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Abstract: The difference in gold nanoparticle (AuNPs) aggregation caused by different mixing
orders of AuNPs, 4-mercaptophenylboronic acid (4-MPBA), and hydrogen peroxide (H,O5) has been
scarcely reported. We have found that the color change of a ((4-MPBA + AuNPs) + H,O,) mixture
caused by H,O, is more sensitive than that of a (4-MPBA + HyO;) + AulNPs) mixture. For the
former mixture, the color changes obviously with H,O, concentrations in the range of 0~0.025%.
However, for the latter mixture, the corresponding H,O, concentration is in the range of 0~1.93%.
The mechanisms on the color change originating from the aggregation of AuNPs occurring in the two
mixtures were investigated in detail. For the ((4-MPBA + Hy0O,) + AuNPs) mixture, free 4-MPBA is
oxidized by H,O; to form bis(4-hydroxyphenyl) disulfide (BHPD) and peroxoboric acid. However,
for the ((4-MPBA+AuNPs) + H,O,) mixture, immobilized 4-MPBA is oxidized by H,O, to form
4-hydroxythiophenol (4-HTP) and boric acid. The decrease in charge on the surface of AuNPs caused
by BHPD, which has alarger steric hindrance, is poorer than that caused by -4-HTP, and this is mainly
responsible for the difference in the aggregation of AuNPs in the two mixtures. The formation of
boric acid and peroxoboric acid in the reaction between 4-MPBA and H;O; can alter the pH of
the medium, and the effect of the pH change on the aggregation of AuNPs should not be ignored.
These findings not only offer a new strategy in colorimetric assays to expand the detection range of
hydrogen peroxide concentrations but also assist in deepening the understanding of the aggregation
of citrate-capped AuNPs involved in 4-MPBA and H,O,, as well as in developing other probes.

Keywords: 4-mercaptophenylboronic acid; AuNPs; H,O,; aggregation; bis(4-hydroxyphenyl)
disulfide; peroxoboric acid

1. Introduction

Gold nanoparticle (AuNP) probes based on colorimetric strategy have drawn increasing attention
due to their simplicity, high sensitivity, and low cost [1]. A well-dispersed AuNP colloid dispersion
exhibits a red color; a solution of aggregated AuNPs, however, appears purple or blue. The color
change of AuNPs is related to the distance-dependent plasmon coupling of the inter-particles [2].
Based on this principle, many of AuNP-based colorimetric assays for the detection of various analytes
have been reported. These colorimetric assays are established on the change of the dispersion behavior
of AuNP striggered by target analytes. Functional molecules used to modify AuNPs are the key to
finding various specific analytical methods. The combination of boronic acids specially reacted with
1,2- or 1,3-diols [3-6] and thiol specially tethered onto the surface of AuNPs, 4-mercaptophenylboronic
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acid(4-MPBA), is one of the desirable candidates that has been widely employed. By employing
4-MPBA-modified AuNPs (4-MPBA/AuNPs), various AuNP-based colorimetric assays have been
constructed. For these methods, the selective reactions of the thiol group or boronic acid group
on the surface of 4-MPBA-modified AuNPs with the target analytes can trigger the aggregation or
dis-aggregation of AuNPs with an accompanying color change. Based on this analytic platform, the
colorimetric methods have been developed to detect target analytes including sugars [7], sialic acid [8],
catechol [9], Hg2+ [10,11], ATP [12], and dopamine [13].

For these methods, some probes are based on the reaction of4-MPBA/AuNPs with H,O,. For
these probes, the selective and efficient reaction between the boronic acid group of 4-MPBA and Hy,O,
can form 4-hydroxythiophenol (4-HTP) [14-16], which induces the change of the AuNP dispersion
state due to the change in the components of 4-MPBA/AuNPs or analyte-modified 4-MPBA/AuNPs.
By employing this principle, various chemical probes have been widely developed. For instance,
in the detection of prostate-specific antigen (PSA), the aggregation of benzene-1,4-diboronic acid
(BDBA)-modified AuNPs can be destroyed by HyO,produced from the oxidation of glucose by the
glucose oxidase immobilized by PSA. Based on the aforementioned blue-to-red color change of AuNPs,
PSA determination could be achieved [17]. Based on the fact that the reaction between BDBA and H,0O,
forms p-benzenediol to result in the dis-aggregation of aggregated BDBA/AuNPs, the electrochemical
and colorimetric assays of hydrogen peroxide could also be constructed [18]. By employing the reaction
of HyO, with 4-MPBA adsorbed on the surface of a gold mirror, H,O; or the glucose selectively bound
to 4-MPBA could be detected using surface-enhanced Raman spectroscopy (SERS) [14]. Similarly,
3-mercaptophenylboronic acid (3-MPBA)-modified AuNPs were also used to probe exogenous and
endogenous HyO; and be coupled with glucose oxidase (GOx) to achieve the selective detection
of glucose [16]. It was found that the arylboronate immobilized onto an electrode surface reacts
with HyO; to yield a change of pH in a range of 2 to 6, which results in a steady-state change in
the electrochemical potential. Based on this finding, a potentiometric hydrogen peroxide probe was
constructed [18]. Evidently, the combination of 4-MPBA with AuNPs could be constructed into a
platform with the versatility to detect various analytes. In these involved approaches, the colorimetric
methods have advantages in their simplicity. For instance, detection is possible with the naked eye
or UV/Vis spectrometry without requirements for complicated instrumentation or much knowledge
involved in the electrochemical or fluorescent systems. Although the colorimetric assays related to
4-MPBA/AuNPs containing H,O, have been widely investigated, the difference in the aggregation
that occurs in ((4-MPBA + AulNPs) + H,O,) mixtures and (H,O, + 4-MPBA) + AuNPs) mixtures has
so far not been reported.

