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Abstract
Mitochondria are more than just the cellular powerhouse. They also play key roles in vital functions such as apoptosis, metabolism regu-
lation, and other intracellular interactions. The mitochondrial DNA (mtDNA) encodes for 12 subunits of the oxidative phosphorylation
(OXPHOS) system. Depletion of mtDNA in androgen-dependent prostate cancer (PCa) cell lines renders them androgen-independent
and more aggressive. Paradoxically, pharmaceutical inhibition of OXPHOS is lethal for subsets of PCa cells, whereas others become de-
pendent on androgen receptor (AR) signaling for survival. Given that the AR-mitochondria interaction is critical for early PCa, it is crucial to
understand the details of this interaction. Technical hurdles have made mitochondria traditionally difficult to study, with many techniques
used for isolation masking the properties of given individual mitochondria. Although the isolation of mitochondria enables us to study
OXPHOS, wemiss the context in which mitochondria interact with the rest of the cell. Both AR signaling andmtDNA affect apoptosis, me-
tabolism regulation, cellular calcium storage and homeostasis, intracellular calcium signaling, and redox homeostasis. In this review, wewill
attempt to understand how the crosstalk between AR-mtDNA-OXPHOS is responsible for “life or death” decisions inside the cells. Our aim
is to point toward potential vulnerabilities that can lead to the discovery of novel therapeutic targets.
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1. Introduction

Mitochondria are mostly known for their role as the cellular pow-
erhouses [1]. The mitochondrial oxidative phosphorylation (OXPHOS)
system consists of 5 multisubunit complexes.[2] These complexes
play a critical role in electron transfer and cellular energy production
in the form of ATP.Mitochondria also regulate cellular metabolism,
cellular calcium homeostasis, cell proliferation, and apoptosis.[1]

They also play a role in steroid synthesis, hormonal signaling, im-
mune signaling, heme synthesis, and so on.[1] Moreover, mitochon-
drial defects have been implicated in tumorigenesis and cancer
aggressiveness.[3–5] The resulting oxygen accumulation has been
linked to the expression and activation of protumorigenic signaling
such as Ras, ERK, Akt, and nuclear factor κB.[6–9] Mitochondrial
dysfunction also has a direct inhibitory effect on apoptosis and
the function of tumor suppressors (eg, p53).[10–12] In addition,
OXPHOS dysfunction favors a metabolic shift toward glycolysis,
which is known as theWarburg effect, a well-established hallmark
of cancer.[13]
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2. Literature review

2.1. Mitochondrial DNA

The vast majority of mammalian mitochondrial proteins (approx-
imately 1200) are encoded and expressed by the nuclear genome,
but a small subset of these proteins is encoded by mitochondrial
DNA (mtDNA).[2,14] The protein components of complexes I, III,
IV, and V are encoded both from nuclear DNA andmtDNA.[15,16]

The subunits of complex II are encoded only by nuclear DNA.[16]

The mtDNA encodes for 12 subunits of the OXPHOS system, 2 ri-
bosomal RNAs, and 14 tRNAs.[17,18] It encodes for subunits 1, 2,
3, 4, 5, and 6 of complex I, cytochrome b of complex III; Subunits
1, 2, and 3 for complex IV; and F0 subunits 6 and 8 of complex V
(ATP synthase).[19–22] Reduced levels or defective mtDNA can
cause imbalances in the structure of the OXPHOS complexes and
result in defective mitochondrial respiration. Although the main
activity of these proteins is related to OXPHOS and energy pro-
duction, they are not limited solely to their role as parts of the respi-
ratory chain. For example, protein 1 of complex I is a substrate of
caspase-3 and plays a critical role in the induction of apoptosis;
complex IV has been observed in extra-mitochondrial locations,
and so on.[23,24] It has also been proposed that mutations or dele-
tions in mtDNA might play a causative role in tumorigenesis and
cancer aggressiveness, but robust experimental evidence is still
lacking.[25,26]

2.2. Prostate cancer and mitochondrial DNA

Prostate cancer (PCa) is among the most frequently diagnosed can-
cers in the world.One of themost notable characteristics of the dis-
ease is the tumor cell dependence on the androgen receptor (AR)
for activation of luminal differentiation, proliferation, and survival.[27]

