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ABSTRACT

CoinFold (http://raptorx2.uchicago.edu/
ContactMap/) is a web server for protein contact
prediction and contact-assisted de novo structure
prediction. CoinFold predicts contacts by integrat-
ing joint multi-family evolutionary coupling (EC)
analysis and supervised machine learning. This joint
EC analysis is unique in that it not only uses residue
coevolution information in the target protein family,
but also that in the related families which may have
divergent sequences but similar folds. The super-
vised learning further improves contact prediction
accuracy by making use of sequence profile, contact
(distance) potential and other information. Finally,
this server predicts tertiary structure of a sequence
by feeding its predicted contacts and secondary
structure to the CNS suite. Tested on the CASP
and CAMEO targets, this server shows significant
advantages over existing ones of similar category in
both contact and tertiary structure prediction.

INTRODUCTION

Protein contact prediction is the problem of predicting
whether two residues in a protein are spatially proximal
(typically within 8 Å in C� atoms) to each other in the 3D
structure (1). It is known that protein residue–residue con-
tacts contain important information for protein folding and
recent works indicate that one correct long-range contact
for every 12 residues in the protein allows accurate topol-
ogy level modelling (2). However, contact prediction from
sequence alone remains very challenging (3).

Co-evolving residues are often found to be spatially prox-
imal in the protein structure due to the evolution pressure
(4). Multiple sequence alignment (MSA) of a protein fam-
ily is widely used to detect residue co-evolution (5). Re-
cently, evolutionary coupling (EC) analysis has made good

progress in contact prediction by using global statistical in-
ference (3,4). Representative methods include EVfold (6),
PSICOV (7) and pseudo-likelihood approaches (8) such as
GREMLIN (9) and CCMpred (10). Nevertheless, all these
EC methods analyze an individual protein family indepen-
dent of the others.

Here, we present CoinFold, a web server predicting pro-
tein contact map and 3D structure using a new method (see
Figure 1). In particular, CoinFold predicts contacts by joint
EC analysis via Group Graphical Lasso (GGL) (11) of mul-
tiple (distantly) related protein families which may have di-
vergent sequences but similar folds (i.e. co-evolution pat-
terns) (12). By enforcing co-evolution pattern consistency
among a set of related families, we can significantly im-
prove contact prediction accuracy. CoinFold further im-
proves prediction accuracy by integrating supervised learn-
ing with this joint EC analysis. Since EC analysis and su-
pervised learning use different types of information, their
combination leads to much better prediction. Finally, Coin-
Fold predicts secondary structure using a new in-house
tool DeepCNF (13) and then tertiary structure by feeding
predicted contacts and secondary structure to the Crystal-
lography & NMR System (CNS) software package (14),
but without using any templates (15). Our experiments on
CASP and CAMEO datasets show that CoinFold greatly
outperforms the other publicly available servers of similar
category.

MATERIALS AND METHODS

The contact prediction method employed by CoinFold has
been published in (12). Here, we briefly describe it and
please see the paper for more technical details.

Joint evolutionary coupling analysis via group graphical lasso

We model a single protein family using Gaussian Graphical
Model (GGM) (7) and jointly infer protein contacts for K
related protein families (12). Let X = {X1, X2, ..., XK} de-
note the set of multiple sequence alignments (MSA), each
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Figure 1. Illustration of CoinFold workflow. Given an input protein se-
quence, CoinFold uses HHblits (22) and HHpred (23) to generate sequence
profile and search for related protein families. Then CoinFold conducts
joint evolutionary coupling analysis and supervised prediction of both
contacts and secondary structure. Finally, CoinFold predicts 3D models
using CNS.

for one individual family. Assume that each MSA satisfies a
Gaussian distribution with a precision matrix Ωk (k = 1,2,
..., K). Let Ω denote the set {Ω1, Ω2, ..., ΩK}. Let L denote
the number of columns in a MSA. We align these K MSAs
and then group all the column pairs such that each group
contains only mutually-aligned column pairs (see Figure 1
in our method paper (12) for an example of two aligned
families). Let G ≤ L(L – 1)/2 denote the number of groups.
We estimate the K precision matrices by taking into account
their correlation using Group Graphical Lasso (GGL) (11)
as follows.

max
Ω

log likelihood − λ1

∑K

k=1

∥∥Ωk
∥∥

1 −
∑G

g=1
λg

∥∥�g
∥∥

2

where the last penalty item enforces that the column pairs
in the same group have similar interaction strength. That is,
if a column pair in an MSA has a strong interaction, the
other aligned column pairs shall also have strong interac-
tions. The parameter λg is proportional to the conservation

level in each group. See our method paper for technical de-
tails (12).