Interestingly, for the two mixtures, we found that there is a great difference in the concentration
range of HyO, in inducing AuNP aggregation. Herein, we describe not only the two different
approaches to induce aggregation of AuNPs involved in 4-MPBA and H,O, but also, especially, their
corresponding mechanisms. The results indicate that the difference in the concentration range of
hydrogen peroxide in AuNP aggregation is mainly related to the difference in the reaction of H,O,
with free and immobilized 4-MPBA. In the mixture of ((4-MPBA + AuNPs) + H,0O,), the immobilized
4-MPBA:is oxidized by HyO; to form 4-hydroxythiophenol (4-HTP). The change of 4-MPBA to 4-HTP
makes the loaded charge on the surface of AuNPs decrease, resulting in the aggregation of AuNPs.
In the mixture of (H,O, + 4-MPBA) + AuNPs), however, the free 4-MPBA is oxidized by H,O, to
form bis(4-hydroxyphenyl) disulfide (BHPD), and the immobilization of BHPD with bigger steric
hindrance onto surface of AuNPs is more difficult than that of 4-HTP. This difference makes the
mixture of ((4-MPBA + AuNPs) + H,O, more sensitive to the aggregation of AuNPs caused by H,O,
compared with the mixture of ((H,O;, + 4-MPBA) + AulNPs). In addition, some details in the change
of pH during the reaction for the two mixtures have also been revealed. The new findings should
assist in expanding the detection range of H,O, concentrations by AuNP-based colorimetric assays.
Additionally, the revealed mechanisms should not only assistin deepening the understanding of the
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physical and chemical behavior of the system containing AuNPs, 4-MPBA, and H,O,, but also have a
significant positive effect on developing new AuNP-based probes.

2. Experimental

2.1. Materials

4-Mercaptophenylboronic acid (4-MPBA, purity > 90%) and 4-hydroxythiophenol (4-HTP) were
purchased from Sigma Aldrich (Shanghai, China). Tetrachloroauric (HAuCly-4H,O, purity > 99.9%),
hydrogen peroxide (H,O,, 230%), and absolute ethanol (purity >99.99%) were obtained from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). Trisodium citrate (AR) and potassium hydroxide
(KOH, AR) were received from TIANLI Chemical Reagents Ltd. (Tianjin, China). All reactants were
used without further purification. Milli-Q water was used in all experiments. All used glassware was
treated with aqua regia, rinsed in Milli-Q water, and oven-dried prior to use.

2.2. Synthesis of Gold Nanoparticles

The citrate-stabled AuNPs were synthesized via previously reported methods [19]. Briefly, 1 mL
HAuCly (25 mM) aqueous was injected into a boiling solution of 150 mL sodium citrate (2.2 mM), and
then the solution was kept boiling for 10 min. The color of the solution changed from yellow to bluish
gray and then to soft pink. After the solution was cooled down to 90 °C, a 2 mL solution was drawn,
and then the rest of solution was used as the seed solution (~10 nm, ~3 x 102 NPs/mL). Then, ImL
HAuCly solution(25 mM) was added into the seed solution and maintained at a temperature of 90 °C
for 30 min, and this process was repeated twice. After the reaction was quenched by an ice-water bath,
AuNPs with ~20 nm were obtained. The concentration of the final AuNPs was approximately the
same as the seed particles (~3 X 102 NPs/mL).

2.3. Reaction Conditions Involved in the Investigation

To investigate the interactions among 4-MPBA, H,O,, and AuNPs, some related reactive conditions
were selected, as shown in Table 1, and the corresponding samples were used for the subsequent
determination or characterization studies.

Table 1. Reaction conditions involved in the investigation.

Reactants Mixt.12 Mixt.2 2 Mixt.3 Mixt.4 bd Mixt.5
4-MPBA (mM) 0.16 1.28 0.15 — —
4-HTP (mM) — — — 0.0.0027 0.07
H,0, (%) 0.0.19% 0.4.8% 0.012% - —
H,0, (2 mL) — — — — 0.012%
AUuNPs (3 X 500 uL 500 uL — 1mL —

1012 NPs/mL) ©

Reaction time
(min)

Note: Mixt.1: (4-MPBA + AuNPs) + H,O,; Mixt.2: (4-MPBA + H,0O,) + AuNPs; Mixt.3: 4-MPBA + H,O,; Mixt.4:

4-HTP + AuNPs; Mixt.5: 4-HTP + H,O;. a: pH of AuNPs solution was adjusted to 10.8 by 0.5 M KOH. b: pH of

AuNPs solution was 6.56. c: the size of AuUNPs was ~20 nm. d: the AuNP solution (3 X 10'> NPs/mL) was diluted
8 times.

