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Abstract

Cellular molecules possess various mechanisms in responding to oxidant stress. In terms of protein responses, protein S-
glutathionylation is a unique post-translational modification of protein reactive cysteines forming disulfides with
glutathione molecules. This modification has been proposed to play roles in antioxidant, regulatory and signaling in cells
under oxidant stress. Recently, the increased level of protein S-glutathionylation has been linked with the development of
diseases. In this report, specific S-glutathionylated proteins were demonstrated in human embryonic kidney 293 cells
treated with two different oxidative reagents: diamide and hydrogen peroxide. Diamide is a chemical oxidizing agent
whereas hydrogen peroxide is a physiological oxidant. Under the experimental conditions, these two oxidants decreased
glutathione concentration without toxicity. S-glutathionylated proteins were detected by immunoblotting and glutathione
concentrations were determined by high performance liquid chromatography. We further show the effect of alteration of
the cellular thiol pool on the amount of protein S-glutathionylation in oxidant-treated cells. Cellular thiol concentrations
were altered either by a specific way using buthionine sulfoximine, a specific inhibitor of glutathione biosynthesis or by a
non-specific way, incubating cells in cystine-methionine deficient media. Cells only treated with either buthionine
sulfoximine or cystine-methionine deficient media did not induce protein S-glutathionylation, even though both conditions
decreased 65% of cellular glutathione. Moreover, the amount of protein S-glutathionylation under both conditions in the
presence of oxidants was not altered when compared to the amount observed in regular media with oxidants present.
Protein S-glutathionylation is a dynamic reaction which depends on the rate of adding and removing glutathione.
Phenylarsine oxide, which specifically forms a covalent adduct with vicinal thiols, was used to determine the possible role of
vicinal thiols in the amount of glutathionylation. Our data shows phenylarsine oxide did not change glutathione
concentrations, but it did enhance the amount of glutathionylation in oxidant-treated cells.
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Introduction

The generation of reactive oxygen species (ROS) is part of

physiologically metabolic processes in cells. For example, this

process can occur either in mitochondria during the electron

transport chain or in NADPH oxidase of neutrophils. The redox

state of cells is determined by the balance of generation of ROS

and the capacity of antioxidant systems. Oxidant stress has been

defined as an imbalanced redox state and favors ROS generation

[1]. Oxidant stress plays a major role in many cellular responses.

To understand the different mechanisms of ROS in cells,

numerous studies have focused on how cellular components,

lipids, proteins and nucleic acids respond to oxidant stress. ROS

have been shown to trigger apoptosis, to function as signal

molecules and to relate to the development of diseases [2].

In general, there are two cellular pools of thiol molecules that

possess antioxidant functions. One thiol pool is composed of low

molecular weight (non-protein) molecules, ascorbic acid, tocoph-

erol and glutathione. Glutathione is the representative molecule of

the non-protein antioxidant molecules because of its abundance in

cells [3]. This molecule exists in two chemical forms in cells,

reduced (GSH) and oxidized (GSSG) and the ratio of these two

forms usually determines the redox state of cells. The metabolism

of glutathione has been studied extensively in many research fields

to explore the potential role of oxidant stress in different

experimental conditions. A second thiol pool is composed of a

long list of protein antioxidants. In addition to classic enzymes

such as catalase, superoxide dismutase and glutathione peroxidase,

several enzymes, such as peroxiredoxin family, have been added to

that list in recent years [4]. The function and mechanism of each

class of enzyme have been known and characterized. However, the

relationship between these two pools in cells under oxidant stress

has only been revealed recently.

Oxidative effect on proteins has received considerable attention

especially cysteine residues as they are sensitive to oxidative

modifications [6]. Cysteine modification can be either reversible or

irreversible. Reversible modification includes disulfide formation

between proteins or proteins forming mixed-disulfides with low
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molecular weight thiols. The latter modification plays a major role

in regulating enzyme activities [7] and protein structures [8]. S-

glutathionylation, formerly known as S-thiolation, is the formation

of protein mixed-disulfides with glutathione. Irreversible modifi-

cation occurs when protein cysteine residues are oxidized to

sulfinic and cysteic acids [9] and this modification usually leads to

protein degradation. Protein S-glutathionylation serves a unique

role by connecting the pools of non-protein and protein thiols in

cells under oxidant stress.

