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ABSTRACT
Lung adenocarcinoma (LUAD) is amongst the major contributors to cancer-related deaths on 
a global scale. Adipocytokines and long non-coding RNAs (lncRNAs) are indispensable participants 
in cancer. We performed a pan-cancer analysis of the mRNA expression, single nucleotide varia-
tion, copy number variation, and prognostic value of adipocytokines. LUAD samples were 
obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) 
databases. Simultaneously, train, internal and external cohorts were grouped. After a stepwise 
screening of optimized genes through least absolute shrinkage and selection operator regression 
analysis, random forest algorithm,, and Cox regression analysis, an adipocytokine-related prog-
nostic signature (ARPS) with superior performance compared with four additional well-established 
signatures for survival prediction was constructed. After determination of risk levels, the discre-
pancy of immune microenvironment, immune checkpoint gene expression, immune subtypes, 
and immune response in low- and high-risk cohorts were explored through multiple bioinfor-
matics methods. Abnormal pathways underlying high- and low-risk subgroups were identified 
through gene set enrichment analysis (GSEA). Immune-and metabolism-related pathways that 
were correlated with risk score were selected through single sample GSEA. Finally, a nomogram 
with satisfied predictive survival probability was plotted. In summary, this study offers meaningful 
information for clinical treatment and scientific investigation.
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1. Introduction

Throughout the globe, lung cancer has been acknowl-
edged to be among the major contributor to cancer- 
related fatalities. Lung adenocarcinoma (LUAD) is cur-
rently the most prominent kind of lung cancer, account-
ing for about 50% of all cases with respect to histologic 
type and prognosis. The incidence of LUAD is growing 
every year, particularly in women and young people. It is 
estimated that the five-year rate of survival for LUAD 
patients is less than 20%, despite advancements in diag-
nosis and therapy [1,2]. The lack of comprehensive 
comprehension of the underlying mechanisms of 
LUAD makes it difficult to enhance the treatment ben-
efits. As a consequence, it is necessary to establish 
a unique prognostic signature that would allow for 
more accurate anticipation of LUAD prognosis.

Adipocytokines, secreted by adipocytes, play 
a function to communicate vital organs in order to 
sustain metabolic homoeostasis while also possessing 
the ability to regulate the inflammatory response [3]. 
As a consequence, the dysfunction of adipocytokines 
has been shown to be a contributing factor in 
a broad variety of illnesses. Interestingly, the under-
standing of the infiltration of macrophages into the 
adipose tissue not only offered an insight into the 
source of adipose-derived cytokines but also illu-
strated the close juxtaposition between metabolic 
and immune cells in metabolic organs for the first 
time [4,5]. What’s more, either the relationship 
between adipose tissue dysfunction and cancer 
cachexia [6] or complicated signalling pathways that 
underlie the obesity-cancer link [7] imply the 
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potential role of adipocytokines in cancer. In addi-
tion, long non-coding RNAs (lncRNAs) have recently 
been shown to have the ability to modulate the 
expression of genes at several levels, such as post- 
transcriptional, transcriptional, and epigenetic [8], 
and their role in the occurrence and progression of 
cancer is very crucial [9].

Hence, the aim of the present research was to 
explore the potential function of adipocytokines in 
pan-cancer so as to construct a new adipocytokine- 
related prognostic signature (ARPS) to distinguish 
low- and high-risk LUAD patients and illustrate the 
potential discrepancies of immune and metabolism 
features in patients with different prognosis. Last 
but not least, a nomogram was developed for antici-
pating the survival rates of LUAD patients which can 
be used to support clinical decision-making as well as 
individual management. We are sure that the find-
ings of the present research shed new light on the 
diagnosis and treatment of LUAD and provide 
a theoretical foundation for more thorough 
researches in the future.

2. Materials and methods

2.1. Data collection

The National Human Genome Institute and the 
National Cancer and Cancer Institute debuted the 
Cancer Genome Atlas (TCGA) system in 2006 with 
the ambition of mapping cancer genes, thereby under-
standing the underlying pathways of cancer, and 
improving the capacity to inhibit cancer progression, 
make an accurate diagnosis, and cure cancer. The Gene 
Expression Omnibus (GEO) is an international open- 
source repository for high-throughput microarray and 
next-generation sequence gene function data sets that 
have been reported by the academic community. In the 
present research, mRNA expression profiles, single 
nucleotide variation (SNV), copy number variation 
(CNV), and corresponding clinical characteristics of 
pan-cancer transcriptomes were obtained from the 
TCGA database. The GEO database was also employed 
to acquire the transcriptome profiles as well as the 
clinical features of LUAD patients. 
‘KEGG_ADIPOCYTOKINE_SIGNALING_PATHWA-
Y’ gene set containing 67 adipocytokines and ‘c2.cp. 
kegg.v7.4.symbols.gmt’ file were obtained from the 
Molecular Signatures Database (MSigDB) [10–12]. 
The Ensembl database provided the human gene trans-
fer format (gtf) file that was used in the present 
research [13].