10 10 0.2 days 5 20

2.4. Characterization Techniques

UV-visible spectra were acquired with a Lambda 35 UV-Vis Spectrometer (PerkinElmer, Waltham,
MS, USA). The 13C, 'H, and "B NMR (nuclear magnetic resonance) spectra were monitored by a
JNE-ECZ400S/L1 Nuclear Magnetic Resonance Spectrometer (400 MHz NMR, JEOL, Tokyo, Japan).
Raman measurements were performed on an in Via Raman microspectrometer (Renishaw, London,
UK) with 532 nm laser excitation. Transmission electron microscopy (TEM) images were recorded
on a JEM-2100 system (JEOL, Tokyo, Japan) with an accelerating voltage of 200 kV. The effective
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surface charge on4-MPBA/AuNPs in the different conditions shown in Table 1 was measured using the
Zeta-potential (Malvern Instruments Zetasizer, Worcestershire, UK). X-ray photoelectron spectroscopy
(XPS) measurements were performed by X-ray photoelectron spectroscopy (XPS, AXIS ULTRA, Kratos
Analytical Ltd., Manchester, UK) using amonochromated Al K, X-ray source (1486.71 eV of photons).
Further details can be found in the Supplementary Materials.

3. Results and Discussion

3.1. The UV-Vis Spectroscopy for the Interaction between 4-MPBA and the Citrate-Capped AuNPs

The change in UV-Vis spectra of citrate-capped AuNPs with the change in concentration of
4-MPBA is shown in Figure 1. For the prepared citrate-stabilized AuNP solution, a red color, displaying
a SPR (surface plasmon resonance) peak at 523 nm (Figure 1, black curve), is exhibited due to the
electrostatic repulsion that is derived from the negative charge of the citric acid on the surface between
adjacent particles. When the concentration of 4-MPBA increases in the citrate-stabilized AuNP solution,
this peak is slightly red-shifted, suggesting the formation of a corona on the AuNP surface caused by
the displacement of weakly-bound citrate ions with 4-MPBA [20]. Additionally, the increased amount
of 4-MPBA leads to the pronounced appearance of a new absorbance ranging from 525 nm to 800 nm,
indicating that the aggregation of AuNPs is enhanced. We speculate that the aggregation is attributed
to the decrease in electrostatic interaction. Since citric acid, with three negative charges, is displaced
by 4-MPBA, which is loaded with one negative charge at pH above 9.2 (pKa of 4-MPBA) [21], the
aggregation of AuNPs should be attributed to the reduction in the negative charge density on the
surface of AuNPs, and this tendency continuously strengthens with the increase of 4-MPBA. This
deduction was confirmed by the results shown in Figure 2. The absolute value of the Zeta-potential
of 4-MPBA/AuNPs reliably decreases with the increase of 4-MPBA, for example: AuNPs (-36.2 eV),
AuNPs + 0.16 mM 4-MPBA (-31.8 eV), and AulNPs + 1.28 mM 4-MPBA (-23.8 eV). The aggregation
of AuNPs induced by 4-MPBA being attributed to electrostatic interaction was also testified by the
following experiments.

14| - i

400 500 600 700 800 900
Wavelength (nm)

Figure 1. The change in the UV-Vis spectrum of citrate-capped gold nanoparticles (AuNPs) with the
addition of different amounts of 4-mercaptophenylboronic acid (4-MPBA).
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AuNPs

AuNPs + MPBA (0.16mM)
AuNPs + MPBA (1.28mM)

(AuNPs + 0.16mM MPBA) + 0.019% H,0,
(AuNPs + 0.16mM MPBA) + 0.058% H,0,

(AuNPs + 0.16mM MPBA) + 0.190% H,0,

-33.0 eV

AuNPs + (1.28mM MPBA + 0.24% H,0,)
AuNPs + (1.28mM MPBA + 1.64% H,0,)
B HWAYA AuNPs + (1.28mM MPBA + 4.8% H,0,)

Figure 2. Zeta-potentials for the solutions formed by a given amount of citrate-capped AuNPs mixed
with different amounts of 4-MPBA and H,0O,.

