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A variety of stimuli activating vestibular end organs, including sinusoidal galvanic

vestibular stimulation, whole body rotation and tilt, and head flexion have been shown

to evoke significant changes in blood pressure (BP) and heart rate (HR). While a role

for the vertical semicircular canals in altering autonomic activity has been hypothesized,

studies to-date attribute the evoked BP and HR responses to the otolith organs. The

present study determined whether unilateral activation of the posterior (PC) or anterior

(AC) semicircular canal is sufficient to elicit changes in BP and/or HR. The study employed

frequency-modulated pulsed infrared radiation (IR: 1,863 nm) directed via optical fibers

to PC or AC of adult male Long-Evans rats. BP and HR changes were detected using

a small-animal single pressure telemetry device implanted in the femoral artery. Eye

movements evoked during IR of the vestibular endorgans were used to confirm the

stimulation site. We found that sinusoidal IR delivered to either PC or AC elicited a rapid

decrease in BP and HR followed by a stimulation frequency-matched modulation. The

magnitude of the initial decrements in HR and BP did not correlate with the energy of

the suprathreshold stimulus. This response pattern was consistent across multiple trials

within an experimental session, replicable, and in most animals showed no evidence of

habituation or an additive effect. Frequency modulated electrical current delivered to the

PC and IR stimulation of the AC, caused decrements in HR and BP that resembled those

evoked by IR of the PC. Frequency domain heart rate variability assessment revealed

that, in most subjects, IR stimulation increased the low frequency (LF) component and

decreased the high frequency (HF) component, resulting in an increase in the LF/HF ratio.

This ratio estimates the relative contributions of sympathetic nervous system (SNS) and

parasympathetic nervous system (PNS) activities. An injection of atropine, a muscarinic

cholinergic receptor antagonist, diminished the IR evoked changes in HR, while the

non-selective beta blocker propranolol eliminated changes in both HR and BP. This study

provides direct evidence that activation of a single vertical semicircular canal is sufficient

to activate and modulate central pathways that control HR and BP.

Keywords: optical stimulation, vestibulo-sympathetic reflex, vestibular system, autonomic, heart rate,

blood pressure, infrared stimulation
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Prior studies have shown that vestibular inputs from otolith
organs can modulate the autonomic pathway and contribute to
the control of blood pressure and heart rate during movement.
However, the role of the semicircular canals in this respect has
not been completely clear. The present study elucidated the
role for the vertical semicircular canals in altering autonomic
activity using focused, pulsed infrared stimulation of posterior
and anterior canals in the rat. Unilateral activation of either the
posterior or anterior semicircular canal was sufficient to evoke
profound changes in the heart rate and blood pressure, suggesting
that canals also contribute to the vestibulo-autonomic pathway.

INTRODUCTION

The vestibular system is exquisitely sensitive to linear and angular
accelerations of the head, informing the nervous system about
head position and head movements in space. These two types
of signals are detected by different sets of end organs, with the
semicircular canals specialized to transduce angular accelerations
and the otolith organs detecting linear forces such as gravity,
tilt and translation. Vestibular information from both types
of end organs is conveyed centrally to participate in well-
characterized neural pathways involved in spatial orientation,
gaze stabilization, balance, posture and cognition [for reviews,
see Holstein (1), Vidal et al. (2)]. In addition, vestibular
information is conveyed to regions of the central autonomic
nervous system, thereby altering blood pressure (BP), heart rate
(HR), and respiration in response to changes in head position
and movement [for reviews, see Yates and Miller (3); Yates et
al. (4); Yates and Miller (5)]. Since many of these functional
pathways specifically target pre-sympathetic brainstem nuclei,
they are often referred to as the vestibulo-sympathetic reflex
pathways. However, vestibular input to cell groups associated
with parasympathetic activity (6) argues for the more general
description of the projections as vestibulo-autonomic (7).

The existence and overall functions of the vestibulo-
autonomic pathways in humans and animals are now well-
established [for reviews, see (Yates et al. (4); Barman and
Yates (8)]. For cardiovascular control, the vestibular system
provides a rapid and open-loop input to baroreflex pathways
mediating changes in peripheral vasoconstriction to compensate
for postural adjustments such as standing from a seated or
horizontal position (9). Although the baroreflex is an extremely
efficient mechanism for maintaining vasomotor homeostasis,
it is a closed loop through a long latency negative feedback
pathway. In fact, a change in BP following electrical stimulation
of baroreceptor afferents requires ∼1 s (10). In addition, the
baroreflex is entirely reactive, adjusting sympathetic nerve
activity to BP perturbations that have already transpired (4).

Most studies of vestibulo-autonomic pathways and functions
in humans and experimental animals have focused on the role
of the otolith organs in supplying the initial head-related signal.
In human subjects, cardiovascular responses evoked by front-
back linear acceleration, head pitch, off-vertical-axis rotation and
galvanic vestibular stimulation (GVS) (11–23) have typically been

attributed to activation of utricular afferents. Similarly, nose-up
pitch, head-down tilt, forward linear acceleration, and GVS (24–
29) have been utilized in animal models to specifically address the
ability of the otolith organs to activate the vestibulo-sympathetic
reflex (VSR) and modulate BP. While a contribution from the
vertical semicircular canals to vestibulo-autonomic pathways has
been suggested previously (30), a specific role for these end
organs in central mechanisms of cardiovascular control remains
to be identified.

The present study investigated the contributions of the
posterior and anterior semicircular canals (PC and AC,
respectively) to the vestibulo-autonomic activity using focused,
pulsed infrared radiation (IR). This stimulus is advantageous
because it offers greater spatial and temporal selectivity than
electrical activation (31–34). In the vestibular system, pulsed IR
has been shown to rapidly alter the rate of transmitter release
from inner ear hair cells and modulate the discharge rate of
primary afferent fibers (34–36). In addition, our group recently
reported that pulsed IR can be used to selectively activate the
PC in anesthetized rats (37). In the present study, we measured
eye movements, BP, HR, and heart rate variability (HRV) during
unilateral pulsed IR stimulation of the PC or AC. The findings
provide new evidence directly linking activation of the vertical
semicircular canals to changes in HR and BP.

