect of TNF-α 
genotype and elevated CRP-hs (≥ 3 mg/L) on the levels of 
DNA damage (F = 4.75, p = 0.031) in all studied women. 

However, when all covariates elevated CRP-hs, TNF-α 
genotype, obesity and age were included into the statisti-
cal analyses, the impact of obesity (BMI ≥ 30 kg/m2) on the 
level of DNA damage was independent of other covariates 
(F = 69.41, p = 0.0000) and no significant interaction effect 
was observed.

Discussion

Obesity, that is a result of an imbalance between energy 
intake and expenditure, has reached epidemic proportions 
with increasing prevalence worldwide. Adipose tissue par-
ticipates in the production of inflammatory mediators, and 
in adipose tissue from obese enhanced TNF-α production 
was observed [51, 52, 65–67].

The G-308A polymorphism in the promoter region of 
the TNF-α gene was found to affect TNF-α protein expres-
sion and ischemic heart disease risk in, both, Caucasians 
and Asians [68, 69]. The human TNF-α protein is coded 
by the gene located near major histocompatibility complex 
(MHC) between the class I HLA-B and the class II HLA-DR 
loci [70, 71]. Therefore, the SNPs in the TNF-α promoter 
may be related to HLA haplotypes and autoimmune diseases 
such as systemic lupus erythematosus (SLE) and rheumatoid 
arthritis (RA) [72–74].

Low-grade chronic inflammation is a characteristic fea-
ture of obesity, and plays an important role in the pathogene-
sis of obesity-associated comorbidities [16]. Inflammation is 
linked with enhanced generation of reactive oxygen species 
(ROS), which can damage cellular biomolecules, including 
DNA, leading to disturbances in cell signaling and cell cycle 
control, genetic mutations, and promotion of inflammation 
[75].

In vitro studies recognized that pro-inflammatory 
cytokines provoke DNA damage, cell senescence and growth 
arrest [59, 76, 77]. In IFNγ/TNFα-induced genotoxicity, 
NADPH oxidases (Nox 1 and 4) and TGFβ/SMAD path-
ways are involved in enhanced ROS production [76]. ROS 
formation and increased level of DNA lesions were observed 
as a result of high CRP-hs in the culture of HUVECs [78]. 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

A GG A GG

Controls Obese

CR
P-

hs
 (m

g/
L)

p=0.0001

Fig. 1   CRP-hs levels among studied groups. A significant difference 
in CRP-hs levels between GG homozygotes and A allele carriers of 
TNF-α G-308A polymorphism was seen among controls (non-obese) 
but not among obese

Table 5   Relationship 
between obesity, TNF-α 
polymorphism and elevated 
CRP-hs concertation in serum 
(≥ 3 mg/L)

BMI body mass index, CRP-hs high sensitivity C-reactive protein

Crude OR (95% CI); p Age adjusted OR (95% CI); p

Obesity (BMI ≥ 30 kg/m2) 1.97 (0.88–4.41)
p = 0.095

2.04 (0.9–4.61)
p = 0.08

TNF-α genotype (GG) 6.42 (2.64–15.57)
p = 0.00003

6.49 (2.66–15.85)
p = 0.00003

Non-obese
TNF-α genotype (GG)

50 (6.95-359.75)
p = 0.0001

56.57 (7.00-456.91)
p = 0.0001

Obese
TNF-α genotype (GG)

2.01 (0.64–6.34)
p = 0.227

2.15 (0.66–6.98)
p = 0.196
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Oxidative stress, chronic inflammation and DNA damage 
have been recognized as important factors leading to the 
development of carcinogenesis, atherosclerosis and cardio-
vascular diseases. Obesity is associated with elevated risk 
of all these diseases [79–83]. Therefore, not only obesity-
associated inflammation but also obesity-associated DNA 
damage may play a significant role in the development of 
both cardiovascular diseases and cancer in obese [26, 84]. 
In cancerogenesis, enhanced mutation rate was found to be 
linked to a high amount of DNA lesions [85, 86].

The G-308A polymorphism in TNF-α gene was reported 
in relation to TNF-α protein production and development 
of inflammation as well as it was suggested to play an 
important role in the development and progression of can-
cer [87–89]. Therefore, this polymorphism may affect both 
development of inflammation and formation of DNA lesions. 
Thus, we hypothesized that in obese amount of endogenous 
DNA lesions may be linked to the degree of inflammation 
and TNF-α gene polymorphism, and in the present study 
we assessed the association between G-308A TNF-α gene 
variants, serum concentrations of CRP-hs and DNA damage 
in obese.