Figure 1 shows that the citrate-capped AuNPs are relatively stable in the presence of 4-MPBA
concentrations ranging from 0 to 0.89 mM. Figure S1 shows the change in the UV-Vis spectra of 4-MPBA
(0.89 mM)-modified citrate-capped AuNPs in which the pH was adjusted by different solutions
(including different concentrations of PBS (phospate buffer saline) buffer solutions with different pH
values—solutionscontaining HCI or NaOH).For the solutions of AuNPs/4-MPBA with different pH
values adjusted by PBS buffer solutions, the absorbance ranging from 525 nm to 800 nm gradually
increases with the increase of PBS concentrations and with the decrease of pH values (Figure SIA-D).
However, the 4-MPBA/AuNPs solution is stable while the pH is adjusted from 4 to 10 with KOH, HCJ,
or 5 mM PBS buffer solutions. All above results indicate that the aggregation of 4-MPBA/AuNPs is
sensitive to the ionic strength of salts [22,23]. The salt-induced aggregation of AuNPs is considered
to be a consequence of the suppressive effect of the salt against the Coulombic repulsive interaction
between the citrate-stabilized AuNPs [24]. Additionally, the aggregation of 4-MPBA/AuNPs enhanced
with the decrease of pH is also attributed to phosphate protonation, resulting in decrease of the charged
number of the phosphate anion. In fact, not surprisingly, the aggregation of 4-MPBA/AuNPs often
appears in the solution containing a salt buffer [10,12,25-27], and the stabilized 4-MPBA/AuNP solution
is usually found in the case of KOH-adjusted pH values [8] or zwitterionic buffers with lower ionic
strength (e.g., Tricine and Hepes) [28,29]. Thus, AuNP-based sensing strategies should pay special
attention to the dispersion states of AuNPs affected by salt, DNA, proteins, or other ions [23].

Combining these reports in the literature with our experimental results, we believe that the
aggregation of 4-MPBA/AuNPs is mainly attributed to the decrease of electrostatic repulsive force. In
particular, we found that the mixture of the well-dispersed citric acid-capped AuNPs and well-dispersed
4-MPBA/AuNPs also remains well dispersed for a long time, further implying that the reaction
between 4-MPBA and citric acid scarcely occurred. This conclusion, i.e., that the aggregation of
4-MPBA/AuNPs is actually attributed to the weakened electrostatic interaction, will be proved again in
following experiments.

3.2. The UV-Vis Spectroscopy of AuNP Solutions Containing 4-MPBA and H,O,

Figure 3 shows the UV-Vis spectra of Mixt.1 (a higher ratio of 4-MPBA to H,0O;) and Mixt.2 (a
lower ratio of 4-MPBA to H,O,). Mixt.1 is a series of mixtures where the given amounts of 4-MPBA
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and AuNPs were first mixed then followed by the addition of different amounts of H,O,, while Mixt.2
is a series of mixtures that given amounts of 4-MPBA was first mixed with different amounts of HyO,
followed by the addition of a given amount of AuNPs.

- H,0, concentration
0

G 0.6} ——0.019%
g ——0.039%
0.4} ——0.058%
0.077%
0.2} ——0.135%
—0.19%
00 " 1 i 1 A 1 A 1 A 00 i 1 " 1 i 't " 1 "
400 500 600 700 800 900 400 500 600 700 800 900
Wavelength (nm) Wavelength (nm)

Figure 3. The UV-Vis spectrum of Mixt.1 (A) (0.16 mM 4-MPBA) and Mixt.2 (B) (1.28 mM) in the
presence of different concentrations of HyO,with photographs of their corresponding samples.

In Mixt.1, 4-MPBA molecules are firstly adsorbed on the surface of AuNPs as thiolate by losing its
proton, and then HyO; reacts with the immobilized 4-MPBA molecules. As displayed in Figure 3A,
with the increase of H,O, in the 4-MPBA/AuNP solution, besides the almost constant peak around
523 nm, a new absorbance peak gradually appears between 600 to 900 nm, and the solution color
visibly changes from ruby red to blue. These results suggest that the aggregation of AuNPs enhances
with the increase of HyO,, which is further proved by TEM images (see Figure S2).

Correspondingly, the change of the wavelength at maximum absorbance with the concentration
of HyO; is shown in Figure 4. In Figure 4A, the Anax increases linearly with H,O, concentrations
in the range of 0~0.025%. The color change of Mixt.1 could be understood with the help of the
following explanations.

740
(A) 7401 (B)
r 720+ L)
700 700
680 | 680 |-
660 - 660 |-
“E640- "Em' (]
620 620
600 | -
580 |

580 |-

1 1 1 1 1 m 1 i 1] 1 1 " 1 1

0.00 0.05 0.10 0.15 0.20 0 1 2 3 4 5

H,0, content (%) H,0, content (%)

Figure 4. The change in the wavelength of maximum absorbance with the content of H,O, in Mixt.1
(A) and Mixt. 2 (B).