Supervised learning via neural network (NN)

In addition to co-evolution information, CoinFold uses the
following features for supervised contact prediction: se-
quence profile (16), contact or distance potential (17), and
some non-evolutionary information (18) (see our method
paper (12) for their description). To make use of them, we
use a supervised neural network (19) to predict the proba-
bility of two residues forming a contact and then integrate
this predicted probability with joint EC analysis (12).

Tertiary structure construction

We use a similar approach as described in ConFold (15) to
build 3D models of a sequence by feeding predicted sec-
ondary structure and contacts to the CNS suite (14). In
brief, we predict secondary structure using our in-house
new tool DeepCNF (13) and then convert it to distance, an-
gle and h-bond restraints. We also convert the top predicted
contacts to distance restraints. That is, a pair of residues
predicted to form a contact is assumed to have distance be-
tween 3.5 and 8.0 Å. Finally, we build 3D structure models
using the CNS suite and select top five models by energy
function.

RESULT

Servers to compare

There are many methods developed for contact prediction
and protein folding. Here, we compare our web server only
to those publicly available servers of similar category.

Contact map prediction. We compare our server with EV-
fold (6), CCMpred (10), PSICOV (7), and metaPSICOV
(20). The first three servers use only EC analysis, while the
last one combines both EC analysis and supervised learn-
ing. Among these four servers, only EVfold yields 3D mod-
els.

Tertiary structure prediction. We compare our server with
EVfold (6) and ConFold (15). We cannot compare to the
RBO aleph server (21) since we failed to obtain any results
from it. For each server, we evaluate only the top five pre-
dicted models (ranked by their respective scores).

Evaluation criteria

Contact map prediction. To measure the contact predic-
tion, we evaluate the top L/10, L/5 and L/2 predicted con-
tacts where L is the sequence length of the input protein
(12). The prediction accuracy is defined as the percentage
of native contacts among the top predicted contacts. Con-
tacts are short-, medium- and long-range when the sequence
distance between the two residues in a contact falls into
three intervals from 6 to 11, from 12 to 23, and ≥24, re-
spectively (1). We consider only medium- and long-range
contacts, which are more relevant for protein folding (12),
but more challenging to predict.
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Figure 2. TMscore comparison of the top models generated by CoinFold, ConFold, and EVfold. The top 1 and the best (in terms of TMscore) of top 5
models are evaluated. The 36 CASP10 targets, 49 from CASP11 targets and 47 CAMEO targets are shown in red square, blue diamond, and green triangle,
respectively. (A and B) Head-to-head comparison of Top1 and Top5 best models by CoinFold (in X-axis) and ConFold (in Y-axis). (C and D) Head-to-head
comparison of Top1 and Top5 best models by CoinFold (in X-axis) and EVfold (in Y-axis).

Table 1. Contact prediction result on all 228 CASP test proteins

Medium range Long range

Methods L/10 L/5 L/2 L/10 L/5 L/2

EVfold 0.42 0.35 0.24 0.43 0.38 0.30
CCMpred 0.48 0.39 0.27 0.49 0.44 0.34
PSICOV 0.42 0.34 0.23 0.42 0.37 0.28
metaPSICOV 0.69 0.59 0.43 0.59 0.54 0.44
CoinFold 0.71 0.60 0.45 0.61 0.56 0.46

Table 2. Contact prediction result on all 47 CAMEO hard targets

Medium range Long range

Methods L/10 L/5 L/2 L/10 L/5 L/2

EVfold 0.33 0.28 0.22 0.49 0.44 0.35
CCMpred 0.35 0.29 0.23 0.44 0.41 0.35
PSICOV 0.30 0.24 0.18 0.39 0.36 0.31
metaPSICOV 0.57 0.47 0.35 0.61 0.55 0.47
CoinFold 0.59 0.48 0.37 0.64 0.59 0.50



W364 Nucleic Acids Research, 2016, Vol. 44, Web Server issue

Figure 3. CoinFold server job submission. (A) The web interface for job submission has fields for job name (1), optional user email address (2), and
sequences to be submitted (3). The sequences shall be in FASTA format and can also be submitted in a file (3). User can also click on the example link to
see an example. Submit a job by clicking on the submit button (4). (B) An example for submission by a publicly available program Curl. Only ‘sequences’
and the submission URL (shown in underlines) are required and the others are optional. A job URL will be returned on screen after submission.