EXPERIMENTAL METHODS

Animal Preparation and Surgical Approach
All experiments were carried out in accordance with the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals and the Institutional Animal Care and Use
Committee (IACUC) of the University of Miami approved all
procedures. In total, 30 adult male Long Evans rats (Charles
River Laboratories) weighing 300–500 g were used in this study.
Infrared stimulation of the PC was attempted in 23 animals
including the pharmacological studies, PC electrical stimulation
results were obtained from an additional three animals, and
IR evoked responses to AC IR stimulation were obtained
from four rats. The experimental approach and examples of
the physiological data obtained during the experiments are
illustrated in Figure 1.

Surgical Approach
For stimulation experiments, animals were initially anesthetized
with intraperitoneal injections of ketamine (44 mg/kg)
and xylazine (5 mg/kg). Anesthesia was maintained with
supplemental doses of these agents, based on assessments of
the animal’s pinch reflex tested every 15min throughout the
experimental session. Vital signs were continuously monitored,
and the core body temperature was maintained at 37◦C by
resting the animal on a heating pad (Deltaphase R© Isothermal
pads; Braintree Scientific) throughout the procedure. Body
temperature was monitored using the telemetric system
described below. Prior to stimulation, all rats were anesthetized
(as above), fitted with head posts and secured on a custom-
designed stereotaxic system (Kopf Instruments). To accomplish
this, a 2 cm skin incision was made over the skull and the bony
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FIGURE 1 | Experimental setup. (A) Shows an example post-mortem

microtomography image of the right inner ear of a rat with a 400µm optical

fiber (solid circle) used for IR stimulation targeting the PC ampulla. A micro

thermistor (dotted circle) was inserted beside optical fiber and used to

measure the change in temperature along the beam path during posterior

canal stimulation. (B) Eye recording setup highlighting pupil (P), cornea

reflection (CR) and rotational marks (R1 and R2) was used to calculate the

magnitude of the movement during IR stimulation. (C) Simultaneous

physiological recordings were carried out during each 2-min IR stimulation

period. The panels show IR stimulation of the vestibular end organs at 0.5Hz,

the change in temperature along the beam path (◦C), and frequency-matched

ipsilateral torsional and contralateral vertical eye position change (◦) from IR

stimulation of the PC in one rat.

surface was exposed and cleaned. Two surgical screws were
anchored into symmetrically-placed holes drilled in the parietal
bones. A stainless-steel head post was fitted between the screws
and secured in place by dental acrylic cement (Jet Repair). To
access the vestibular end organs, a C-shaped incision was made
behind the right pinna and blunt dissection was performed to
remove the surrounding muscles and expose the bulla. The bulla
was opened using a motorized surgical drill in order to visualize
the round window and direct the laser stimulation toward the PC
ampulla. To target the AC, the middle ear ossicles were carefully
removed with forceps and the AC ampulla was identified using
local anatomical landmarks (38).

The animals were placed on the stereotaxic frame and
secured using the head post to maintain immobility during the
stimulation experiment. Note that the bony labyrinth covering
the crista ampullaris was not opened since IR directed at the
canal crista through the thin bone was sufficient to evoke
physiological responses. Confirmation that the end organs were
accurately targeted by the IR stimulation was based on evoked
eye movements and by post-mortem microtomography (37). For
the microtomography, following the terminal experiment the
inner ears were fixed in 4% paraformaldehyde in 0.1M phosphate
buffer with the optical fiber fixed in place using dental acrylic.
The tomographic images taken of the samples (Skyscan 1176
Micro Photonic Inc.) were imported in Osirix Lite (Pixmeo) for
3-D reconstruction, low-pass filtered and the fiber orientation
relative to the AC or PC crista was determined from the three-
dimensional reconstructions (Figure 1A).

Infrared Stimulation
Pulsed IR stimulation (1,863 nm wavelength) was achieved with
a Capella diode laser (Lockheed Martin Aculight Corp.) and
frequency modulated by external function generators (Tektronix,
mode CFG250, AFG320) where f = f 0

(

(1− a) + a sin
(

2πfst
))

;
the baseline frequency was f 0 = 250Hz, the modulation
frequency was f s = 0.05Hz, and the dynamic range was a was
fixed at 0.9. The laser was coupled to a 200 or 400µm optical
fiber (P200-5-VIS-NIR and P400-5-VIS-NIR, Ocean Optics) to
target the vestibular neuroepithelium. IR with a wavelength of
1863 nm, frequency of 250 pulses per second (pps), and pulse
duration of 200 µs, was delivered sinusoidally at 0.05Hz to the
right posterior or anterior ampullae for 2min. The penetration
depth used in the present study was∼0.8mm in water (39). Only
the radiant energy was varied between 20 and 149µJ/pulse for the
200µm fiber and between 94 and 512 µJ/pulse for the 400µm
fiber to determine dose-dependent stimulation-evoked changes
in BP and HR. The output radiant energies reported in the results
were characterized from end-polished optical fibers in air (40).
These energy values likely vary from those experienced in vivo
at the target tissue depending upon the distance between the
fiber tip and the target tissue, thickness of the bone, and/or the
beam path. In one rat, local temperature at the crista during IR
stimulation was recorded using a micro-thermocouple (Omega)
placed in the path of the IR optical beam. The temperature was
recorded at a sampling rate of 60Hz for three 2-min stimulation
periods (Figure 1C).

Electrical Stimulation
To further confirm the involvement of the vertical semicircular
canals in the evoked BP and HR changes, electrical stimulation
of the PC was performed in 3 rats. The surgical approach to
the bulla and round window were as described above for the IR
stimulation. In each rat, a standard bipolar needle electrode was
placed at the site of the PC ampulla and a second electrode was
placed at the upper rim of the round window. Monophasic pulses
of 500 µs pulse duration, 250 pps, and 700 µA per pulse were
generated by an isolated stimulator (ISO-STIM 01M, NPI) and
sinusoidally modulated at 0.05Hz, a frequency that was used in
the IR experiments. The total duration for electrical stimulation
was 2min, consistent with the IR stimulation.