It is known that protein post-translational modifications play a

significant role in many biochemical functions. The best example

of various modifications is protein phosphorylation and dephos-

phorylation. Although protein S-glutathionylation is a new

addition to the list of modifications, a large body of data has

shown the importance of glutathionylation. Initially, many in vitro

studies have shown glutathionylation is a switch to turn on/off

enzymes’ activities [10]. Recently, glutathionylation has been

proposed as a protective mechanism in vivo to prevent enzymes

from irreversible damage by oxidant stress [11]. Moreover, protein

S-glutathionylation also has been shown to be involved in signal

transduction [12] and the progression of disease [13]. A number of

S-glutathionylated proteins have been identified in vivo [14], i.e.

actin. This line of research enlarges the understanding of novel

functions associated with these glutathionylated proteins. The

details of the role of glutathionylation in many cellular aspects can

be found in recent reviews [15,16]. The amount of glutathionyla-

tion on proteins is a dynamic process under oxidative stress. The

mechanism for the addition of glutathione to protein reactive

cysteine residues is still somewhat ambiguous, but the mechanism

of deglutathionylation (removing glutathione from glutathiony-

lated proteins) is well characterized [17]. For example, glutar-

edoxin, a dethiolase, is known to specifically catalyze the reversed

reaction of glutathionylated proteins [18].

In this report, our data shows specific S-glutathionylated

proteins in HEK 293 cells using different oxidants. Since S-

glutathionylation is the linkage of two cellular thiol pools, we also

show the amount of protein S-glutathionylation in response to the

alteration of cellular thiol pools by two different means.

Futhermore, our results suggest the role of dethiolase in

contributing to the amount of glutathionylation. Finally, the

possible rational of the specific protein S-glutathionylation is

discussed.

Results and Discussion

The pattern of protein S-glutathionylation in HEK 293
Although protein S-glutathionylation has been studied by

various means [23], the traditional method, SDS-PAGE with

autoradiograph or Western bolt, is still one of the most widely used

tools to detect the modification. The validity of anti-glutathione

monoclonal antibody has been shown in several studies [24,25],

including our own [26]. In Figure 1 A, we show the pattern of S-

glutathionylation in HEK 293 cells treated with two oxidants,

diamide and hydrogen peroxide. Cell extracts were made from

intact cells with lysis buffer containing freshly prepared N-

ethylmaleimide, a specific thiol-akylating agent, to block any

artifacts during sample preparations. There were basal modifica-

tions in untreated cells (Figure 1A, lane 1) and the amount of

modification was enhanced by the addition of two oxidants to cells.

Diamide, a well-known chemical oxidizing agent [27], was chosen

as a positive control to induce all possible proteins that undergo S-

glutathionylation in HEK 293. Also, we show the pattern of S-

glutathionylation by a physiological oxidizing agent, hydrogen

peroxide (Figure 1A, lane 5–7). It is not surprising that hydrogen

peroxide induces fewer modifications than diamide. Diamide

shows an increase of overall modifications with time, whereas

hydrogen peroxide shows a decrease of overall modifications with

time. With each oxidant, proteins responded in different degrees of

modifications, i.e. some proteins were more sensitive than others.

Some predominately modified proteins are indicated by arrows.

The glutathione metabolism in the presence of these two oxidants

is shown in Table 1. There was a total glutathione decrease by

both oxidants and there were still more reduced GSH than GSSG

at each time point. Interestingly, a unique S-glutathionylated

protein band (43 kDa) was observed only induced by hydrogen

peroxide. The signals of protein bands were reduction sensitive, in

the presence of DTT, indicating that this monoclonal antibody

selectively detected protein mixed-disulfided with glutathione

(Figure 1B).