The role of mitochondria in PCa is also very important.[28]

mailto:doctorsakellakis@gmail.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sakellakis and Flores � Volume 16 � Issue 4 � 2022 www.currurol.org
Depletion of mtDNA prevents apoptosis and induces PCa progres-
sion.[29] It also induces epithelial-to-mesenchymal transition and
promotes tumor cell motility by upregulating phosphatidylinositol-
3-kinase/Akt2 signaling.[30] Reduction of mtDNA can also result
in a more invasive phenotype via increased migration onto the base-
ment membrane protein laminin-1 and decreased expression of poly
(ADP-ribose) polymerase 1.[31] In vitro studies have shown that the
depletion of mtDNA from androgen-dependent lymph node carci-
noma of the prostate (LNCaP) cells results in androgen-dependence
loss.[32,33] Strikingly, the depleted cells grow significantly faster than
the parental cell line. Restoration of mtDNA results in restoration
of androgen dependence. The androgen-independent cell line
C4-2 established by inoculation of LNCaP cells in castrated mice
has 8 times less amount of normal mtDNA than the parental LNCaP.
Androgen-independent cell lines PC3 and DU125 exhibit less
mtDNA content than LNCaP cells as well. These results indicate
that mtDNA is connected to androgen dependence in PCa cells.
Interestingly, mtDNA-depleted LNCaP cells in the absence of an-
drogens grow faster than both LNCaP cells and C4-2 cells.[32,33]

This is particularly surprising because most mtDNA-depleted cells
grow slower than their parental cells, because of loss of energy gen-
eration via normal cellular respiration. In vivo studies in athymic
nude mice were also in line with these findings, where mtDNA de-
pletionwas sufficient to render the cells androgen-independent and
resistant to the effects of androgen deprivation.[32]

2.3. Oxidative phosphorylation inhibition in prostate cancer

It is well known that PCa metabolism relies more and more on gly-
colysis as it evolves toward the aggressive phenotype.[28–33] Based on
the previous results, one would expect that the pharmaceutical
OXPHOS inhibition in androgen-dependent cancer cells will result
in a cellular reprogramming that renders them androgen-independent,
more aggressive, and more dependent on aerobic glycolysis. What
is interesting is that when we inhibit OXPHOS in LNCaP cells, we
observe the exact opposite effect in vitro and in vivo. In the context
of androgen deprivation and OXPHOS inhibition, almost all
LNCaP cells eventually die, mostly through apoptosis.[34–37] The
cells not only do not become androgen-independent when exposed
to oligomycin (complex V inhibitor) or IACS-010729 (complex I
inhibitor), but also the addition of androgens has a prosurvival ef-
fect. Oxidative phosphorylation inhibition in C4-2 and C4-2B cells
(androgen-independent derivatives of LNCaP cells) poses a similar
antitumor effect, albeit smaller. The addition of androgens also
has a prosurvival effect in C4-2 and C4-2B cells under OXPHOS
inhibition. Moreover, in vertebral cancer of the prostate (VCaP)
cells, the combination of OXPHOS inhibition with oligomycin
and androgen deprivation is lethal for all cells within 72 hours in
vitro. When VCaP cells under oligomycin are exposed to andro-
gens, not only do they escape death, but they also continue growing.
VCaP cells harbor increased AR expression via AR gene amplification.

These results are interesting and suggest that OXPHOS inhibi-
tion might be used to synergize the antitumor effects of androgen
deprivation in subsets of androgen-dependent PCa cells. One must
be careful, though, because complex V inhibition does not equal
complex I or II or III or IV inhibition. For example, in PCa, succi-
nate anaplerosis has a tumor-promoting effect and restores cellular
respiration through complex II.[38] This can overcome complex I
inhibition. We also mentioned previously that subunit 1 of complex
I is a substrate of caspase-3.[23] Although inhibition of complexes III,
IV, orV can trigger proapoptotic signals, complex I inhibition can po-
tentially sabotage apoptosis.[39] It would be preferable to target
complex III, IV, or V, but so far, toxicity has been limiting our ef-
forts. At this time, mostly complex I inhibitors are being studied in
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clinical trials.[40] Only time will tell if there is a therapeutic window
to use variousOXPHOS inhibitors in clinical practice for the treat-
ment of PCa patients. Interestingly, reformulated niclosamide, a
splice-variant AR-V7 inhibitor, has shown promising synergistic
antitumor effects with androgen deprivation in PCa patients.[41]

Niclosamide is also a potent mitochondrial respiratory chain un-
coupler, suggesting that at least part of its activity might be due
to OXPHOS inhibition.[42]

2.4. Androgen receptor effects in mitochondria

Wepreviouslymentioned thatmtDNAmutationor depletion contrib-
utes to PCa tumorigenesis, induces androgen independence, and en-
hances proliferation. However, pharmaceutical OXPHOS inhibi-
tion is detrimental for androgen-dependent cells, whereas androgens
have a positive survival effect. What is the cause of this paradox?