2.2. Data procession

The intersection of transcriptome profiles from TCGA 
and transcriptome profiles from GEO were taken to 
obtain intersecting genes. Expression data of intersect-
ing genes from the TCGA dataset and GEO dataset 
were converted into log2(x + 1) form and batch nor-
malized by utilizing the ‘sva’ package in R. LncRNAs 
were separated from protein-coding genes according to 
the gtf file utilizing Perl languages. The transcriptome 
data of involved adipocytokines and lncRNAs were 
collected respectively. The Pearson correlation coeffi-
cients between lncRNAs and the adipocytokines were 
computed by the built-in function ‘cor. test’ in 
R. Adipocytokine-related lncRNAs were selected with 
P values < 0.001 and |correlation coefficients| > 0.4. The 
transcriptome data of the adipocytokines and their- 
related lncRNAs were integrated with corresponding 
clinical data in TCGA and GEO datasets.

2.3. Pan-cancer analysis

In recent years, many research studies have been car-
ried out on the relationship investigation between adi-
pocytokines and cancers. However, the variations of 
adipocytokines in a variety of cancers are not well 
summarized. For a pan-cancer overview about varia-
tions of adipocytokines, SNV and CNV data derived 
from the TCGA database were analysed and visualized 
in the form of heat maps. Additionally, pan-cancer 
evaluation of differential mRNA expression was con-
ducted. What’s more, univariate Cox regression analy-
sis was conducted to identify the prognostic 
significance of adipocytokines in various cancers. All 
these analyses were conducted by R and TBtools[14].

2.4. Construction, validation, and comparative 
analysis of the ARPS in LUAD

In the following section, we focused on LUAD for 
a deep and comprehensive study. First and foremost, 
LUAD samples with complete transcriptome data and 
survival time in the TCGA dataset were classified at 
random at a ratio of 1:1 into a training cohort and 
test1 cohort. Subsequently, all samples from the 
TCGA dataset were assigned to the test2 cohort, 
whereas all samples from the GEO cohort were 
assigned to test3.

In the training cohort, univariate Cox regression 
analysis was conducted to search for genes with prog-
nostic value utilizing coxph function of ‘survival’ in 
R (filter criteria: p < 0.05). Then, the R software’s 
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‘randomForestSRC’ and ‘randomSurvivalForest’ 
packages were employed to further assess the impor-
tance of these genes to prognosis outcomes [15]. 
Afterwards, genes with raw importance>0 and relative 
importance>0.38 were selected for least absolute 
shrinkage and selection operator (LASSO) regression 
analysis to eliminate collinearity and prevent over- 
fitting. After obtaining the most appropriate variables, 
multivariate Cox regression analysis was utilized to 
create an adipocytokine-related prognostic signature 
(ARPS) and the risk score of each sample was derived 
utilizing the equation below: risk score = 

Pn

k¼1
expk � βk. 

Following the computation of the risk score, the sam-
ples in the training cohort were divided into two sub-
groups depending on the median risk score: low- and 
high-risk subgroups. In a manner consistent with the 
median risk score achieved in the training cohort, all of 
the samples in the test1, test2, and test3 cohorts were 
divided into low- and high-risk, for further analysis.

The subsequent analyses were performed on the 
training, test1, test2, and test3 cohorts for the purpose 
of external and internal validation of ARPS: (1) the 
use of principal component analysis (PCA) to visualize 
sample classification; (2) using the ‘pheatmap’ 
R package to create a heatmap depicting the expres-
sion levels of the genes implicated in ARPS; (3) The 
Kaplan-Meier approach was used for the purpose of 
performing a survival analysis to determine if the 
signature has the potential to predict survival; (4) 
We established multivariate receiver-operating char-
acteristic (multi-ROC) curves for comparing the diag-
nostic value of the risk score with other clinical 
prognostic features, such as stage, smoking history, 
gender, and age based on the area under the curve 
(AUC); (5) To elaborate the association between ARPS 
and clinicopathological traits, the ‘fisher.test’ function 
in R was implemented to investigate the discrepancy 
in the distributions of survival status, age, gender, 
smoking history, and tumour stage between the low- 
risk and high-risk populations.

The prediction accuracy was evaluated by comparing 
our ARPS with four additional prognostic signatures 
(an immune-related signature created by Dina Guo 
et al [16], an autophagy-related gene prognostic signa-
ture created by Jie Zhu et al [17], and a seven-gene 
signature created by Yingqing Zhang et al [18], and 
a glycolysis-related signature created by Lei Zhang 
et al [19]) as follows: Genes used for constructing 
these signatures were obtained; transcriptome data 
and survival time were prepared; the R software’s ‘sur-
vival’, ‘tidyverse’, and ‘timeROC’ packages were 
utilized.