The overall pattern of S-glutathionylation suggests different

degrees of sensitivities of proteins in response to oxidative stress.

The predominately S-glutathionylated proteins may be due to the

number of reactive cysteine residues (these cysteine residues with

lower pKa values) associated with protein, or simply, the reflection

of the abundance of a protein level. Based on the presented data,

our results suggest that different oxidative mechanisms stimulate

different sets of proteins responding to stress. In our studies, there

were significant amounts of S-glutathionylation, even in the

presence of more reduced GSH than GSSG. Our data supports a

previously proposed mechanism [28] where glutathione disulfide is

not a prerequisite factor for the formation of S-glutathionylation in

cells.

In theory, diamide should induce all possible proteins that

undergo S-glutathionylation. However, a significantly modified

protein (43 kDa) is only induced by hydrogen peroxide. These

data suggest the 43 kDa protein is only sensitive to a free- radical

related mechanism because another oxidant, t-Butyl hydroperox-

ide also induced 43 kDa S-glutathionylation in HEK 293 cells

(data not shown). To our knowledge, this is the first evidence that

shows specific protein S-glutathionylation by different oxidative

mechanisms in cells. It is necessary to determine the identity of this

43 kDa protein to understand its function and propose a

mechanism for the specific S-glutathionylation by hydrogen

peroxide. We speculate that this 43 kDa protein could be actin

since actin has been shown as a target protein for S-glutathionyla-

tion [24].

The effect of cellular thiol concentration on protein S-
glutathionylation

Protein S-glutathionylation serves as the linkage between the

pools of protein and non-protein thiols. We took two approaches

to determine whether the amount of S-glutathionylation changes if

the pools of cellular thiols are altered. Since glutathione is the most

abundant non-protein antioxidant molecule in cells, we studied the

effect of cellular glutathione concentration on protein S-glutathio-

nylation. Buthionine sulfoximine (BSO) irreversibly inhibits

gamma-glutamylcysteine synthetase, a required enzyme for GSH

biosynthesis, thereby depleting cells of glutathione. Cells were

incubated with BSO (100 mM) overnight before treating with

oxidants. In Table 2, the BSO-treated cells showed 58% less

cellular glutathione relative to the untreated cells. The effect of

BSO on S-glutathionylation is shown in Figure 2A, lane 4–6. First,

we expected the amount of protein glutathionylation would

decrease in BSO and oxidant-treated cells due to the loss of

glutathione from BSO pretreatment. On the contrary, our data

shows the overall modifications in these cells were not altered,

even though the glutathione concentration was decreased 58%.

Secondly, we expected to see the enhanced protein S-glutathio-

S-Glutathionylation in HEK 293
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nylation in BSO-treated alone cells (i.e., no addition of oxidants)

(Figure 2A, lane 4) since decreasing glutathione concentration

reflects the presence of amplified oxidant stress. Interestingly, there

were no enhanced modifications in these cells.

Another non-specific approach was used to examine the effect

of cellular thiol concentrations on protein S-glutathionylation.

Cells were incubated in cystine-methionine deficient media

overnight before treating with oxidants. This is a non-specific

method to deplete thiol concentration versus the specific method

using BSO. The data in Table 2 show the use of cystine-

methionine deficient media decreased cellular glutathione con-

centration by 64% compared to regular media. However, the

amount of S-glutathionylation on proteins did not correlate with

the loss of glutathione (Figure 2B, lane 4–6) in cystine-methionine

deficient and oxidant-treated cells. Again, there was no augmen-

tation of protein S-glutathionylation in cystine-methionine defi-

cient media alone cells (Figure 2B, lane 4).