It is well known that aryl boronate molecules can react selectively and efficiently with HyO,
to yield its corresponding phenol form [16]. Here, in the presence of H,O,, 4-MPBA immobilized
on AuNPs is oxidized into 4-hydroxythiophenol (4-HTP), and this change is responsible for the
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aggregation of 4-MPBA/AuNPs. To verify this extrapolation, in the UV-Vis spectra of Mixt.4, the
change in the UV-Vis spectra of the AuNP solution in the presence of different amounts of 4-HTP
was recorded (Figure 5). Compared with 4-MBPA (Figure 1), even under the condition where the
concentration of 4-HTP is much less than 4-MBPA, a particularly obvious absorbance peak appears
above 600 nm, and the solution color clearly changes from ruby red to blue. This result confirms that
the transition of 4-MPBA/AuNPs into 4-HTP/AuNDPs is favorable to the aggregation of AuNPs. This
inclination is actually related to the electrostatic interaction. The pKa of 4-MPBA (9.2) [21] is lower than
that of 4-HTP (about 10) [30]. Namely, the formation of dissociated 4-MPBA with a negative charge is
easier than that of 4-HTP. The results from Zeta-potential determination confirmed the change of the
charge density for Mixt.1. As shown in Figure 2, the absolute value of the Zeta-potential decreases for
the mixture of 4-MPBA (0.16 mM)/AuNPs with the increase of H,O, (without H,O,, —31.8 €V, 0.019%
H,0,,-31.3 eV; 0.058% HyO,, —28.9 eV; 0.19% H,O,, —25.2 eV). Apart from the decrease in charge
density, hydrogen bonding is likely another factor in enhancing the interaction between 4-HT and
AuNPs. The phenol groups are expected to be partially dissociated at around pH 10. The hydrogen
bonding between the dissociated phenolate group and the undissociated phenol group is stronger
than that between undissociated phenols [31].

22
20f
18}

30'8 [ ——0mM
F—-_yUm
06 000069 mM
0.4 —— 000137 mM
L ——0.002mM
0.2 00027 mv

0_0 1 " 1 2 1 M
400 500 600 700 800 900

Wavelength (nm)

Figure 5. The change in the UV-Vis spectrum of Mixt.4 with 4-hydroxythiophenol (4-HTP) content.

For Mixt.2, 4-MPBA was first mixed with H,O, in a lower ratio of 4-MPBA to H,O,, and then a
given amount of AuNPs was separately added. In these mixtures, 4-MPBA molecules are first free
and oxidized by H,O,, and then the products interact with AuNPs. The UV-Vis spectra of Mixt.2 are
shown in Figure 3B, the change of the wavelength at maximum absorbance with the concentration of
H,0, is shown in Figure 4B. Like Mixt.1, besides the almost unchanged peak at around 523 nm, a new
peak between 600 to 900 nm continuously enhances with the increase of HyO,, and the solution color
visibly changes from ruby red to blue. However, compared with Mixt.1, the concentration of HyO,
that induces the color change of solution is remarkably higher in Mixt.2. This difference could also be
seen in the comparison of Figure 4A,B. For example, the color change caused by 0.058% H,O, in Mixt.1
is similar to that caused by 1.64% H,O, in Mixt.2. The obvious color change of Mixt2is with aH,O,
concentration in the range of 0~1.93%. In principle, this concentration possesses relativity, because it
depends on the ration of AuNPs to 4-MPBA. Here, this concentration is only to show the effect of H,O,
concentration on the trend in the color change of the mixture (AuNPs-4-MPBA-H,0,). However, for
Mixt.1, the corresponding HyO, concentration is in the range of 0~0.025%. This difference is explained
in the next section.
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3.3. The Products Formed in the Reaction between 4-MPBA and H,O,

Although many colorimetric probes based on the aggregation of AuNPs involving 4-MPBA
and H,O, have been reported, to our knowledge, it has rarely been reported with systematical
characterization of products formed in the reaction. Here, the main products formed in the reaction
between 4-MPBA and H,0O, were characterized.

Figure 6 shows the change in pH with the content of H,O, for the two mixtures that contain
different ratios of 4-MPBA to H,O, in the absence of AuNPs. For the mixture with the higher ratio of
4-MPBA to H,O, (as similar to Mixt.1), the pH gradually increases with the increase of H,O, content
(Figure 6A). In contrast, for the mixture with the lower ratio of4-MPBA to H,O, (as similar to Mixt.2,
the pH decreases with the increase of H,O, (Figure 6B). For the former mixture, HyO, oxidizes 4-MPBA
(pKa = 9.2) to form 4-HTP (pKa = 10) and boric acid (pKa = 8.9) [32]. Although the formation of
boric acid leads toa decrease of pH due to its relatively lower pKa, the formation of 4-HTP leads
to an increase of pH due to 4-HTP having a higher pKa. In this situation, H,O, is not enough to
continue the reaction because of the stoichiometric coefficient for the reaction of 4-MPBA with H,O,.
Thus, for the mixture with a higher ratio of 4-MPBA to H,O,, the pH of the solution increases with
H,0O; content. However, for the mixture with the lower ratio of 4-MPBA to H,O, (Figure 6B), besides
the aforementioned reaction and due to excess HyO,, 4-HTP further is oxidized by H,O, to form
bis(4-hydroxyphenyl) disulfide (BHPD) (pKa = 10) [33,34], and the formed boric acid reacts with excess
H;0; to form peroxoboric acid (HO);BOOH) with a stronger acidity (pKa = 5.7) [32,35]. Although the
formation of 4-HTP and BHPD leads to an increase of pH due to their higher pKa, the formation of
BHPD involves proton consumption, and peroxoboric acid has a stronger acidity. As a result, not only
is the process of pH increase masked but the pH also presents as a downtrend.