2.5. The discrepancy of the tumour 
microenvironment (TME), immune checkpoint 
genes (ICGs) expression, immune subtypes, and 
immune response in low- and high-risk cohorts

In view of the association between adipocytokines and 
immune, whether immune-related discrepancies can be 
distinguished based on ARPS and whether there is 
a corresponding association between immune-related 
discrepancies and prognosis were explored as follows. 
First, tumour microenvironment (TME) was paid 
attention to and the ESTIMATE algorithm was utilized 
to compute the Immunescore, StromalScore, 
ESTIMATEScore, and TumorPurity for each sample 
based on transcriptome data using the ‘estimate’ pack-
age in R. Notably, an elevation in the score was corre-
lated with an increase in the percentage of the matching 
TME components. Afterwards, the differential expres-
sion analysis of 47 common ICGs in high- and low- 
subgroups were conducted and only the statistically 
significant results were shown (filter criteria: 
p < 0.05). Then an approach, published in the 
‘Immunity’ journal in 2018 [20], was utilized to identify 
the immune subtype of each sample in train, test 1, and 
test 2 cohorts respectively. There were six immune 
subtypes in total (i.e. wound healing (C1), IFN-γ domi-
nant (C2), inflammatory (C3), lymphocyte depleted 
(C4), immunologically quiet (C5), and TGF-b domi-
nant (C6)). The composition discrepancy of immune 
subtypes in various subgroups was analysed utilizing 
the chi-square test. For in-depth investigation of 
immune components in the TME, the EPIC, 
QUANTISEQ, CIBERSORT-ABS, MCPCOUNTER, 
TIMER, XCELL, and CIBERSORT algorithms were uti-
lized to evaluate immune responses between low- and 
high-risk subgroups on the basis of ARPS.

2.6. ARPS-based functional annotation

Numerous reliable sources have been developed during 
the last 3 decades to gather and organize reactomes and 
pathways on the basis of standard biochemical under-
standing, such as the Kyoto Encyclopaedia of Genes 
and Genomes (KEGG) [21], which provided functional 
annotations in various cancers. To identify abnormal 
pathways underlying the low-and high-risk subgroups, 
gene set enrichment analysis (GSEA) was utilized for 
KEGG analysis that was performed with the aid of 
GSEA (version: 4.1.0) [10,11]. In view of the association 
between adipocytokine and immune and metabolism 
[22–25], 43 metabolism-related pathways and 33 
immune-related pathways were distinguished respec-
tively based on the ‘c2.cp.kegg.v7.4.symbols.gmt’ file 
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from the MSigDB [12]. The activities of these pathways 
were evaluated utilizing a single sample gene set enrich-
ment analysis (ssGSEA) in R according to the tran-
scriptome data of individual samples. Subsequently, 
utilizing the built-in function ‘cor. test’ in R, the 
Pearson correlation coefficient between risk score and 
the activities of metabolism-related and immune- 
related pathways were computed.

2.7. Construction and validation of a nomogram

First and foremost, univariate and multivariable Cox 
regression analyses were also respectively carried out in 
order to determine whether the risk score had prog-
nostic significance independently. The markers that 
showed statistical significance (p < 0.05) in both the 
univariate and multivariate Cox regression analyses in 
training, test1, test2, and test3 cohorts were deemed to 
be independent prognostic variables in the sample 
population. Following this, a nomogram was created 
by integrating the independent prognostic factors with 

satisfied diagnostic values utilizing the ‘rms’ package in 
R, and subsequent calibration curves for survival prob-
ability over one, three, and five years were charted to 
determine the extent of fitting between the survival 
rates estimated by the nomogram and the actual rates.

3. Results

3.1. Data procession

An overview of the research steps is presented as a flow 
chart in Figure 1. mRNA expression profiles, SNV, 
CNV, and survival data of 67 adipocytokines in all 
types of cancers were acquired from TCGA for pan- 
cancer analysis. 535 LUAD samples from the TCGA 
database, as well as an additional 226 LUAD samples 
(GSE31210) from the GEO database, were included for 
specific analyses in LUAD. Following the intersection 
of all the genes from the 2 LUAD datasets, a total of 
18,870 shared genes were discovered. Of note, the 
GSE31210 dataset lacks the expression of the CPT1B 

Figure 1. The workflow of the current study.
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gene; thus, 66 adipocytokines left and 261 adipocyto-
kine-related lncRNAs with complete mRNA expression 
data in all samples were obtained. Then 45 LUAD 
samples whose survival data was not complete from 
the TCGA database were excluded. The remaining 
490 LUAD samples obtained from the TCGA dataset 
together with 226 LUAD samples obtained from the 
GEO dataset were accompanied by complete mRNA 
expression data and survival data.