Complete depletion of mtDNA makes LNCaP cells proliferate
faster, but pharmaceutical OXPHOS inhibition makes them un-
dergo apoptosis or necrosis. Thus, the presence of some mito-
chondrial activity causes LNCaP cells to undergo apoptosis under
pharmaceutical OXPHOS inhibition and/or prevents a metabolic
shift toward glycolysis to generate ATP to avoid necrosis. And
this activity is (at least partly) inhibited by AR. It is well known
that AR activity and mitochondria are connected.[43,44] Upon ac-
tivation, AR is imported into the cells and localized to the mito-
chondria. There it plays multiple roles in regulating multiple mi-
tochondrial processes. The import of AR in the mitochondria is
dependent on a 36-amino-acid-long mitochondrial localization
sequence. Increased expression of AR decreases OXPHOS.Mito-
chondrial impairment increases AR expression and in turn in-
creases its localization inside the mitochondria.[44] This creates
a loop that enables cancer cells to survive AR ablation or
OXPHOS inhibition by upregulating OXPHOS or AR signaling,
respectively.

2.5. Apoptosis

It is well known that AR inactivation or inhibition has proapoptotic
effects in PCa cell lines.[45] The 2most understood apoptotic mech-
anisms include the intrinsic pathway and the extrinsic pathway.
The intrinsic pathway is also known as the mitochondrial pathway.
Intracellular signals generated from cellular stress, such as energy
depletion (eg, from OXPHOS inhibition), hypoxia, heat, radiation,
nutrient deprivation, infection, or increased intracellular calcium
concentration activate the intrinsic pathway of apoptosis.[45–48] A
multitude of Bax/Bak homodimers and heterodimers are then
inserted into the outer mitochondrial membrane, which results in
the release of cytochrome c from the mitochondria. Cytochrome c
binds with apoptotic protease activating factor-1 and ATP to create
the apoptosome. The apoptosome cleaves procaspases to create
caspase-3 and caspase-9. Mitochondria also release proteins known
as secondmitochondria-derived activator of caspases, which bind to
cytosolic factors, which inhibit apoptosis, thereby inactivating them
and further promoting apoptosis.[49] Hence, the presence of func-
tional mitochondria is critical for the execution of apoptosis after
the energy depletion that OXPHOS inhibition causes. Several stud-
ies demonstrated that mtDNA depletion prevents apoptosis and
contributes to tumor progression and metastasis.[50–54] Subunit 1
of complex I is a substrate of caspase-3. Caspase-3, apart from
its essential role in the apoptotic body formation, also functions be-
fore or at the stage when commitment to loss of cell viability is
made.[23,55] Androgen withdrawal triggers the programmed cell
death in androgen-dependent PCa cells.[56] Hence, both AR signal-
ing andmtDNAdepletion have prosurvival effects.However, the in-
terplay between AR and apoptosis is complex.[57] For example, the
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apoptosis-inducing activity of tumor suppressor protein retino-
blastoma is AR-dependent.[58] Androgen-independent PCa cells
do not initiate apoptosis during androgen deprivation, but they
retain the ability to do so when sufficiently damaged by exoge-
nous factors.[59]

2.6. Calcium cell storage and homeostasis

Mitochondria regulate calcium cell homeostasis and calcium stor-
age.[60,61] Calcium ions regulate every aspect of cell function, in-
cluding gene expression, movement, secretion, proliferation, me-
tabolism, and so on. Calcium signals have to be tightly regulated
to prevent cell injury.[62] Prostate cancer cells are characterized
by calcium signals that are different from those in normal cells with
regard to subcellular localization, amplitude or kinetics.[63,64]