6.0
L(A) (B)
581 46}
56}
- 441
54}
5.2} 421
F | s
50
i 40+
48}
i a8l
44 1 | P T — 1 1 1 PN GBS GOSN DR MR- i Ul R ol S G2 |
000 003 006 009 012 015 0.18 0 3 6 9 12 15 18 21 24 27
H,0, content (%) H,0, content (%)

Figure 6. The change in pH of the mixtures containing a different ratio of 4-MPBA to H,O, with the
content of HyO,. (A) A higher ratio of 4-MPBA to H,O; (1.87 mM 4-MPBA, 0~0.18% H,0O»); (B) a
lower ratio of 4-MPBA to H,O, (0.58 mM 4-MPBA, 0~25% H>0O5).

The formation of boronic acid and BHPD in the mixture containing excess of HyO, was testified
using 'B NMR spectroscopy (Figure 7). From Figure 7, the following results in the spectra are found.
The peak at 27.7 ppm that is attributed to 4-MPBA appears [36], and this peak gradually weakens with
time and finally disappears entirely, while a new characteristic peak at 18.7 ppm assigned to B(OH);3
appears and progressively strengthens [37]. Additionally, the broader peak centered at —9.6 ppm that
originates from (HO);BOOH™! or (HO),B(OOH), ! gradually increases and then decreases [32]. This
result proves the conjecture on the formation of the peroxoboric acid species. As for the decrease of
peroxoboric acid species with time, it can be interpreted in terms of the decrease of their content with
the decrease of pH [32].
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qummmmin
4-MPBA P :
" uWWMMmW i
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Figure 7. The 118 NMR spectra for different samples. Top: 4-MPBA; middle: the change in the
spectrum of the mixture of 4-MPBA and H,O, (0.15 M 4-MPBA, 0.94 M H;0,) with time; bottom:
white precipitate formed during the reaction of 4-MPBA and H;O,.

precipitate

More importantly, the formation of BHPD was also testified by using '3C and ' H NMR spectroscopy.
Figure 8 shows the 1*C and 'H spectra of the reaction solution of 4-MPBA and H,O, in the late reaction
period. For the mixture of HyO, and 4-MPBA, two peaks at 127.2 ppm and 134.7 ppm attributed to the
primary carbon of benzene ring of 4-MPBA decreases [38], while the characteristic peaks of BHPD
appears at 116.2 ppm, 126.3 ppm, 133.5 ppm, and 158.4 ppm [39,40] (Figure 8A).

(A) 1347 (B)
7.2 43
127.2 -
134.7,127.2 "
B 72,77
7 OH 43 7= OH
HS—{ /) B
4-MPBA OH
. L 4-MPBA
" S 7.3 68 48
S
158.4
4-MPBA+H O, 77 4-MPBA+H,0,

170 160 150 140 130 120 110 I8 7 6 5 4 3
C (ppm) 'H (ppm)

Figure 8. The 13C (A) and 'H (B) spectra for the reaction solution of 4-MPBA and H,0, (0.15 M
4-MPBA, 0.94 M H;0;) in the late reaction period.

These results are consistent with the finding shown in the corresponding 'H NMR spectra
(Figure 8B). After the reaction between 4-MPBA and H,O,,the characteristic peaks (4.3 ppm, 7.2 ppm,
7.7 ppm) related to hydrogen atoms in 4-MPBA almost disappear to be replaced by the characteristic
peaks (4.8 ppm, 6.8 ppm, 7.3 ppm) of BHPD [39,40]. The broadening of the peak centered at 4.8
ppm may be associated with an intermolecular exchange of proton between the phenolic hydroxyl
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andH,0 [41]. It is worth noting that there is no peak to be observed beyond 8 ppm, suggesting that the
condensation between 4-MPBA molecules did not occur [42].

The formation process of the products was also monitored by the following experiments. Figure 9A
shows the change of the UV-Vis spectrum with time for the mixture of4-MPBA and H,O, (Table 1,
Mixt.3). Figure 9B presents the UV-Vis spectra of 4-MPBA, 4-HTP, and the product from the reaction of
4-HTP and H,O; (Table 1, Mixt.5). Making a comparison between Figure 9A,B, the following results
can be seen: The characteristic peak at 255 nm of 4-MPBA [43] (as shown in Figure 9B, black curve)
constantly decreases with time, and the trough at 235 nm synchronously ascends. The gradual decrease
of the peak at 255 nm indicates the continuous consumption of 4-MPBA, and the continuous raise
of the trough at 235 nm, which is the exact location of the characteristic peak of 4-HTP (as shown in
Figure 9B, red curve), suggests the continual formation of 4-HTP [44]. Furthermore, the peak profile of
the product from 4-HTPand H,O, (0.012%) (as shown in Figure 9B, green curve) is similar to that of
BHPD [34] and that of the late reaction period of 4-MPBA and H;O;.