3.2. Pan-cancer introduction about variations of 
adipocytokines

To summarize and visualize the variation of adipo-
cytokines in various cancers, CNV and SNV data 
were visualized as a heat map. Figure 2(a) depicts 
the CNV gain frequency heatmap demonstrating that 
adipocytokines exhibit elevated gain frequencies in 
LUSC, HNSC, ESCA, CESC, SARC, USC, OV, 
KICH, and ACC. RXRG, PRKAB2, AKT3, 
ADIPOQ1, NPY, CD36, PRKAG2, and LEP obtained 
gain variations in a vast majority of cancers. 
Furthermore, Figure 2(b) depicts the CNV loss fre-
quency heatmap, where adipocytokines had higher 
frequencies of loss variations in UCS and OV. The 
loss variations of CAMKK1, SLC2A4, ACSL1, and 
JAK2 existed in almost all cancers. What’s more, 
the heat map generated from the SNV data in 
Figure 2(c) revealed that a wide range of adipocyto-
kines had SNV in UCEC and the SNV of ACACB 
was involved in multiple cancers.

3.3. Pan-cancer analysis of the prognostic value 
and mRNA expression of adipocytokines

According to contemporary cancer research, aberrant 
mRNA expression might indicate that the relevant gene 
has a high likelihood to perform a critical function in 
disease progression [26–28]. Then the univariate cox 
regression analysis between the mRNA expression and 
overall survival (OS) was conducted to identify risky 
adipocytokines with HR>1 and p < 0.05 and protective 
adipocytokines with HR<1 and p < 0.05 (Figure 2(d)). 
For a visual exhibition, mRNA expression levels of 
adipocytokines were depicted in Figure 2(e). In the 
heat map, NPY showed an obviously increasing expres-
sion in many cancer types, such as SARC, THCA, 
CHOL, PCPG, LUAD, LUSC, and LIHC. ADIPOQ, 
LEP, RXRG, and CD36 had simultaneous low expres-
sion in THYM and READ, while simultaneously highly 
expressed in SARC. Moreover, simultaneous down- 
regulation of PCK1 and G6PC existed in SARC, 
KICH, KIRC, KIRP, COAD, STAD, and an opposite 

trend emerged in LUAD. All these conclusions were 
based on |log2(FC)| >2. To more clearly show the 
salience of the variation in the levels of mRNA expres-
sion, a heat map of the corresponding -lg (pValue) was 
created. The greener the colour, the more violent the 
alteration in mRNA expression in the relevant malig-
nancy (Figure 2(f)).

3.4. Construction and comparative analysis of the 
ARPS in LUAD

In the following specific analyses about LUAD, 490 
LUAD samples in the TCGA dataset, as well as 226 
LUAD samples in the GEO dataset with complete 
mRNA expression data and survival data, were 
included for group division. In total, there are four 
cohorts in this study: training cohort (246 TCGA 
samples), test1 cohort (244 TCGA samples), test2 
cohort (all of the 490 TCGA samples), and test3 
cohort (226 GEO samples). Notably, the test 1, as 
well as test 2 cohorts, were utilized for internal 
validation, whereas the test3 cohort was utilized 
for external validation during the course of the 
ARPS validation.

In total, 66 adipocytokines and 261 adipocytokine- 
related lncRNAs were merged together as candidate 
genes for signature construction. In the training cohort, 
53 adipocytokines and their-related lncRNAs with 
prognostic values were selected from the 327 candidate 
genes after conducting univariate Cox regression ana-
lysis. After assessing the importance of the 53 genes to 
prognosis outcome, 24 crucial candidate genes were 
identified through random forest analysis. 
Supplementary Figure S1(a) depicts the correlation 
between the error rate and the number of classification 
trees, as well as the order of the 24 critical genes’ out-of 
-bag relevance. Following this, LASSO regression ana-
lysis was conducted to remove collinearity among the 
24 crucial genes and prevent the prognostic model from 
over-fitting. Then 12 genes were obtained for subse-
quent multivariate Cox regression analysis 
(Supplementary Figure S1(b,c)). Eventually, 
a multivariate Cox proportional hazards regression 
analysis was performed by incorporating two adipocy-
tokines and three adipocytokine-related lncRNAs (i.e. 
CYP1B1-AS1, RELA, CAMKK1, FAM30A, and 
LINC01137) to create an innovative ARPS. Based on 
the Cox coefficient obtained through multivariate Cox 
regression analysis, the following equation was 
employed to determine the risk score: 
(0.811434858341342 * RELA expression level) – 
(0.663459367611146 * CAMKK1 expression level) + 
(0.380891381331339 * LINC01137 expression level) – 
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(0.366850416554157 * FAM30A expression level) – 
(0.479894025470768 * CYP1B1-AS1 expression level). 
Subsequently, using the value 1.028679688 as the med-
ian risk score, samples from the training cohort were 

split into low- and high-risk subgroups (Figure 3(a)). 
The survival status and risk score distributions sug-
gested that patients having higher risk scores had 
a greater likelihood of death (Figure 3(b)). The PCA 