Our data also shows two different mechanisms to deplete

cellular glutathione: oxidative (diamide and hydrogen peroxide)

and non-oxidative (BSO and cystine-methionine deficient medi-

um). Although the non-oxidative mechanism depletes approxi-

mately 60% of cellular glutathione, only protein S-glutathionyla-

tion can be detected in an oxidative mechanism. A possible

explanation for the amount of protein S-glutathionylation in BSO

and cystine-methionine deficient media-treated cells is that there

are still enough glutathione for glutathionylation under these

conditions. Either BSO or a cystine-methionine deficient medium

depletes approximately 60% cellular glutathione. Upon adding

oxidants, the remaining 40% of glutathione was able to form the

same amount of S-glutathionylation found in non-depleted cells to

Figure 1. Protein S-glutathionylation in HEK 293 cells. (A) The pattern of overall S-glutathionylated proteins is shown in a time course
experiment with 0.5 mM diamide or 0.5 mM hydrogen peroxide-treated HEK 293 cells. Equal amount of cell lysates were loaded and separated by a
12% SDS gel under non-reducing condition. S-glutathionylated proteins were detected by Western blot using anti-glutathione monoclonal antibody.
Some predominately modified proteins are indicated by arrows. (B) The same amount of lysates from 1(A) were separated in a SDS-gel under
reducing condition (50 mM DTT) and the membrane was blotted and stained the same way as in 1(A). The loss of signals indicated the anti-
glutathione monoclonal antibody was selectively detecting glutathione moiety on proteins.
doi:10.1371/journal.pone.0004015.g001

Table 1. The Effect of Diamide (0.5 mM) and Hydrogen Peroxide (0.5 mM) on Glutathione Concentration.

Treatment GSH GSSG Total GSH*

(n.moles/mg protein) (n.moles/mg protein) (n.moles/mg protein)

Untreated 30.19 0.40 30.99

Diamide 15 min 20.25 0.91 22.07

Diamide 30 min 19.87 0.65 21.17

Diamide 60 min 30.42 0.85 32.12

H2O2 15 min 30.84 0.74 32.32

H2O2 30 min 27.17 0.79 28.75

H2O2 60 min 25.73 1.08 27.89

*Total GSH is calculated by [GSH]+2[GSSG].
doi:10.1371/journal.pone.0004015.t001

S-Glutathionylation in HEK 293
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prevent proteins from irreversible damage. Furthermore, the 40%

glutathione observed may also be enough to maintain a

physiological redox environment in cells, i.e. most proteins are

still in reduced state. This could be the reason why protein S-

glutathionylation was not enhanced in BSO and cystine-

methionine deficient medium alone cells.

The possible role of vicinal dithiols in protein
S-glutathionylation

Protein S-glutathionylation is known to be an equilibrium process

that depends on the rate of adding glutathione and the rate of

removing glutathione, i.e. dethiolation. Since the mechanism for the

addition of glutathione is not well understood, experiments were

performed to study the possible role of removing glutathione on the

amount of S-glutathionylation. Dethiolation has been shown to be

an enzyme-dependent reaction; the enzyme contains vicinal

dithiols. Phenylarsine oxide (PAO) is a specific vicinal dithiol-

binding agent and hardly binds to monothiols. Cells were pretreated

with a sub-toxic concentration of PAO before oxidant treatment.

The data in Table 3 show that PAO (1 mM) did not alter the cellular

glutathione concentration as expected (since GSH is a monothiol

molecule). However, PAO did significantly enhance the amount of

glutathionylation in diamide and hydrogen peroxide-treated cells

(figure 3A, lane 5–6). The lower concentration of diamide was used

in this experiment in order to detect the enhancement of

modification by PAO. Despite the different oxidative mechanisms

of diamide and hydrogen peroxide, our results suggest that vicinal-

dithiol containing molecules may play a role in the regulation of

protein S-glutathionylation in both oxidant-treated cells.