Calcium-dependent modifications in PCa cells rely on altered
calcium homeostasis, which is caused by alterations in plasmamem-
brane and endoplasmic reticulum channels, as well as gap junc-
tions.[65] These changes result in influx/efflux ratio changes and
altered calcium storage and sequestration.[64,66] It is known that
mtDNA mutations/polymorphisms result in defective mitochon-
drial calcium regulation.[67,68] Increased levels of cytosolic calcium
might overactivate calcium-binding proteins involved in tumor cell
progression. One example is calcium/calmodulin-dependent ki-
nase II (CAMKKII), which seems to play an important role in the
ability of PCa cells to evade apoptosis (inhibits caspase-7 and
caspase-8) and to progress into an androgen-independent state.[69]

Androgen receptor signaling also promotes CAMKKII signaling.
Calcium signaling is involved in the activity of AR on PCa prolifer-
ation.[69,70] Moreover, in LNCaP cells, androgen-dependent increases
in intracellular calcium concentrations have been observed.[71] Up-
regulation of T-type calcium channels increases several prolifera-
tive signals such as Akt kinase, mTOR, CDK4, and others.[72,73]

Androgen-dependent activation of CAMKKII signaling also pro-
motes the glucose transporter GLUT12 trafficking to the plasma
membrane and shifts cellular metabolism toward glycolysis.[74] In
addition, CAMKKII overexpression promotes PCa growth via de
novo lipogenesis.[75]

2.7. Metabolism regulation

Normal prostate epithelial cells halt tricarboxylic acid cycle to in-
crease the secretion of citrate, which enhances sperm viability. In
order to cover their energy needs, they use a relatively glycolytic
metabolism.[76,77] On the other hand, early-stage prostate adeno-
carcinoma reprograms metabolism to enable tumor progression,
by consuming citrate to power OXPHOS and to fuel lipogenesis.
Despite the strict definition of theWarburg effect as aerobic glycol-
ysis, early PCa displays both increased glycolytic and mitochon-
drial activity.[78] Androgen receptor signaling directly or indirectly
regulates the expression and activity of several metabolism-related
enzymes, such as fatty acid synthase, α-methylacyl-CoA-racemase
or hexokinase 1/2. It also regulates the axis CAMKK2-AMPK-
phosphofructokinase, Myc, SLC2A1 (facilitated glucose transporter),
and so on. Hence, AR activity is a major regulator of metabolism in
PCa and promotes both glycolysis andOXPHOS.[79]However,metab-
olism regulation in PCa cells is very complex anddoes not rely solely on
AR. For example, c-Myc contributes tometabolic adaptations favoring
glycolysis and glutaminolysis, often with the cooperation of
hypoxia-inducible factor α and/or a mutated p53.[78,80,81] It is known
that androgen-dependent PCa cells use a metabolic switch to survive
androgen ablation.[36] Respiration-deficient LNCaP cells due to
mtDNA depletion begin to grow in an androgen-independent
manner.[28,29] It is evident that androgen-independent mecha-
nisms rewire cellular metabolism to promote tumor cell survival
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and proliferation. However, potent OXPHOS inhibition with
oligomycin makes subsets of PCa cells dependent on AR for sur-
vival.[34] This suggests that, in these cells, the mechanism that en-
ables cells to switch their metabolism and become aggressive is
likely still present, but these cells appear (for reasons not yet fully
elucidated) to “choose” to die, unless AR signaling prevents them.

2.8. Reactive oxygen species formation

Mitochondrial respiration is a leading source of reactive oxygen
species (ROS) that can cause considerable cell damage and even
trigger cell death if levels become too high. Cancer cells have higher
ROS than their noncancerous cells of origin.[82] The presence of
basal levels of ROS is essential for protumorigenic signaling, im-
portant for cell survival, differentiation, and proliferation.[83] In PCa,
chronically increased intracellular ROS (mainly via 5-lipoxygenase
activation) results in ligand-independent Src-mediated activation of
prosurvival epidermal growth factor receptor signaling.[84] The pro-
liferative activity of LNCaP cells increases when exposed to low
H2O2.