Figure 2. Panoramic view of adipocytokines in pan-cancer. (a) The gain frequencies of copy number variation (CNV) in diverse types 
of cancers. (b) Loss frequencies of CNV in diverse types of cancers. (c) Single nucleotide variation (SNV) in pan-cancer. (d) Survival 
landscape of adipocytokines across cancer types. (e) The changes of mRNA expression of adipocytokines across cancer types (FC: 
Fold changes). (f) The relevant -logP value of the changes of each gene across various cancers.
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findings depicted in Figure 3(c) reveal that patients 
belonging to the two subgroups might be readily dis-
criminated against. Using a heatmap as shown in 
Figure 3(d), we can visualize the levels of expression 
of the 5 genes that are implicated in this model, which 
were also closely aligned with the coefficients in the 
aforementioned equation. The genes LINC01137 and 
RELA were discovered to be more strongly expressed in 
the high-risk subgroup as opposed to the low-risk sub-
group. On the other hand, the genes CYP1B1-AS1, 
CAMKK1, and FAM30A were found to be expressed 
at lower levels in the high-risk subgroup. According to 
Figure 3(e), a lower OS rate was constantly observed 
among individuals in the high-risk subgroup (p < 0.05). 
Furthermore, the AUC values with regard to the 

survival probability of the ROC curves of risk score 
were 0.790, 0.737, 0.741, 0.715, 0.741, 0.756, and 0.738 
for one, two, three, four, five, six, and seven years 
(Figure 3(f)), which were higher than other clinical 
indicators and implicitly indicates that ARPS may 
exert a strong prediction role of survival for LUAD 
patients. To elaborate the association between ARPS 
and clinical traits of the samples chosen to performed 
the analysis above, the discrepancy in the distributions 
of survival status, age, gender, smoking history, and 
stage between the low-risk and high-risk population 
in train cohort were displayed in Supplementary 
Figure S2(a). Of note, more stage I samples existed in 
low-risk subgroup. Furthermore, our ARPS had an 
obviously superior probability to predict survival 

Figure 3. Construction of ARPS in the training cohort. (a) Group division according to median risk score in the training cohort. (b) 
Survival status and risk score distributions in the training cohort. (c) Training cohort’s PCA. (d) In the training cohort, a heatmap 
depicting the levels of expression of the 5 genes associated with the signature. (e) Survival curve of the training cohort. (f) AUC 
values of multi-ROC curves in the training cohort. (g) The AUC values of ROC curves for prediction ability of ARPS in comparison to 
four additional signatures in the training cohort.
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compared to four additional prognostic signatures 
(Figure 3(g)).

3.5. External and internal verification of the ARPS 
in LUAD

Risk scores were generated and samples were divided in 
the 3 cohorts for the purpose of evaluating the validity 
and reliability of the ARPS: test1, test2, and test3 
cohorts (Figure 4(a), 5(a), 6(a)). Notably, the median 
risk score of 1.028679688 found in the training cohort 
served as a unified benchmark for separating the sam-
ples. For both the internal validation (test 1 and test2 
cohorts) as well as the external validation (test3 cohort), 
the survival status and risk scores distributions dis-
played comparable trends to the ones found in the 
training cohort (Figure 4(b), 5(b), 6(b)). By means of 

PCA, it was proved that patients in the two subgroups 
might be readily discriminated from one another 
(Figure 4(c), 5(c), 6(c)). The heatmaps generated from 
the test1, test2, and test3 cohorts revealed the presence 
of genes (LINC01137 and RELA) with high expression 
and genes (CYP1B1-AS1, CAMKK1, and FAM30A) 
with attenuated expression in the high-risk subgroup 
(Figure 4(d), 5(d), 6(d)). Moreover, in the test1, test2, 
and test3 cohorts, individuals with high-risk scores 
reported unfavourable OS rates (all p < 0.05) 
(Figure 4(e), 5(e), 6(e)). Additionally, the multi-index 
ROC curves were created for test1, test2, and test3 
cohorts. The ROC curve AUC values of different clin-
ical indicators suggested that the diagnostic value of 
risk score is as good as tumour stage and obviously 
better than age, gender, and smoking history (Figure 4 
(f), 5(f), 6(f)). In terms of clinical data difference 