Eye Movements
Activation of the targeted end organ—PC or AC—during
either infrared or electrical stimulation was confirmed using
eye movements (37, 41) that were observed and recorded
in some animals using a video-oculography system (ETL-200;
ISCAN Inc., Figure 1B and lower traces in Figure 1C). The
system located and tracked the center of the pupil and corneal
reflections of both eyes. The linear positions of the pupil
and corneal reflection were converted to angular rotation in
the horizontal and vertical directions using previously detailed
methods (37). Sinusoidally-modulated IR stimulation of the PC
evoked frequency-matched torsion in the ipsilateral eye and a
vertical downward movement in the contralateral eye whereas
that of the AC evoked primarily upward movements ipsilaterally
and upward extorsion contralaterally. In majority of the rats,
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FIGURE 2 | Changes in BP and HR evoked by unilateral pulsed IR directed at PC. (A) Shows example mean BP (mmHg) and HR (bpm) responses recorded in one rat

at different IR radiant exposures. Black bars indicate the 2-min IR stimulus intervals with the radiant energy at each interval noted above (242 to 292 µJ/pulse). The

initial observable response (threshold) occurred at 242 µJ/pulse. (B,C) Show single events at 275 and 292 µJ/pulse, respectively and the corresponding changes in

systolic (SBP), diastolic (DBP), and mean (MBP) pressures as well as changes in HR. (D) Shows responses recorded in another rat at different radiant exposures (292

to 470 µJ/pulse) with the observed threshold at 420 µJ/pulse. (E,F) Show single events at 420 and 470 µJ/pulse, respectively, and the corresponding changes in

SBP, DBP, MBP, and HR.

eye movements continued to modulate for the duration of
the experiment.

Sensor Implantation
During the stimulation experiments, HR, BP, and body
temperature were measured with a small animal single
pressure device (DSI Pressure Sensing Technologies, model
HD-S10) implanted in the femoral artery prior to stimulation.
Implantation surgeries were conducted at least 24 h before the IR
experiments using aseptic technique. Animals were anesthetized
with isoflurane (2–3%) using a portable anesthesia workstation
(Eagle Eye Anesthesia). The telemetry device was implanted
according to procedures reported previously (42). Briefly, the
insertion area above the left groin was shaved and cleaned with a
surgical antiseptic (Providone-iodine), and then a small incision
was made to expose the femoral artery. An arteriotomy was
performed and the transducer catheter was inserted into the
vessel. The artery was tied off to secure the catheter and the body
of the sensor was secured in a subcutaneous pouch. The incision
was closed with a suture and surgical staples. Post-surgical pain

was monitored and managed with buprenorphine (0.3 mg/ml).
Animals recovered for a minimum of 24 h before they were used
in stimulation experiments.

BP and HR Recordings
Physiological data were collected continuously using the
implanted single pressure telemetric sensor and Ponemah
software (DSI). Using this system, arterial pressures were
recorded continuously and analyzed every 5 s to calculate
parameters including: systolic BP, diastolic BP, mean BP, HR,
and body temperature. BP and HR recordings were initiated
prior to the stimulation in order to establish the baseline activity
for each animal, and continued throughout the experiment.
The start and end times for each 2-min IR stimulus were
marked as trigger events in the recordings to facilitate the
subsequent data analysis. Data exported from Ponemah as
CSV files were analyzed with custom scripts written in
MATLAB (Mathworks).
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Heart Rate Variability Analysis
The inter-beat intervals of arterial BP signals were analyzed using
the Ponemah (DSI) software to calculate heart rate variability
(HRV). Using Fast Fourier transforms to perform the spectral
analysis, HRV was divided into components that operate in
different frequency ranges (43, 44). The HRV frequency bands
used in rat are: Very Low Frequency (VLF) [0.05–0.25Hz], Low
Frequency (LF) [0.25–1Hz], and High Frequency (HF) [1–3Hz].
Our HRV data are presented as the ratio between normalized
LF and HF, which excludes the VLF data including the IR
stimulation frequency 0.05Hz. As noted above, HRV measures
were initially obtained for the overall baseline BP recorded
prior to any IR stimulation. Baseline HRV measures were then
confirmed from the 2min BP recordings obtained immediately
preceding each IR stimulation trial. The changes recorded during
each 2min stimulation trial were compared to the HRV during
the baseline (no stimulation) condition. The data compiled in
Ponemah (DSI) were exported to CSV files and further analyzed
and plotted inMATLAB (Mathworks, MA). The ratio of LF to HF
power was also used to estimate the relative ratio of sympathetic
to parasympathetic nervous system activity (43).

Pharmacological Blockers of Autonomic
Function
In six experiments, we evaluated the contributions of sympathetic
and parasympathetic activity to the vestibulo-autonomic
responses evoked by IR. The muscarinic cholinergic receptor
antagonist atropine (1 mg/kg) or the non-selective beta-
adrenergic receptor blocker propranolol (1 mg/kg) were
administered systemically via the tail vein in anesthetized
rats. Baseline and IR-evoked changes in BP and HR were
recorded prior to and following administration of the drug.
Pulsed IR (0.05Hz) stimulation of the PC was performed
as above. IR evoked responses were compared (a) prior to
drug injection, (b) after the BP and HR baselines stabilized
following drug administration, and (c) 40–50min following
drug administration to determine whether the BP and HR
responses recovered.

RESULTS

IR Stimulation of the PC Modulates
HR and BP
Unilateral stimulation of the PC with pulsed IR of wavelength
1,863 nm induced changes in eye position that matched the
stimulus frequency (0.05Hz, in 17 rats). The torsional, vertical
movement of the ipsilateral (right) eye and downwardmovement
of the contralateral (left) eye that are characteristic of PC
stimulation (37) were confirmed visually in all rats. Figure 1C
shows an example of the evoked sinusoidal eye movements from
one of the rats that also provided the HR and BP data. The eye
movements were used to confirm positioning of the optical fiber
to target the PC sensors.