Figure 4. CoinFold server result page. The left part shows the predicted contact map (1), where the predicted score is displayed in greyscale, with a higher
score represented by a darker color. The middle part shows the job status (the submitted, scheduled, and finished time) (2), as well as two downloading
buttons for the predicted contact map (3) and 5 predicted 3D models (4). The right part contains a button to view alternative 3D models (5), a display bar
for showing rank and score of the selected 3D model (6) and visualization of the selected 3D model (7).

Tertiary structure prediction. We use TMscore to measure
quality of a 3D (24). TMscore ranges from 0 to 1, with 0
indicating the worst quality and 1 the best quality, respec-
tively.

Performance on the CASP and CAMEO datasets

We tested CoinFold using 228 CASP test proteins (123
CASP10 plus 105 CASP11 targets) (25), and 47 CAMEO
hard test proteins (from 2015-08-01 to 2015-09-12) (26).

To evaluate tertiary structure prediction, we consider 47
CAMEO hard targets and 85 CASP hard targets (36
CASP10 plus 49 CASP11). The reason why we focus on
hard targets for evaluating 3D model is due to the fact
that template-based modeling may be better for easy and
medium-level targets (27,28). Note that all these targets
share <25% sequence identity with the training data of our
supervised learning method.
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Contact map prediction. As shown in Tables 1 and 2,
tested on all 228 CASP targets and 47 CAMEO hard tar-
gets, our server greatly outperforms EVfold, CCMpred and
PSICOV when the top L/10, L/5 and L/2 predicted con-
tacts are evaluated, no matter whether the contacts are
medium- and long-range. CoinFold performs also better
than the CASP11 winner metaPSICOV, which integrates
both EC analysis and supervised learning.

Tertiary structure prediction. As shown in Figure 2A and
C, our server can generate much better Top1 3D models
on CASP and CAMEO hard targets than ConFold and
EVfold. When the best of Top5 models are evaluated, our
server still significantly outperforms the others (see Figure
2B and D). It should be noted that among the 132 hard tar-
gets, EVfold failed to produce 3D models for 59 targets (see
Figure 2C and D).

SERVER IMPLEMENTATION

Overall description

Our server predicts contact map and the tertiary structure
of an input protein sequence, without using any templates.
Users can submit sequences through our web interface or
using a publicly available program curl (see Figure 3). When
the web interface is used, users may submit a batch of ≤50
sequences at a time. Our server first predicts the contact
map of an input sequence and its secondary structure, then
the tertiary structure using the predicted contacts and sec-
ondary structure (see Figure 4).

Input. The only required input to the server is one (or
batch of) protein sequence(s). Users may optionally provide
a jobname and an email address, which can be used to re-
trieve the job results.

Output. For each submission, one unique job ID and one
URL are assigned to track the job results. When an email
is provided in submission, users will be notified by email
once the jobs are done. The result web page has three sec-
tions. The first section shows the predicted contact map. The
second section includes (a) job status, (b) download but-
ton for predicted contact map, and (c) download button for
5 predicted 3D models. The third section displays the pre-
dicted 3D models by JSmol. The model score mainly reflects
the degree of violation of the model against the input con-
straints of CNS (i.e. predicted secondary structure and con-
tacts). The lower the model score, the more likely the model
has a higher quality.

Processing time

The running time depends on three factors: (i) sequence
length, (ii) the number of related protein families, and (iii)
the number of sequence homologs. Since the joint evolu-
tionary coupling analysis consumes most of the running
time (i.e. in proportion to the number of related protein
families), we restrict the maximal number of related pro-
tein families to three. Typically, for a protein of about 250
residues, it takes 1:30 h to finish, with 1 hour spent on con-
tact prediction, and 30 minutes on constructing 3D models.

When there are many submissions, it may take a longer time
since a small number of jobs can be scheduled to run right
after submission.

Documentation

The documentation of CoinFold is available by the ‘Docs’
link at the web page. It includes some details about the
server, descriptions of input and output, explanations of
prediction results, and a sample prediction result. There is
also an example input at the submission page.

CONCLUSION AND FUTURE WORK

We have presented CoinFold, a web server for ab initio pro-
tein contact and tertiary structure prediction without using
any templates. It significantly outperforms other servers of
similar category in both contact prediction and 3D model
prediction, especially for those proteins without very good
templates.

Our server has better contact prediction accuracy due to
its novel joint evolutionary analysis and supervised learning
methods. In the future, we may further improve contact pre-
diction accuracy by Deep Learning (19), and increase the
3D model quality by a procedure similar to RASREC (29).
In the future, we could use more computer power or GPU
cluster to speed up the prediction.
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