101235 nm (B)
’ """" 1255 nm

4-HTP +H202

04}
0.2}
0.0}
oo 1 1 1 1 1 1 M 1 i 1 M 1 " 1 " 1 " 1 "
200 300 400 500 600 700 800 900 200 300 400 500 600 700 800 900

Wavelength (nm) Wavelength (nm)

Figure 9. The change in the UV-Vis spectrum with time for different samples. (A) The change in the
spectrum of Mixt.3 (0.15 mM MPBA, 0.012% H,O,) with time (inset: the spectra ranging from 200 nm
to 300 nm); (B) 4-MPBA aqueous solution (black), 4-HTP aqueous solution (red), Mixt.5 (0.07 mM
4-HTP, 0.012% Hy0O,) after 20 min reaction (green).

All above results indicate that the reaction between 4-MPBA and H,O; first produces 4-HTP and
boric acid followed by the formation of BHPD. Moreover, in the case of excess H,O,, peroxoboric
acid can form. Although alkane thiols [45-47] and aryl thiols [34,48-50] oxidized by HyO; to form the
corresponding disulfide have been widely reported, a similar reaction for 4-MPBA as one for aryl thiols
has rarely been reported. Khutoryanskiy et al. only employed the reaction of 4-MPBA oxidized by
H,0; to form disulfide bonds for cross-linking PVA (polyvinyl alcohol) [51]; however, the formation of
boric acid through breaking the C-B bound was not mentioned, and the formation of disulfide bond
was not characterized.

Interestingly, an insoluble white precipitate was observed during the reaction of 4-MPBA and
H,0; (see Figure S3A). Raman spectroscopy was used to identify the components of the precipitate.
As shown in Figure 10, the Raman spectrum of 4-MPBA is well coincided with that in literature [52].
For the white precipitate, the peaks assigned to BHPD are found at 1489 em™ (vee + dcpp), 1009
em™! (yee + yeec), 641 em™ (veg) [53], 1072 ecm™ (Ve + Ves + vee) [54], 524 em Y (vgg), and 499
em ™ (vopo) [55], being accompanied with the disappearance of the peaks attributed to 4-MPBA at
2563 cm™! (vg), 1369 em™ (vpo),1186 em™ (Bcw + Brom), 907 em™! (Besy), 756 em™! (yepy), and
631 cm™! (vcs) [52]. These results confirm again that the reaction between 4-MPBA and H,O, can
form 4-HTP and BHPD. This conclusion was also proven by the XPS result shown in Figure S3B. The
characteristic peak at 164.7 eV for the S-S bond in BHPD appears beside the peak at 163.57 eV, which is
attributed to the S-H of 4-HTP [56]. Furthermore, it can be found that the bands assigned to boronic
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acid emerge at 1172 em™! (8gon), 879 em™! (vsB03)), and 499 em™! (50po) [57,58], and the band at 835
cm™! is confidently assigned to the stretching mode of the peroxide bond (O-O) [59,60], indicating that
theperoxoboric acid species exists in the white precipitate. The results from the analysis of the white
precipitate are in agreement with the conclusion deduced from other data mentioned above.

yCC+yCCC
1009
i

vCH+vCS+vCC
1072

BCH+vCC 2963 voH
1489

4-MPBA

4-MPBA
precipitate e P - v 4 by A*prccmim(c

400 600 800 1000 1200 1400 1600 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200
Wavenumbers (cm) Wavenumbers (cm'")

Figure 10. The Raman spectrum of white precipitate formed during the reaction of 4-MPBA (1.87 mM)
and HzOz (0.080/0).

3.4. The Aggregation of AuNPs Caused by the Interaction of 4-MPBA and H,O,

As shown in Figure 3, with the increase of the concentration of H,O,, regardless of the 4-MPBA
firstly being mixed with AuNPs (Figure 3A) or H,O, (Figure 3B), the new peak ranging from 600
to 900 nm in the UV-Vis spectra obviously increases and red-shifts. However, for two mixtures, the
demanded amount of H,O; that results in their color change has an evident discrepancy. In view of
the aforementioned features of the reaction of 4-MPBA and H,O,, the differences between the UV-Vis
spectra forMixt.1 and Mixt.2as shown in Figure 3 can be understood.

According to the conclusions mentioned above, the condensation between 4-MPBA molecules
was not found. In reality, the condensation between aryl boric acid should be carried out under heating
conditions [40,41]. In fact, Figure S1 Eindicates that the aggregation of 4-MPBA/AuNPs is not found
with pH values ranging from 4 to 10 as adjusted by HCl and NaOH, implying that the reaction of the
boric acid moiety of 4-MPBA with citric acid almost does not happen in this situation. The obvious
aggregation was observed when PBS was used to adjust pH (Figure S1A-D). The results from Figure
S1 indicate that aggregation of 4-MPBA/AuNPs induced by pH changes is attributed to a decrease
in electrostatic action rather than condensation. James et al. also reported that the species formed
through the reaction between citrate and aryl boric acidis scarcely present in their mixture with a pH
greater than 6 [61]. On the basis of our research and reported literature, we believe that the aggregation
of citric acid-capped AulNPs in Mixt.2 possibly originates from the change in electrostatic interaction.
The result shown in Figure 2 confirms this conclusion.