The present study was conducted in Caucasian women 
from the central region of Poland and among our study par-
ticipants we found the low frequency of the AA genotype 
(5%) as well as A allele (17.4%) of the G-308A polymor-
phism in TNF-α gene. This is consistent with the results 
of other studies reporting that the G to A change in TNF-α 
gene is rather rare [90]. In a study of 120 Caucasian Ital-
ian women no AA homozygotes were recognized and the 
frequency of A allele was 27.4% [90]. The frequency of 
AA genotype was about 4% among Han Chinese [91], 2% 
among people with obesity from Spain [92], and 0.6% in 
the Brazilian individuals [93]. In GG homozygotes higher 
plasma levels of TNF-α and CRP-hs than in AA homozy-
gotes [94–97] as well as in GA heterozygotes of the G-308A 
polymorphism in the TNF-α gene were reported [90].

In the present study non-obese carriers of the A allele had 
significantly lower CRP-hs serum concentrations than GG 
homozygotes. The presence of the A allele appears to have a 
protective anti-inflammatory effect, which, however, disap-
pears when obesity appears. We observed similar CRP-hs 
concentrations in both obese and non-obese GG homozy-
gotes, while obese had higher levels of DNA damage. It 
indicates that in obese GG homozygotes other factors than 
inflammation, have a significant impact on cellular DNA 
damage. In A allele carriers DNA damage was positively 
correlated with serum CRP-hs concentration and in obese-
A allele carriers similar levels of serum CRP-hs and DNA 
damage as in obese-GG homozygotes were observed. Our 
study participants, both obese and controls, can be classified 
as apparently healthy, thus we can hypothesize that obesity 
and low-grade inflammation characteristic for obesity can 

affect basal DNA damage observed in this study. We found 
significantly greater amount of DNA lesions in obese than in 
non-obese women as well as the associations between BMI 
and DNA damage. It is in agreement with our previous study 
[21]. However, the results of the presented study show that 
the impact of obesity and obesity-associated disturbances on 
DNA damage is strong and occurrence of obesity eliminates 
or significantly decreases the effect of the G-308A TNF-α 
variants on both inflammation, and levels of DNA damage. 
In obesity oxidative stress and inflammation are involved 
in the induction of DNA lesions and have an impact on the 
efficiency of the DNA repair mechanisms [24]. DNA dam-
age in cells may be induced by pro-inflammatory cytokines, 
chemokines and molecules such as NO (nitric oxide), and 
ROS [98, 99]. In white adipose tissue amount of DNA dam-
age was related to pro-inflammatory markers such as IL-6 
and TNF-α [77]. As CRP-hs exerts ROS production in vitro 
[78] it can be hypothesized that the potential cause of DNA 
damage found in our study participants is oxidative stress 
related to enhanced inflammation (CRP-hs ≥ 3  mg/dl). 
Our results indicates that in non-obese, apparently healthy 
women GG homozygosity of the G-308A TNF-α polymor-
phism is associated with enhanced low grade inflammation 
assessed by serum CRP-hs concentrations, and occurrence 
of obesity does not affect significantly CRP-hs levels in GG 
homozygotes. The presence of A allele in non-obese women 
protects against inflammation but development of obesity 
abolished this allele effect.

A broad range of DNA lesions has been recognized in 
people with obesity [100–102]. Enhanced DNA damage was 
also reported in patients with obesity-related diseases such 
as type 2 diabetes and metabolic syndrome [103]. Moreover, 
body weight loss resulted in a reduction in the level of DNA 
damage [104–107]. The amount of DNA with oxidative 
damage was associated with levels of cholesterol, triglyc-
erides and HbA1c [108]. In the present study a relationship 
between DNA damage and both, total cholesterol and LDL-
cholesterol was also observed. Our study does have some 
limitations and one important limitation is a small sample 
size, which may be responsible for the observed lower fre-
quency of A-allele carriers among obese than among non-
obese. Moreover, we studied only women, therefore, data for 
men as well younger and older populations containing sub-
jects of both genders and BMI in a wide range are needed.

In summary, the present study demonstrates the strong 
impact of obesity on basal DNA damage assessed by the 
comet assay (as % DNA in tails) and indicates that the pres-
ence of obesity abolished the protective effect of A allele on 
inflammation development observed in non-obese women.
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