In the experiments highlighted in Figure 2, IR was delivered
via a 400µm optical fiber and the radiant energy of the
stimulation was varied. At each energy level, decreases in HR and
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mean BP were observed at the onset of the sinusoidal stimulation
(Figure 2A). As the IR stimulation proceeded over the 2-min
periods (black bars, Figure 2A), the BP and HR modulated with
the stimulus, and returned to baseline when the laser power
was switched off. Multiple 2-min activation periods using the
same stimulus conditions evoked similar responses during an
experiment. For the example shown in Figure 2A, the threshold
radiant energy required to elicit a change in BP or HR was 242
µJ/pulse. Subsequent stimuli at higher radiant energies, 275 and
292 µJ/pulse in this rat, resulted in characteristically similar,
but larger BP and HR responses. Both physiological responses
continued to modulate sinusoidally, matching the 0.05Hz IR
stimulation frequency. In this experiment, the initial decrease

in BP ranged from 3.5 to 19 mmHg and initial decrease in HR
ranged from 7.5 to 70 bpm, depending on the radiant energy of
the pulses. HR and mean, systolic and diastolic BP changes in
response to pulses of two different energy levels are shown on an
expanded time scale in Figures 2B,C.

Figures 2D–F illustrate data from a second rat, in which
the threshold IR radiant energy required to elicit a change in
BP and HR was notably higher at 420 µJ/pulse (Figure 2D).
In this animal, HR decreased at the onset of IR and remained
below the baseline for the duration of IR stimuli. However,
BP decreased transiently at the onset of IR stimulation and
continued to modulate at low amplitude near the baseline. At
the cessation of IR, both BP and HR returned to baseline and
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remained stable until the next stimulus. The initial reduction in
BP ranged from 4.06 to 7.24 mmHg and that of HR ranged from
23.65 to 34.13 bpm across the five stimuli shown in Figure 2.
Figures 2E,F show the changes in HR and mean, systolic and
diastolic BP for 2-min stimulation periods at the threshold of
420 µJ/pulse and at a higher radiant energy of 470 µJ/pulse,
respectively. Consecutive stimulation cycles continued to evoke
characteristically similar responses.

Overall, similar HR and BP responses were obtained from 17
rats in 113 IR stimulation trials of the PC. Across animals, the
general profiles of the transient responses during IR were similar
and IR stimulation evoked responses in each rat. However, the
amplitude of the initial and subsequent decreases in BP and HR

varied across animals and across stimulation trials. To determine
whether the evoked changes decreased over the course of the
stimulation period, we analyzed the peak-to-peak BP and HR
responses over six intervals or cycles within the 2-min IR stimuli.
The initial trough was taken as the first lowest value of HR
or MBP when compared with an averaged baseline. Subsequent
peaks/troughs were defined by the next highest/lowest values of
MBP and HR when compared with the previous peak or trough.
Responses from six rats in which IR stimulation was carried out
for a cumulative total of 12 times at the same radiant energy
(470 µJ/pulse) were pooled. The change in HR during the first
stimulus cycle ranged from 1 to 43 bpm with a median of 17.47
bpm, while that for Cycle 6 ranged from 0 to 21 bpm with a
median of 6.39 bpm (Figure 3A). The change in BP during the
first cycle ranged from 1 to 7.24 mmHg with a median of 3
mmHg, and from 0 to 5.53 mmHg, median of 1.94 mmHg, for
the sixth cycle. These cycle-to-cycle changes in BP and HR were
not statistically significant (repeated measures ANOVA: HR, p=
0.3644 and BP, p= 0.7952).

Next, we focused on the initial declines in mean BP and HR
at the onset of IR stimulation. When these magnitudes were
calculated for each of the 113 IR stimuli delivered to the 17 rats,
a moderate correlation was observed between magnitudes of the
initial changes in mean BP and HR (R2 = 0.5004, p < 0.0005,
Figure 3B). To further investigate this, the percent changes in
BP and HR were calculated by dividing the magnitude of change
(initial decrease) in BP or HR for each IR stimulation period by
the pre-stimulation baseline BP orHR for each rat.We found that
these percent changes in BP and HR also correlated moderately
(R2 = 0.4772, p < 0.0005, Figure 3C) Supplementary Figure 1

shows the relationship between percent change in BP and percent
change in HR for each of the rats that received PC stimulation.
These data show that, despite the variability in responses between
individual animals, the overall correlation between changes in
HR and changes in BP during IR stimulation is moderate.

Like the two examples shown in Figure 2, the levels of IR
radiant energy that were required to elicit BP and HR changes
varied across the 17 rats. To examine this further, we sought
to determine whether the radiant energy per IR pulse (strength
of the stimulus), the compilation of stimuli (multiple trials in
the same rat), or baseline physiology of the rat affected BP or
HR. Across the 113 IR stimuli applied to the 17 rats with PC
stimulation, radiant energy varied between 72 and 512 µJ/pulse.
Figure 4 shows themagnitude of changes in BP (Figure 4A1) and
HR (Figure 4A2) evoked by IR across different radiant energies
per pulse in each of the 17 rats. The BP decreased between 1 and
19 mmHg with a median of 4 mmHg. However, these decrements
in BP did not correlate with increasing radiant energy in a
dose-dependent manner (r =−0.331). Similarly, HR diminished
between 1 and 68 bpm with a median of 15 bpm, and also did
not correlate with increasing radiant energy (r = −0.269). Each
IR stimulation was 2 mi in duration and in most of the rats, the
stimuli were repeated several times over 60–90min. On average,
7 IR consecutive stimulation trials were applied per rat. To
investigate potential adaptation or additive effects with repeated
stimulation, the initial changes in BP and HR evoked at IR
onset were compared across stimulation trials (Figures 4B1,B2).
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Neither the BP decrease (r = −0.0647) nor the fall in HR (r =
−0.25) correlated with the number of consecutive IR stimuli or
with the radiant energy required to evoke the response above
threshold. The threshold radiant energy required to elicit a

change in BP or HR had a broad range, from 94 to 445 µJ/pulse
(224± 118 µJ/pulse, mean± SD, Figures 4C1,C2, insets).