Upon the basis of our investigative findings, we propose the possible mechanisms for the
aggregation of AuNPs caused by the interaction of 4-MPBA and H,O; in Mixt.1 and Mixt.2. As shown
in Figure 11A, for Mixt.1 with the higher ratio of 4-MPBA to HyO,, 4-MPBA partly replaces citric
acid on AuNPs, and then H,O; reacts with the boric acid moiety of the immobilized 4-MPBA to form
4-HTP/AuNPs and boric acid. Citric acid with three negative charges is replaced by 4-HTP with one
loaded negative charge, resulting in the aggregation of AuNPs, and the hydrogen bond between 4-HTP
strengthens the aggregation of AuNPs. For Mixt.2 with the lower ratio of 4-MPBA to H,O; as shown
in Figure 11B, HyO, reacts with free 4-MPBA to form BHPD and boric acid, and then BHPD molecules
are immobilized onto the surface of AuNPs. Compared with 4-HTP, the immobilization of BHPD
onto the surface of AuNPs is more difficult due to BHPD having greater steric hindrance (as shown
in Figure 11A,B). Consequently, only when the concentration of BHPD is higher than that of 4-HTP
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can AuNPs modified by them have the same charge density. In consideration of the consumption of
H;0; in the formation of BHPD, the minimum concentration of H,O; that results in the aggregation of
AuNPs in Mixt.2 is naturally higher than that in Mixt.1. In addition, Mixt.2 contains relatively high
amounts of HyO,, and thus the formation of peroxoboric acid with strong acidity is initiated. In such
an event, the protonation of BHPD is enhanced.

(A) A higher ratio of 4-MPBA to H,O, ( B ) A lower ratio of 4-MPBA to H,0,
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Figure 11. The proposed possible mechanisms for the aggregation of citrate-capped AuNPs. (A) Mixture
((AuNPs + 4-MPBA) + H,O,) with a higher ratio of 4-MPBA to H,O,; (B) mixture ((4-MPBA + H,O»)
+ AuNPs) with a lower ratio of 4-MPBA to H,O,.

4. Conclusions

The difference in the aggregation of AuNPs occurring in the mixture of ((4-MPBA + AulNPs)
+ Hy0O,) and the mixture of (H,O, + 4-MPBA) + AuNPs)has been found for the first time, and
the corresponding mechanisms were investigated. Based on the experimental results, the following
conclusions can be drawn:

(1) Compared with the mixture of (H,O, + 4-MPBA) + AuNPs), the color change of the mixture of
((4-MPBA + AuNPs) + H,0O,) is more sensitive to HyO,, and this diversity that stems from the reaction
of free and immobilized 4-MPBA with H,O, is different. For the mixture of (H,O, + 4-MPBA) +
AuNPs), free 4-MPBAis oxidized by HyO, to form BHPD with greater steric hindrance and peroxoboric
acid with stronger acidity. However, for the mixture of ((4-MPBA + AuNPs) + H,0O;), the immobilized
4-MPBAIs oxidized by H,O; to form 4-HPT and boric acid. These differences make the mixture of
((4-MPBA + AuNPs) + HyO,) more sensitive to the aggregation of AuNPs caused by H,O, than the
mixture of ((4-MPBA + H,O;) + AuNPs).

(2) The aggregation of the citrate-capped AuNPs in the two mixtures mainly stems from the
change in the charge density on the surface of AuNPs.

(3) The formation of boric acid or peroxoboric acid in the reaction between 4-MPBA and H,O, can
affect the pH of the medium. The effect of this pH change on the aggregation of AuNPs should not
be ignored.

These findings not only offer a new strategy in colorimetric assays to respectively meet sensitivity
and broad ranges of H,O, detection but also assist in deepening the understanding of the aggregation
of citrate-capped AuNPs involved in 4-MPBA and H,O,. Additionally, based on our new results, some
possible methods in the determination of specific target analytes will be developed. For example, the
detection of hydrogen peroxide produced from the reaction of glucose oxidase and glucose can be
used to determine glucose; melamine could be determined based on the fact that the consumption of
melamine combined with H,O, could decrease the concentration of H;O, and cause a change in the
aggregation of 4-MPBA/AuNPs. In principle, the 4-MPBA/AuNPs system could be used to determine
some specific substances that are related to the formation or consumption of HyO,.
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Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/11/1802/s1,
Figure S1: The change in the UV-Vis spectra of citrate-capped AuNPs modified by 4-MPBA (0.89 mM) with pH
adjusted with different solutions. (A) 5 mM PBS; (B) 7.5 mM; (C) 10 mM; (D) 15 mM; (E) HCl and NaOH, Figure
S2: The TEM images of citrate-capped AuNPs modified by 4-MPBA (0.16 mM) in the presence of different amount
of HyOy. (1): 0; (2): 0.039%,; (3): 0.058%; (4): 0.077%, Figure S3: The photo of the white precipitate formed during
the reaction of 4-MPBA and H,O, (A) and the XPS spectrum of S2p3/2 for the white precipitate (B).
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