Figure 4. Internal verification of ARPS in test1 cohort. (a) In the test 1 cohort, there was a classification into subgroups. (b) Survival 
status and risk score distributions of test 1 cohort. (c) PCA of test 1 cohort. (d) The heatmap depicting the levels of expression of the 
5 genes implicated in the signature in test1 cohort. (e) Survival curve of test 1 cohort. (f) AUC values of multi-ROC curves in test 1 
cohort. (g) The AUC values of ROC curves for prediction ability of ARPS in comparison to four additional signatures in test1 cohort.
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between low-risk and high-risk populations, more late- 
stage samples occurred in the high-risk subgroup 
whereas more early-stage samples existed in the low- 
risk subgroup in test1, test2, and test3 cohorts 
(Supplementary Figure S2(b–d)). Similarly, in test 1 
and test2 cohorts, our ARPS also showed visible advan-
tages of the probability to predict survival compared to 
four additional prognostic signatures (Figure 4(g), 
5(g)).

3.6. The discrepancies of the immune 
microenvironment (TME), immune checkpoint 
genes (ICGs) expression, immune subtypes, and 
immune response in low- and high-risk subgroups

In order to explore whether the change of TME is 
associated with the prognosis in LUAD, 
a rudimentary understanding of the discrepancy of 

TME was shown in Figure 7(a–d). In the training 
cohort, lower ESTIMATEScore and ImmuneScore 
which are in agreement with higher tumor purity in 
the high-risk subgroup imply an immunosuppressive 
environment in the high-risk subgroup. With an 
impact on TME, the different expressions of ICGs 
were compared subsequently. Compared with the 
low-risk subgroup, LDHA, CD276, and IL23A 
expressed highly while PTPRC, CD48, TNFRSF14, 
CTLA4, JAK2, CD28, CD27, TNFRSF25, CD200R1, 
BTLA, CD160, CD244, and CD40LG had lower levels 
of expression in the high-risk subgroup in training, 
test1, and test2 cohorts (Figure 7(e–g)). For an inten-
sive investigation of TME, the discrepancy of 
immune subtypes in the three cohorts were identified 
respectively. It inferred that there were more samples 
of the C3 subtype in the low-risk subgroup, while 
more samples of C1 and C2 subtypes in the high-risk 

Figure 5. Internal verification of ARPS in test 2 cohort. (a) Classification of test 2 cohort into subgroups. (b) Survival status and risk 
score distributions of test 2 cohort. (c) PCA of test2 cohort. (d) Heatmap depicting the levels of expression of the 5 genes related to 
the signature in test2 cohort. (e) Survival curve of test 2 cohort. (f) AUC values of multi-ROC curves in test 2 cohort. (g) The AUC 
values of ROC curves for ARPS prediction ability in comparison to four additional signatures in test 2 cohort.
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subgroup (p < 0.001) (Figure 7(h–j)). Notably, more 
SNV neoantigens, higher intratumor heterogeneity, 
stronger proliferation, more Th2 cells, and few 
Th17 cells existed in C1 and C2 compared with C3 
subtypes [20].

In addition, the immune responses were explored by 
means of EPIC, MCPCOUNTER, QUANTISEQ, 
CIBERSORT-ABS, XCELL, TIMER, and CIBERSORT 
algorithms and were shown in visual heat maps. After 
synthesizing all the differences between low- and high- 
risk subgroups in train, test1, and test2 cohorts, we discov-
ered that a lower proportion of various types of B cells 
existed in the high-risk subgroup. In addition, nearly all 
types of T cells illustrated an elevated proportion in the 
high-risk subgroup including follicular helper T cell (Tfh). 
Notably, T helper 2 (Th2) cells have an elevated proportion 
in the high-risk subgroup and T cell regulatory (Treg) cells 
have an elevated proportion in low-risk subgroups 
(Figure 8(a–c)).

3.7. ARPS-based functional annotation

As we all know, pathway dysregulation is correlated with 
avariety of cancers. Thus, GSEA was conducted to deter-
mine the discrepancy in pathway activities underlying the 
low-and high-risk subgroups, which might be responsible 
for the discrepancy in prognosis between the two sub-
groups. As illustrated in Figure 9(a–c), DNA_REPLIC 
ATION, PROTEASOME, PENTOSE_PHOSPHATE_ 
PATHWAY, and PYRIMIDINE_METABOLISM were 
substantially enriched in the high-risk subgroup, while the 
VASCULAR_SMOOTH_MUSCLE_CONTRACTION, 
ABC_TRANSPORTERS, CALCIUM_SIGNALING_PA 
THWAY, NEUROACTIVE_LIGAND_RECEPTOR_INT 
ERACTION, and GNRH_SIGNALING_PATHWAY 
were enriched in the low-risk subgroup in the training, 
test1, and, test2 cohorts. An examination of the correlations 
between risk scores and immune and metabolic illnesses 
was conducted due to the strong relationship between 