The baseline BP (82.3 ± 8.6) and HR (244.9 ± 22.7) prior
to stimulation varied significantly between the animals. The
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baseline physiological responses can be affected by the duration
of surgeries, effects of anesthesia (including multiple dosages),
and inter-subject physiological variations. To determine whether
the baseline physiology at the time of IR stimulation affected
the evoked changes, the IR-evoked changes in mean BP and HR
were compared to pre-stimulation baseline measurements. These
results are summarized in Figure 5. The baseline measurements
were obtained from averaged BP and HR recorded over a 2-min
duration prior to each IR stimulation trial in each rat. The
baseline MBP and HR in the 17 rats did not vary significantly
over the duration of experiments (Figure 5, insets). Across the
113 trials in the 17 rats, the averaged baseline BP ranged from 61
to 102 mmHg (82.3 ± 8.6) while the BP changes during the first
cycle of IR stimulation ranged from 1 to 19 mmHg. The largest
changes in BP were observed in rats in which the baseline BP was
within a physiological range of 72 to 90 mmHg. The baseline HR
varied significantly, ranging from 208 to 311 bpm, while the HR
decreases during the first cycle of IR stimulation ranged from 7
to 71 bpm.

To investigate the physiological changes underlying the
reductions in BP and HR upon IR stimulation, heart rate
variability (HRV) was analyzed for all animals. In the frequency
domain, spectral analysis of the inter-beat interval was used
to divide the variability into VLF (0.05–0.25Hz), LF (0.25–
1.0Hz), and HF (1.0–3.0Hz) components. The LF and HF
components were normalized to remove VLF components for
each stimulation event across the 17 rats, thereby eliminating
the potential power contributions at the 0.05Hz IR stimulation
frequency. The LF/HF ratios were then calculated to assess HRV
over the 2min prior to stimulation (baseline) and for 2min
during stimulation at each radiant energy level. Figure 6A shows
one example comparing the LF, HF, and LF/HF ratios at baseline
and during IR-evoked responses. In this experiment, IR was
delivered in 15 trials with increasing steps of radiant energy
ranging from 123 to 512 µJ/pulse. In 11 of 17 animals, including
this example (Figure 6B1), the LF components increased, HF
components decreased, and the resulting LF/HF ratios increased
during the IR-evoked responses. Of 113 IR trials, 90 resulted
in an increase in the LF/HF ratio whereas only 23 resulted
in a decrease (Figure 6B2). Additionally, we investigated the
relationships between the frequency components (LF and HF)
and pre-stimulation BP andHR baselines (Figure 2) as well as the
relationships between the frequency components and baselines
(Figures 6C1,D1) or percent changes (Figures 6C2,D2) in BP
andHR in animals that were stimulated at a single radiant energy:
470 µJ/pulse. Neither component was significantly correlated
with resting hemodynamic parameters or the IR induced total
change in these parameters.

We also investigated the latency of PC- stimulation-induced
cardiovascular responses across all 113 stimulation events
(radiant energy varying from 105 to 512 µJ/pulse). The latency
was calculated as the time required for the BP or HR to decrease
to the lowest measured value following IR onset. The BP and HR
latencies in 12 trials at a single radiant energy (470 µJ/pulse)
demonstrate that the decrease in HR at this relatively high IR
radiant energy occurred 1.42 ± 1.62 s prior to the reduction in
MBP. At this radiant energy, the latency to the first drop in MBP

was 16 ± 4.4 s whereas for HR was 14.4 ± 5.03. These findings
are summarized in Figure 5B and reported as the time difference
between the initial decrease in MBP and the initial decrease in
HR. Time differences greater than zero indicate that the decrease
in HR occurred prior to the decrement in MBP. Across the 117
trials, the reduction inHR occurred on average 2.05± 1.51 s prior
to the decrease in BP. There was no correlation between these
latencies and the radiant energy per pulse delivered during the
IR stimulation.

HR and BP Responses to Electrical
Stimulation of the PC
Our previous research has shown that IR of the vestibular
neuroepithelium evokes diverse post-synaptic afferent spike
trains with inhibition, excitation, and/or phase-locked responses
(34, 36). The photothermally drivenmechanism of IR stimulation
in cells also leads to local temperature increases at higher radiant
energies (36, 45) (Figure 1A). The IR stimulation used in the
present study was also unilateral, and as such not a physiological
stimulus condition. To assess the reliability of the evoked
physiological responses, the PC was stimulated with frequency-
modulated electrical currents in three naïve rats (no prior IR
stimulation). Monophasic pulses of 500 µs phase duration and
700 µA per pulse were sinusoidally modulated at 0.05Hz for
three consecutive 2-min intervals matching the IR stimulation
paradigm. The electrically-evoked BP and HR responses are
shown in Figure 7A for one animal during three successive trials.
Across these trials, the initial decrease in BP varied between
6.41 and 16.68 mmHg, and the reduction in HR varied between
7.3 and 33.63 bpm. Responses to 9 electrical stimulation trials
in the three rats (three trials per rat) were obtained. Overall,
the BP decrements ranged between 1.28 and 18.13 mmHg and
those of HR varied between 3.84 and 72.78 bpm. In each of
the three animals (example in Figure 7B), the HRV analysis was
characteristically similar to that resulting from IR stimulation:
the LF components increased and HF components decreased.
All nine electrical stimulation trials resulted in an increase in the
LF/HF ratio (Figure 7B), matching the majority of responses to
IR stimulation of the PC.