Although our data show the specific effect of PAO under the

experimental condition, the depletion of glutathione by oxidants

was more dramatic in PAO-pretreated cells than non-pretreated

cells. This observation suggests some vicinal-dithiol containing

molecules play an antioxidant role in HEK 293 cells. The potential

Figure 2. The relationship between the amount of glutathionylation and the cellular thiol concentration. (A) Protein S-glutathionylation
in BSO-treated cells. HEK 293 cells were incubated with 100 mM BSO overnight before treating with 0.5 mM diamide or 0.5 mM hydrogen peroxide.
The cellular glutathione concentration was decreased 58% (Table 2) compared to untreated cells. Cell lysates were prepared and modified proteins
were detected as described under Methods. There was no enhanced protein S-glutathionylation in BSO-treated alone cells, i.e. no addition of
oxidants. (B) Protein S-glutathionylation in cells incubated with cystine-methionine deficient media. HEK 293 cells were placed in cystine-methionine
deficient media overnight before treating with 0.25 mM diamide or 0.5 mM hydrogen peroxide. The cellular glutathione concentration was
decreased 64% (Table 2) compared to untreated cells. Cell lysates were prepared and modified proteins were detected as described under Methods.
Again, there was no enhanced protein S-glutathionylation in cells alone placed in cystine-methionine deficient media.
doi:10.1371/journal.pone.0004015.g002

Table 2. The Effect of BSO and Cystine-Methionine Depleted Medium on Glutathione Concentration.

Treatment GSH GSSG Total GSH

(n.moles/mg protein) (n.moles/mg protein) (n.moles/mg protein)

Untreated 30.99 0.30 31.58

100 mM BSO 12.87 0.20 13.26

Cystine-Methionine Depleted Medium 11.32 0.13 11.59

doi:10.1371/journal.pone.0004015.t002

S-Glutathionylation in HEK 293
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target for the PAO effect in our condition could be glutaredoxin

since it is a known dethiolase. Glutaredoxin contains vicinal dithiols

in the catalytic site and its function is usually characterized in vitro

using purified S-glutathionylated proteins. To our knowledge, this is

the first data to show increased S-glutathionylation by possibly

inhibiting the activity of dethiolase (glutaredoxin) in vivo. Our in

vivo data also support the perception that protein S-glutathionyla-

tion is a dynamic reaction. In future experiments, we will attempt to

assay the activity of glutaredoxin in PAO-treated cells to reveal the

role of glutaredoxin in protein S-glutathionylation in vivo.

Materials and Methods

Dithiothreitol (DTT), N-ethylmaleimide (NEM), DL-buthio-

nine sulfoximine (BSO), Dulbecco’s modified eagle’s medium

(DMEM), cystine-methionine deficient DMEM, glutathione

disulfide (GSSG), reduced glutathione (GSH), iodoacetic acid

(IAA), 1-flouro-2,4-dinitrobenzene (FDNB), diamide, fetal bovine

serum (FBS), and phenylarsine oxide (PAO) were all purchased

from Sigma-Aldrich (ST. Louis, MO). Goat anti-mouse antibody

conjugated with alkaline phosphatase and its substrate were

purchased from BioRad (Hercules, CA). Anti-glutathione mono-

clonal antibody was purchased from Virogen (Watertown, MA).

Hydrogen peroxide was purchased from Calbiochem, a brand of

EDM Bioscience, Inc (La Jolla, CA). Waters Spherisorb NH2

(5 mm 250 mm64.6 mm) high performance liquid chromatogra-

phy (HPLC) ion exchange column was purchased from Supelco

Inc. (Bellefonte, PA). Human embryonic kidney cells (HEK 293)

were kindly provided by Dr. Anthony J. Koleske (Yale

University).

Figure 3. The relationship between the amount of S-glutathionylation and the vicinal dithiols-containing molecules. HEK 293 cells
were pretreated with 1 mM PAO for 30 minutes before treating with 0.25 mM diamide or 0.5 mM hydrogen peroxide. The preparation of PAO was
described under Methods, and the effect of PAO on cellular glutathione was shown in Table 3. Cell lysates were prepared, and modified proteins were
detected as described under Methods.
doi:10.1371/journal.pone.0004015.g003

Table 3. The Effect of PAO (1.0 mM) on Glutathione Concentration.