Figure 6. External verification of ARPS in test 3 cohort. (a) Test 3 cohort was divided into groups. (b) Survival status and risk score 
distributions of test 3 cohort. (c) PCA of test3 cohort. (d) Heatmap illustrating the levels of expression for the five genes linked to the 
signature in test 3 cohort. (e) Survival curve of test3 cohort. (f) AUC values of multi-ROC curves in test 3 cohort.
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adipocytokines, immunological disorders, and metabolic 
disorders. For immune-related pathways, the ARPS-based 
risk score is negatively correlated with B_CELL_RECEP 
TOR_SIGNALING_PATHWAY, PRIMARY_IMMUNO 
DEFICIENCY, and INTERLEUKIN_2_SIGNALING, but 
is positively correlated with P53_SIGNALING_ 

PATHWAY, MISMATCH_REPAIR, NUCLEOTIDE_ 
EXCISION_REPAIR, HOMOLOGOUS_RECOMBINAT 
ION, DNA_REPLICATION, CELL_CYCLE, PROTE 
ASOME, INTERLEUKIN_1_SIGNALING, CLAS 
S_I_MHC_MEDIATED_ANTIGEN_PROCESSING_PR-
ESENTATION, BASE_EXCISION_REPAIR, 

Figure 7. The discrepancies in tumour microenvironment (TME), immune checkpoint genes (ICGs), and immune subtypes in low- and 
high-risk population. (a-d) TME scores in high- and low-risk subgroups. Greater scores denote an elevated proportion of the 
matching TME component. (e-g) Differential expression analysis of ICGs in train, test1, and test2 cohorts respectively. (h-j) Heat map 
and table showing the distribution of immune subtypes (C1, C2, C3, C4, C5, and C6) between the risk score-based subgroups in train, 
test1, and test2 cohorts respectively.
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MHC_CLASS_II_ANTIGEN_PRESENTATION, 
PROGESTERONE_MEDIATED 
_OOCYTE_MATURATION, and OOCYTE_MEIOSIS. 
As for metabolism-related pathways, the ARPS-based risk 
score had a negative correlation with ARACHIDO 
NIC_ACID_METABOLISM, ALPHA_LINOLENIC_AC 
ID_METABOLISM, GLYCEROPHOSPHOLIPID_META 
BOLISM,

FATTY_ACID_METABOLISM, ETHER_LIPID_ 
METABOLISM, and LINOLEIC_ACID_METABOLI 
SM while a positive correlation with PYRIMI 
DINE_METABOLISM, GALACTOSE_METABOLISM, 
GLYCEROLIPID_METABOLISM, and SULFUR_ME 
TABOLISM (Figure 9(d–f)).

3.8. Development and verification of nomogram 
plot

First, stage and risk score were identified to independently 
serve as prognostic indicators in the training cohort 
according to the findings obtained from the univariate 
and multivariate cox regression analyses. All the p values 
and hazard ratios were shown in Figure 10(a,b). 
Furthermore, in test1, test2, and test3 cohorts, the inde-
pendent predictive function of stage and risk score in 
LUAD was validated (Figure 10(c–h)). Subsequently, 
a nomogram was generated by merging these indepen-
dent prognostic variables. According to the value of each 
variable, the total score can be easily calculated for pre-
dicting the OS of LUAD patients over one, three, and five 
years (Figure 10(i)). Furthermore, calibration curves were 
generated in order to validate the anticipation power of 
the nomogram, and the findings revealed that the antici-
pated survival rates of the nomogram and actual survival 
rates were largely in agreement (Figure 10(j)).

4. Discussion

With the deepening of research about adipocytokines, 
the role of adipocytokines in cancer has been continu-
ously explored [29–32]. Thus, we summarize the varia-
tions of adipocytokines in a variety of cancers before 
investigating the influence of abnormal adipocytokines 
in LUAD specifically. Indeed, variations of adipocyto-
kines more or less existed in various cancers. Then, we 
distinguished prognostic genes from adipocytokines 
and adipocytokine-related lncRNAs and screened the 
optimized candidate genes for signature construction in 
order to obtain an ideal signature with clinical signifi-
cance. After internal and external validation, a novel 
ARPS consisting of two adipocytokines and three adi-
pocytokine-related lncRNAs (i.e. RELA, LINC01137, 
CAMKK1, FAM30A, and CYP1B1-AS1) was identified 
with satisfied prognostic performance.

The prognostic significance of these five genes in 
LUAD has been supported by other research studies 
as well. RELA, forming a positive feedback loop with 
AKT/MAPK, is implicated in the proliferation of 
LUAD [33]. Additionally, RELA can also promote 
lung cancer proliferation by regulating Wnt/β-catenin 
signalling [34]. As for CAMKK1, it is reported that the 
polymorphism of CAMKK1 rs7214723 was correlated 
with an increase in lung cancer risk [35]. What’s more, 
some established prognostic signatures showed the 
potential roles of the other three genes in LUAD. 
CYP1B1-AS1 is included in a redox-related prognostic 
signature of LUAD [36]. FAM30A is involved in an 
immune-related prognostic signature for LUAD [37]. 