IR Stimulation of the AC Modulates
HR and BP
The IR parameters described above were used to stimulate the
AC in 4 naïve rats (13 trials) while measuring changes in BP
and HR. Stimulation of the AC was confirmed in each rat
by the characteristic eye movements evoked in response to IR
(37). Figure 8A shows an example of the reductions in HR and
BP evoked by IR stimulation of the AC in two trials. Despite
significant fluctuations in the BP response, an initial decrease in
HR and sinusoidal modulation with pulsed IR were observed.
We were unable to determine an initial decrement in BP using
a radiant energy of 445 µJ/pulse, although an initial decrease in
HR of 3.49 bpm occurred. Using higher stimulus energy (512
µJ/pulse), an initial reduction in BP from baseline levels of
0.81 mmHg was observed, together with a 8.17 bpm decline in
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FIGURE 8 | Responses evoked with IR stimulation of the AC vs PC. (A)

Shows two example responses recorded in one rat at different IR stimulation

of the AC. Changes in mean BP and HR were recorded for cycles stimulated

at 445 and 512 µJ/pulse. The initial decrease in BP at the higher radiant

energy of 512 µJ/pulse was determined to be 0.81 mmHg. Initial decreases in

HR were observed to be 3.49 and 8.17 bpm at respective radiant exposures.

Box plots show comparison of the initial changes in MBP (B) and HR (C)

between IR stimulation of AC (closed circle) and PC (open circle) at two

different energy levels: 445 and 512 µJ/pulse. A significant difference in the

responses evoked by IR stimulation of the two canals was observed in MBP

and only at 512 µJ/pulse [P(T≤t) two tail = 0.047].

HR. Both BP and HR returned to baseline post-IR, and similar
responses were observed in all 4 rats.

A comparison of the responses evoked by the two vertical
semicircular canals is summarized in Figures 8B,C for mean BP
and HR at two different radiant energies. Overall, IR stimulation
of the AC evoked MBP changes ranging from 0.65 to 3.94
(median 1.11) at 445 µJ/pulse and 0.81 to 4.33 (median 1.56) at
512 µJ/pulse. AC evoked decrements in HR ranged from 1.22 to
19.82 (median 3.49) at 445 µJ/pulse and 2.82 to 16.54 (median
8.17) at 512 µJ/pulse. These responses modulated with the IR
stimulation and were characteristically similar to those observed

with PC stimulation. Significant differences between the AC- and
PC-evoked responses were found only for the initial reduction
in MBP at 512 µJ/pulse (p = 0.047, two-tail t-test). The AC-
evoked responses were also analyzed to examine the relationships
between magnitude of change and pre-stimulation baselines as
well as the radiant energy and consecutive stimulation periods
Supplementary Figure 2. The responses were similar to those
observed during PC activation.

Effect of Autonomic Blockade on HR and
BP Responses to IR Stimulation of the PC
The pharmacological blockade of vagal and sympathetic activities
was achieved in naïve, additional rats by atropine (1 mg/kg) and
propranolol (1 mg/kg) administration, respectively. The effects of
these two drugs on BP and HR responses to unilateral pulsed IR
stimulation of the PC were analyzed in separate experiments. The
response after β-adrenergic receptor blockade with propranolol
(1 mg/kg, iv) was used to estimate the sympathetic tone; the
response after muscarinic cholinergic receptor blockade with
methyl atropine (1 mg/kg, iv) was used to estimate the vagal
tone (46). The initial changes induced by IR stimulation prior
to the administration of atropine experiments was 2.54 ±

1.92 mmHg and 10.11 ± 6.52 bpm in the three rats tested
(Figures 9A1,B1). Similarly, prior to the administration of
propranolol, IR stimulation resulted in decreases of 3.46 ±

2.07 mmHg 15.40 ± 6.99 bpm (Figures 9C1,D1). Consistent
with the effects of these drugs, we found a decrease in baseline
HR by 21.83 ± 19.16 bpm following atropine administration
and 88.99 bpm with propranolol (examples in Figures 9B2,D2).
Recovery of HR was observed at∼50min post-administration of
atropine in most rats (Figure 9B3). IR stimulation of PC did not
evoke a change in HR with administration of either drug in all
three rats (Figures 9B2,D2). The IR evoked responses recovered
40–50min after administration of both drugs (Figures 9B3,D3

and insets, for the example shown the HR recovered to
5.44 bpm post-atropine and 5.75 bpm post-proporanalol). In
contrast, IR stimulation continued to evoke sinusoidal changes
in BP after administration of atropine (Figures 9A2,A3, for
the example shown the response was 5.49 mmHg), although
these responses were eliminated following administration of
propranolol (Figure 9C2). Responses from all three rats were
characteristically similar.

DISCUSSION

In the present study, we used selective activation of either
the PC or AC using pulsed IR to test a hypothesis that
stimulation of a single vertical semicircular canal is sufficient
to evoke a cardiovascular response. A subject-specific threshold
level of radiant energy was necessary to elicit a cardiovascular
response, above which there was a rapid decrease in HR
and BP. Both measures then oscillated with the sinusoidal
pulsed IR stimulation around the decreased plateau, returning
to pre-stimulation baseline at the end of stimulation. The
magnitude of the initial decrements in HR and BP did not
correlate with the energy of the suprathreshold stimulus. This
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either drug and begin to return to baseline levels 40–50 minutes following injection.