Treatment GSH GSSG Total GSH

(n.moles/mg protein) (n.moles/mg protein) (n.moles/mg protein)

Untreated 31.98 0.31 32.59

0.25 mM Diamide 30 min 13.05 3.02 19.08

0.5 mM H2O2 30 min 30.51 1.65 33.81

1.0 mM PAO 33.66 0.37 34.40

PAO, 0.25 mM Diamide 30 min 7.62 3.77 15.16

PAO, 0.5 mM H2O2 30 min 21.70 3.71 29.13

doi:10.1371/journal.pone.0004015.t003

S-Glutathionylation in HEK 293
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Preparation and identification of S-glutathionylated
proteins in vivo

HEK 293 cells were seeded into 60 mm culture plates and

grown until 70% confluent in Dulbecco’s modified eagle’s medium

(DMEM) containing 8% fetal bovine serum (FBS) at 37uC
supplemented with 5% carbon dioxide. The medium was changed

to 0.5% FBS before the treatment of oxidants so the oxidant’s

effect would not be quenched by FBS.

S-glutathionylation was induced using two oxidants: diamide

and hydrogen peroxide. After the oxidant treatment, the cells were

harvested in a lysis buffer (10 mM tris-HCl, 150 mM NaCl, 1 mM

EGTA, 1% Nonidet P40, 1 mM EDTA, pH 7.4) containing

freshly prepared 50 mM N-ethylmaleimide (NEM). NEM irre-

versibly alkylates thiol groups to prevent further S-glutathionyla-

tion during sample processing. Soluble fractions of cell lysate were

separated by centrifugation at 4uC and protein concentration was

determined via Bradford Assay [19]. Equal amounts of proteins

were electrophoretically separated by a 12% SDS gel in the

absence of reducing agent proceeded by Western Blotting. S-

Glutathionylated proteins were detected by Western Blot using an

anti-glutathione monoclonal antibody and the color reaction was

performed according to the instruction manual from BioRad. All

SDS gels were run with the same pre-stained molecular weight

standards from BioRad. The estimation of molecular weight of S-

glutathionylated proteins was normalized using the molecular

weight of standard proteins. The specificity of this monoclonal

antibody was confirmed by running samples under reducing

conditions. Equal amounts of cell lysates were incubated with

50 mM DTT before running SDS-gel and Western blotting. The

loss of signals in the presence of DTT indicated that the

glutathione molecules formed disulfides with proteins.

Cells were pretreated with BSO (100 mM) for 16 hours to alter

cellular thiol pools prior to medium change. BSO specifically

inhibits glutathione synthesis by inhibiting gamma-glutamylcys-

teine synthetase [20]. Similarly, cells were incubated with cystine-

methionine deficient DMEM containing 8% FBS for 16 hours

prior to changing the medium to cystine-methionine deficient

DMEM containing 0.5% FBS. PAO reacts with vicinal dithiol

containing molecules [21]. Cells were pretreated with PAO (1 mM)

for 30 minutes before oxidant treatment. PAO was dissolved in

dimethyl sulfoxide (DMSO) and the final concentration of DMSO

in media was 0.1%. S-Glutathionylated proteins in these

conditions were prepared and analyzed as described above.

HPLC determination of glutathione and glutathione
disulfide concentration

After oxidant treatment, the cells were harvested in 5%

perchloric acid for 20 min on ice. Acid soluble and insoluble

fractions were separated by centrifugation. Acid soluble fractions

were used to determine GSH and GSSG concentration and acid

insoluble fractions were used to determine the protein concentra-

tion. Glutathione samples were prepared and determined by a

previously described method [22]. Briefly, acid-soluble fractions

were reacted with iodoacetic acid at neutralized pH to block free

sulfhydryal groups. Finally, 1-flouro-2,4-dinitrobenzene (FDNB)

was added to the mixture for the detection at 365 nm. Both

reduced and oxidized glutathione forms were separated by HPLC

according to a published method [22]. Synthetic GSH and GSSG

with known concentrations were prepared under the same method

for identification and quantification of cellular GSH and GSSG.

The cellular GSH and GSSG concentrations were calculated from

a standard curve and normalized by the amount of protein in each

sample.
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