Figure 8. The immune cell infiltration distribution landscape in 
(a) train, (b) test 1, and (c) test 2 cohorts.
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LINC01137 has been reported to be included in an 
autophagy-related prognostic signature and a redox- 
related prognostic signature of LUAD [36,38].

In the training, test 1, test2, and test3 cohorts, 
LUAD patients can be successfully classified into the 
high-risk subgroup with an unfavourable prognosis 
and the low-risk subgroup with a relatively good prog-
nosis with the aid of ARPS. In view of the association 
between adipocytokine and immune, the next section 
revealed the discrepancy of immune status in low- and 
high-risk subgroups of LUAD. As is known, cancer 
cells may be confused as normal constituents of the 
human body to afford self-protection through the 
immune checkpoint pathways [39]. The greater pro-
portion of immune components but poor prognosis in 
the high-risk subgroup implied that immune check-
point pathways might be active. Exactly, immune 

checkpoint genes are expressed differently in the two 
subgroups. The upregulation of LDHA, CD276, and 
IL23A and downregulation of PTPRC, CD48, 
TNFRSF14, CTLA4, JAK2, CD28, CD27, TNFRSF25, 
CD200R1, BTLA, CD160, CD244, and CD40LG in 
high-risk subgroup might become promising targets 
in LUAD. In subsequent in-depth exploration about 
the abundance of immunocyte-infiltration, although 
cancer-promoting Treg [40] upregulated in the low- 
risk subgroup, a great number of anti-tumour immune 
cells including B cells and most types of T cells showed 
up-regulation in the low-risk subgroup. In high-risk 
subgroups, more samples with obvious down- 
regulation of most anti-tumour immune cells and up- 
regulation of cancer-promoting Th2 existed [41,42]. 
The discrepancies of immune subtypes are in agree-
ment with the results above. Characterized with 

Figure 9. ARPS-based functional annotation. (a-c) Gene set enrichment analysis of the low- and high-risk subgroups in train, test1, 
and test2 cohorts. (d-f) Relationships between risk score and immune-related (in the left bottom panel) and metabolism-related 
pathways (in the upper right panel) in train, test1, and test2 cohorts.
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a relatively lower level of cancer-promoting Th2 cells, 
more samples of the C3 subtype belonged to the low- 
risk subgroup. Besides, more samples in C1 and C2 
subtypes with higher SNV neoantigens, greater intra-
tumor heterogeneity, and stronger proliferation existed 
in the high-risk subtype. In addition, many immune- 
related pathways also differed in low- and high-risk 
subgroups. All these discrepancies might be responsible 

for different prognoses and serve as promising targets 
for immune therapy.

Additionally, the diagnostic value of risk score, as 
good as the stage, is confirmed by the time-dependent 
ROC curve. Notably, ARPS exhibits a stronger prediction 
performance for LUAD patients as opposed to other 
well-known signatures. Furthermore, the risk score is 
verified to be an independent prognostic indicator as 

Figure 10. Creation and verification of the risk score-based nomogram. Multivariate and univariate cox regression analyses in (a, b) 
training cohort, (c, d) test1 cohort, (e, f) test2 cohort, and (g,h) test3 cohort. (i) The nomogram for survival probability over one, 
three, and five years. (j) Verification of the predictive power of the nomogram using calibration curves.
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well as the stage. LUAD patients’ survival rate was quan-
titatively examined after plotting a nomogram according 
to the risk score and stage in order to take full advantage 
of the prognostic potential of ARPS. Calibration curves 
were utilized to verify the predictive ability of the nomo-
gram to anticipate with high accuracy.

There are a number of drawbacks of the present 
research that need to be taken into consideration. 
Firstly, the ARPS was developed using a limited number 
of LUAD patients from the GEO and TCGA datasets. It 
is thus necessary to conduct a large prospective clinical 
trial to confirm the prediction value of this prognostic 
signature. Furthermore, the ARPS was developed only via 
bioinformatic research, and more fundamental studies 
are required to validate our findings.

5. Conclusions

In the present research, an ARPS was effectively created 
and validated for the first time to accurately predict the 
clinical prognosis of LUAD patients. The discrepancies 
of ICGs, immune-related pathways, and immune 
response among patients with different prognoses were 
investigated. Subsequently, utilizing this signature and 
the clinical stage, a nomogram was created as 
a quantitative resource to support the prediction of the 
survival rates of LUAD patients. In conclusion, the pre-
sent research may deliver new insight into clinical deci-
sion-making as well as personalized medicine for LUAD.
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