response pattern was consistent across multiple trials within
an experimental session, replicable across subjects, and in most
animals showed no evidence of habituation or an additive
effect. Frequency modulated electrical current delivered to the
PC caused decrements in HR and BP that resembled those
evoked by IR stimulation of the PC and AC. Frequency domain
HRV assessment revealed that, in most subjects, IR stimulation
increased the low frequency component and decreased the high

frequency component, resulting in an increase in the LF/HF
ratio. Lastly, propranolol administration caused a substantial
drop in baseline HR, and IR of the PC under these conditions
did not evoke a change in HR or BP. In contrast, systemic
atropine caused a small drop in baseline HR. IR of the PC
during atropine treatment did not evoke a change in HR
although stimulus-dependent sinusoidal modulations of BP
were observed.
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The brain requires stable cerebral perfusion in order
to function normally and avoid syncope. One of the key
physiological mechanisms mediating cardiovascular homeostasis
is the baroreflex, a closed-loop negative feedback pathway
deriving input from baroreceptors in the carotid body and aortic
arch. When blood pressure increases, the associated distention
of the arterial blood vessel walls is detected by these receptors,
which convey excitatory signals via glossopharyngeal and vagal
afferents to the caudal solitary nucleus (SolN) (47). SolN neurons
relay the baroreflex-related input to GABAergic cells in the
caudal ventrolateral medulla (CVLM), which project to pre-
sympathetic cells of the adjacent rostral ventrolateral medulla
(RVLM) (10, 48, 49). This inhibition reduces the level of
activity in a series of barosensitive cell groups from RVLM,
to preganglionic sympathetic neurons in the spinal cord, and
ultimately the sympathetic trunk. Through this pathway, an
increase in mean arterial pressure has been shown to result in a
reduction in sympathetic nerve activity, relaxation of the vascular
smooth muscle, and a reduction in arterial blood pressure due to
baroreceptor unloading [for review, see Guyenet (50)].

Most of the vasculature receives innervation exclusively from
sympathetic autonomic fibers, in a noradrenergic projection
mediated by alpha adrenergic receptors. In contrast, HR is
modulated by both sympathetic and parasympathetic fibers.
The sympathetic fibers are noradrenergic, and their activation
increases both contractility and relaxation rate of the heart
muscles. The parasympathetic innervation originates from the
dorsal motor vagal nucleus and nucleus ambiguus, and the
cardiac ganglion cells receiving their input are cholinergic
and activate muscarinic cholinergic receptors. In addition
to its key role in mediating sympathetic outflow, SolN
neurons can influence HR through projections to preganglionic
parasympathetic cells in the nucleus ambiguus. Normally, the
parasympathetic fibers restore cardiac homeostasis following
sympathetic perturbation.

A large body of evidence from clinical observations and
experimental studies in humans and animal models supports the
notion that the vestibular system participates in the control of
HR and BP duringmovement and postural adjustments (51). The
redistribution of body fluids that occurs upon standing or rearing
requires a rapid and proactive cardiovascular response in order to
prevent blood from pooling in the legs and a subsequent decrease
in cerebral perfusion (52). Since changes in head position
and head motion activate the otolith organs and semicircular
canals, the vestibular system is optimally situated to provide the
requisite input to central cardiovascular circuits. This connection
between the vestibular and autonomic systems allows for rapid
modulation of HR and BP with changes in head position or body
posture via vestibulo-autonomic pathways. Experimental studies
in humans using various vestibular stimulation approaches have
shown that activation of the vestibular labyrinth alters BP, blood
flow, respiration and/or sympathetic nerve activity [for reviews,
see Yates et al. (4); Hammam andMacefield (53); Yates andMiller
(5)]. As highlighted in these reviews, considerable data exists
showing that the vestibular inputs have complex effects on blood
flow rates and pressure regulation to the head and hindlimbs and
response patterning (54–56). Sinusoidally-modulated galvanic

vestibular stimulation (sGVS) has been shown to evoke patterned
sympathetic nerve activity in humans, specifically resulting in
vasoconstriction of blood vessels in the legs (18, 20). This
patterning of nerve activity resembles the sympathetic responses
normally observed in humans during tilt and standing, and is
thought to reflect an interaction between the baroreflex and the
vestibular system (21). Moreover, head-up and head-down tilt
delivered through off-vertical-axis rotation elicit up-and-down
modulation of muscle sympathetic nerve activity that is in-phase
with the oscillating stimulus (14). Since continuous off-vertical-
axis rotation is thought to adapt the semicircular canals, this
sympathetic modulation has been attributed to otolith end organ
activation. There is little evidence until now from animal or
human studies that stimulation of the vertical semicircular canals
changes sympathetic nerve activity. However, studies on whole
body oscillations in the yaw plane, which stimulate the horizontal
semicircular canals, show a decrease in HR in humans (57).
Warm and cool-water irrigation activate the horizontal canals
and elicit caloric nystagmus, though its effects on sympathetic
nerve activity and cardiovascular parameters in human subjects
appear to be inconclusive (11, 58), for review, see Yates et al. (4).

There is a substantial literature demonstrating that
sympathetic nerve activity changes during natural and electrical
stimulation of the vestibular nerve in animals [for review, see
Yates et al. (4)]. Following the initial seminal reports (24, 59),
these studies generally indicate that head-up tilt and linear
acceleration increase sympathetic nerve activity and raise BP
(25, 29, 60), and that these increases are attenuated by bilateral
peripheral vestibular damage (61). While the head-up tilts
activate afferents from PC bilaterally, it is possible that our
results when stimulating unilateral vertical canals reflect altered
activity of vestibular nuclei neurons receiving convergent input
from otolith and canals. A previous study has also shown that
head-down tilt induced a rapid reduction in HR in normal
subjects (62). Nose-down rotation causes a transient decrease
in BP, which has also been attributed to vestibular input to
autonomic pathways (28). Similar response was observed in
patients with unilateral benign paroxysmal positional vertigo
where the PC biomechanics is affected but only if the patients
are tilted in the plane of the unaffected, contralateral PC (62).
Future studies need to employ bilateral vertical canal stimulation
to further characterize the observed responses. Furthermore,
sGVS in rats can evoke drops in both BP and HR (29, 42, 63, 64).
Most studies attribute the effects of sGVS, including those on
autonomic activity, to otolith activation because of the low
frequency characteristics of the stimuli and the perceptual,
ocular, and postural responses that are elicited (18, 65). However,
it has been suggested that the vertical canals may also be activated
by the stimulus (4, 66, 67), raising the possibility that the vertical
canals contribute to vestibulo-autonomic activity. In fact, both
the otolith organs and semicircular canals can respond to tilt
(17) and the vestibulo-ocular and -spinal reflexes can be evoked
by combined otolith and canal input (60). We observed initial
drops in HR with IR stimulation that were correlated with
drops in BP and continued to modulate in-phase with the low
frequency sinusoidal IR stimulation. These responses were
replicable and stable over multiple trials, delivered over several
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hours. The magnitude of responses did not vary significantly
over this prolonged experimental period. We did observe
that the threshold IR radiant energy or strength of stimulus
required to evoke a change in BP or HR varied (between 94
and 512 µJ/pulse) across the animals and was likely a result
of small differences in orientation of the optical fiber between
experiments. Overall, these results demonstrate that activation
of a single vertical canal is sufficient to alter BP and HR. In
future studies, it will be important to test contributions of the
horizontal semicircular canals as well as stimulation of combined
vertical canal and utricular macula.