[85] On the other hand, excessive amounts of ROS can trigger
oxidative damage and cellular death.[83] Cancer cells counterbalance
the detrimental effects of ROS by upregulating the production of an-
tioxidant molecules, such as reduced glutathione and thioredoxin,
which rely on the reducing power of nicotinamide adenine dinucle-
otide phosphate to maintain their antioxidative activities.[86] Mu-
tations or deletions in mtDNA may result in defective respiratory
chains and increased ROS production.[87] On the other hand,
mtDNA depletion results in decreased ROS levels. This can affect
cell proliferation and survival in variable ways, depending on the
cell type.[82,83] Pharmacological inhibition of OXPHOS can also
have a variable effect in ROS production. This depends on the spe-
cific site of the respiratory chain that the drug acts on. However, the
most widely used OXPHOS inhibitors, such as rotenone, antimycin-
C, or oligomycin, impede proton flow and promote ROS produc-
tion.[88] Increased AR signaling has been shown to increase basal
ROS levels in PCa cells.[89] Moreover, AR signaling enhances tumor
cell proliferation,which in turn increases ROS levels.[90] The presence
of ROS is required for androgen stimulation in androgen-dependent
cells.[91] Increased ROS levels upregulate AR, whereas decreased
ROS levels downregulate AR.[92,93] Moreover, AR signaling contrib-
utes to the redox balance by upregulating 6-phosphogluconate dehy-
drogenase, thus activating the pentose phosphate pathway and the
production of nicotinamide adenine dinucleotide phosphate.[94]

Androgen receptor also regulates glutathione S-transferases and
attenuates oxidative stress in a redox environment.[95]

2.9. Role of tumor suppressors

Various PCa cell lines have different metabolism regulation mech-
anisms and different metabolic dependencies. The tumor suppres-
sor status is a well-known determinant of how cells respond to mi-
tochondrial damage and metabolic stress.[11,12] PTEN, retinoblas-
toma, and TP53 are the most recurrently altered tumor suppressor
genes in treatment-resistant PCa.[96] Cooperative loss of 2 or more
of them is frequently a sign that the disease has progressed into an
aggressive variant.[97] PTEN loss is found inmore than 40%ofme-
tastatic castrate-resistant PCs.[98] PTENprotein is awell-knownmetab-
olism regulator.[98] PTEN loss can promote tumor growth via in-
creased metabolic flux of glycolysis, glutaminolysis, and fatty acid
metabolism.[99–101] Interestingly, mitochondrial complex I inhibition
with deguelin was found to be selectively toxic for PTEN-deficient
PCa cells.[102] This is in line with experiments showing that LNCaP
cells do not survive pharmacologic complex I or complex V inhibi-
tion. LNCaP cells harbor one mutated PTEN allele and one deleted
allele and do not express PTEN protein.[103] TP53 is not only the
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guardian of the genome that protects against ROS formation, but
also an important metabolic regulator.[104,105] Aberrations in
TP53 can result in increased aerobic glycolysis. TP53 protects
against mtDNA mutations or deletions, and loss of TP53 results in
mtDNAdepletion.[106] This further promotes an energy flux toward
aerobic glycolysis. VCaP cells harbor mutated TP53.[107] In the pres-
ence of AR signaling, VCaP cells not only survive ATP synthase inhi-
bition with oligomycin, but they also continue growing. Retinoblas-
toma deletion in PCa also increases tumorigenic growth by repro-
gramming lipid and amino acid metabolism.[108] It also protects
against ROS formation through increased glutathione synthesis.[108]

Other tumor suppressors such as ATM, BRCA1/2, and so on, can
also play a role in the metabolism regulation of PCa cells.[109–111]

Sometimes, the activity of tumor suppressor genes can be affected
by the status of other suppressor genes or other regulatory
genes.[112,113] In this case, the combination of genetic aberrations be-
comes more important than the status of individual genes. Given that
cancer cells usually harbor numerous mutations, it is evident that ev-
ery cancer carries a unique genetic signature. This implies that the tu-
mor models that we usually use in research laboratories have limita-
tions as they are only approximations of subsets of real-life cancers.
3. Conclusions

Technical hurdles have made mitochondria traditionally difficult to
study, with many techniques used for isolation masking the proper-
ties of given individual mitochondria. Given that AR-mitochondria
interaction in early PCa cells is responsible for life or death decisions,
it is crucial to understand the details of this interaction. This will en-
able us to identify mechanisms that can be targeted alone or in com-
binationwith antiandrogen therapy. The selective toxicity of antian-
drogen therapy to PCa cells can be exploited either via the discovery
of a synergistic mechanism or by reducing the dose of other drugs
to levels nontoxic to normal cells.
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