The morphological basis for this vestibulo-autonomic activity
has been demonstrated previously using sGVS to activate
neurons in the caudal vestibular nuclei (42), and from there
to brainstem regions involved in the central regulation of BP
(9, 68–70) and HR (6, 71), as well as respiration (5, 72). These
studies suggest that the vestibular system provides a means
for rapid detection and autonomic activation in response to a
postural change, requiring only∼100ms to accomplish a change
in BP following stimulation (10). This rapid change is followed
by baroreflex activity, which re-establishes BP homeostasis 30–
60 s after standing. Our results show that vertical semicircular
canal activation induces a drop in both the HR and BP. This
vaso-vagal-type response has also been reported following sGVS
in rats (73), and can be attributed to the interaction between
vestibulo-autonomic and baroreceptor reflexes. Supporting this
interpretation, we observed that a measurable change in HR
occurred prior to that of BP during IR stimulation. This
observation highlights the non-linear nature of the relationship
between HR and BP and suggests that the initial rapid
cardiovascular response mediated by the vestibular system (14,
74, 75) is followed by baroreflex activity that has a substantially
longer latency and as a result, may exacerbate or ameliorate the
effects of the initial vestibulo-autonomic drive (76).

We used HRV analysis from the 17 rats (113 IR stimuli)
receiving PC stimulation to further understand the effects of
vertical canal stimulation on autonomic activity. HRV generally
reflects the ability of the cardiovascular system to adapt to
changing stimulus conditions and is used to assess fluctuations
in autonomic innervation of the heart, as an alternative measure
to average activity level. In general, healthy individuals have
high HRV and reduced HRV is interpreted as an abnormal
imbalance in the activity of the sympathetic and parasympathetic
branches of the autonomic system (77). However, a decrease
in HRV can reflect either withdrawal or excessively high
activity in either of these branches. In the frequency domain,
three components of HRV are distinguished: high, low and
very low frequencies. The HF component can be viewed as
predominantly an indicator of parasympathetic (vagal) activity.
The LF component, however, reflects both the sympathetic and
parasympathetic branches (78). The VLF component is typically
a reflection of the stimulus. We found that IR stimulation
caused an increase in the LF components with a corresponding
decrease in HF components (Figure 7). This result is likely to
reflect the interaction of short-latency vestibular effects on both
sympathetic pathways through RVLM and on parasympathetic
pathways through SolN, followed by cardiac and baroreflex

efforts to re-establish homeostasis. In research using GVS, the
HF component increased during stimulation and corresponded
to increased mean arterial pressure in down-facing patients. The
LF/HF ratio, a reflection of sympathetic nerve activity, increased
with GVS in up-facing patients only (79). These results are
consistent with studies using head-down neck rotation (80) and
head-up off-vertical-axis rotation (14).

We further investigated the tonic sympathetic and vagal
influences on the heart with selective pharmacological blockade
of cardiac autonomic receptors. The ACh antagonist atropine
was used to inhibit the effects of excessive vagal activation on
the heart. The non-selective beta blocker propranolol works
by blocking epinephrine and norepinephrine at β -adrenergic
receptors. The response after β-adrenergic receptor blockade
with propranolol was used to estimate the sympathetic tone;
the response after muscarinic cholinergic receptor blockade with
atropine was used to assess the vagal tone (46). Our results with
IR following the pharmacological blocks suggest that the changes
in HR evoked by IR are dependent on both sympathetic and
parasympathetic activity but that BP responses are likely to be
independent of parasympathetic activation.

Conclusion
The present study demonstrates that activation of the vertical
semicircular canals evokes significant autonomic activity in
the anesthetized rats. The resulting decreases in MBP and
HR confirm that these end organs provide a means for rapid
detection and autonomic activation in response to a postural
change. A direct comparison to the stimulation of unilateral
otolith organs or augmentation of the responses seen here by
otolith organs remain a goal for future studies.
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Supplementary Figure 1 | Percent change in BP and HR. Percent changes in

MBP (initial change in MPB/baseline MPB) and HR (initial change in HR/baseline

HR) for each stimulation period for individual animals with PC stimulation (17 total

with IR and 3 with electrical stimulation, outlined using dotted rectangle).

R2-values are shown with each rat identification number.

Supplementary Figure 2 | Magnitude of IR evoked changes in AC. The

magnitude of changes in MBP (top) and HR (bottom) for 13 stimulation periods

across four rats during the initial cycle of AC stimulation with IR are shown. (A,B)

Show the responses to IR applied at varying radiant energies (377–512 µJ/pulse)

when compared to the averaged baseline MBP (mmHg) (R2 = 0.078) and HR

(bpm) (R2 = 0.083). (C,D) Show weak correlation between stimulation radiant

energies (µJ/pulse) and the initial changes in MBP (mmHg) (R2 = 0.030) and HR

(bpm) (R2 = 0.081). (E,F) show the relationship between consecutive periods and

the magnitude of change in (B1) MBP (mmHg) (R2 = 0.174) and (B2) HR (bpm)

(R2 = 0.118). Period numbers signify the number of events a single

rat has undergone.
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