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Abstract

Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight
into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed
mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody
(Nab) responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1:20 to 1:50 (IC50) selecting for virus
escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env) in a strain-specific,
conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the
Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the
base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1–V3
interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which
selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all
three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab
escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell
responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on
HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/
founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus
acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for
transmission and productive clinical infection is typically one.
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Introduction

Much of what is known about virus-host interactions underlying

HIV-1 persistence and pathogenesis in humans has come from

quantitative measurements and mathematical modeling of viral

replication dynamics and virus evolution in response to selective

pressures, including antiretroviral drug therapy and adaptive

immune responses [1–9]. Comparable insights into HIV-1 trans-

mission have been gleaned from analyses of acute infection viral

sequences derived by single genome amplification (SGA) and

interpreted in the context of a model of random virus evolution

[8,10,11]. This latter approach makes possible an unambiguous

molecular identification of actual transmitted/founder (T/F) viruses

that are responsible for establishing productive clinical infection by

HIV-1 in humans [8,10,12–15] and by SIV in rhesus macaques [16–

18]. Importantly, because the SGA - direct amplicon sequencing

strategy precludes Taq-polymerase mediated recombination and

nucleotide misincorporation errors in finished sequences, it allows for

the analysis of mutational linkage across complete viral genes and

genomes [8,10]. Based on these considerations, we postulated that a

precise molecular identification of T/F virus genomes and their

evolving progeny could enable a comprehensive proteome-wide

assessment of the earliest adaptive immune responses that shape and

constrain the early replicating HIV-1 quasispecies. This hypothesis

was affirmed for HIV-specific cytotoxic T-cell (CTL) responses in

three acutely-infected subjects [7,8]. Here, we examined in the same

three subjects whether this strategy could illuminate the earliest

virus-specific neutralizing antibody (Nab) responses.
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Nabs constrain the replication of most viruses and are essential

to the efficacy of most viral vaccines [19], and this is presumed to

be the case for HIV-1 [19–22]. There is clear evidence in Indian

rhesus macaque models of SHIV infection that Nabs directed

toward HIV-1 gp41 or gp120 can confer sterilizing immunity [23–

25]. Further evidence in support of the protective potential of

Nabs has come from heterologous low-dose mucosal SIV infection

in Env-vaccinated rhesus macaques [26]. In humans, however,

antibody correlates of protection from infection are still being

identified [27–29] and the minimum titers of Nabs necessary to

impede virus infection in vivo have not been determined, although

it is clear that moderate and high titers of Nabs can lead to HIV-1

selection and escape [6,30–36]. The present study thus focused on

four aspects of the Nab response in HIV-1 infected humans: (i)

identification of genetic ‘footprints’ of the earliest detectable Nab

responses to HIV-1; (ii) characterization of Env epitopes recog-

nized by the earliest Nabs and molecular pathways of virus escape;

(iii) determination of the titers of Nabs that are sufficient to select

for virus escape in vivo; and (iv) viral replication fitness costs

associated with Nab escape.

Previous studies have addressed some of these same questions

but with different experimental strategies that allowed for lesser

degrees of molecular and dynamic resolution. Wei [6] and

Richman [30] first used single-cycle Env trans-complementation

assays to detect autologous strain-specific Nab responses, but

neither study used SGA to identify T/F viruses or to look for

genetic linkage of mutational escape pathways, nor did they use

deep sequencing methods to detect the earliest escape mutations.

Other investigators examined Nab responses against early viruses

but without deep sequencing or a detailed kinetic analysis of low-

titer antibody effects [32–37]. Here, we hypothesized that an in-

depth kinetic analysis of the evolution of T/F viral env genes could

provide for the most sensitive detection of Nab pressure on the

replicating virus quasispecies — even before direct phenotypic

detection of virus neutralization in vitro — and that such findings

could be corroborated and extended by deep sequencing, site-

directed mutagenesis, antibody adsorptions and in vitro testing of

T/F and escape variant Env proteins for neutralization by

autologous antibodies.

Results

Neutralization of Transmitted/Founder viruses
Subjects CH40, CH77 and CH58 were each productively

infected by single T/F viruses as demonstrated by SGA or 454

deep sequencing [8,38]. These T/F viruses exhibited a phenotype

typical of primary HIV-1 strains including CD4 dependence,

CCR5 tropism (CH40 and CH58) or CCR5/CXCR4 dual

tropism (CH77), resistance to CD4-induced and V3-specific

antibodies, variable sensitivity to the broadly neutralizing

antibodies b12, 4E10, 2F5 and HIVIG, and CD4+ T tropism

[8,10,39]. We tested the three T/F viruses for neutralization

sensitivity to autologous and heterologous plasma antibodies.

Autologous neutralization titers (IC50) at 3, 6 and 12 month time

points were 1:1446/1:2432/1:1282 (CH40), 1:38/1:100/1:239

(CH77) and ,1:20/1:48/1:243 (CH58) (Figure S1; Table 1).

None of the plasma specimens exhibited heterologous neutralizing

activity at dilutions as low as 1:20. The kinetics of appearance and

magnitude of autologous Nab responses and the corresponding

plasma viral load and CD4+ T cell measurements (Figure S1),

were typical of HIV-1 subtype B infections [6,30,40].

Neutralizing antibody escape by 6 month viruses and
costs to viral replication fitness

In each subject, we examined the neutralization sensitivity of

full-length infectious molecular clones (IMCs) of the T/F virus

compared with IMCs of consensus 6 month sequences (Figure 1).

The latter IMCs, like the T/F viruses, were all replication

competent (Figure S2) and contained phenotypically confirmed

CTL escape mutations in addition to putative Nab escape

mutations (Figures 1A, 2–4). We found neutralization of the T/

F IMCs by 6 month plasma antibodies in titers comparable to

those detected using Env pseudotyped viruses (Table 1; Figure S1).

6 month consensus IMCs containing putative Nab escape

mutations in Env showed significant resistance to neutralization

compared with T/F viruses and 6 month IMCs lacking putative

Nab escape mutations (p,0.05 for each, two-tailed paired t-test)

(Figure 1B). Replication fitness costs resulting from Nab escape

were analyzed in competitive replication assays by comparing T/F

IMCs to 6 month IMCs with and without Nab escape mutations.

These analyses suggested minimum costs to viral fitness from Nab

escape mutations of between 0% and 24% (Figure S2 and Dataset

S1).

Single genome sequencing reveals early selection at
putative Nab epitopes

SGA sequencing of sequential plasma specimens was used to

further characterize candidate Nab epitopes by looking for the

earliest indications of Nab selection and escape across full-length

gp160 env sequences. Figures 2–4 depict the temporal accumula-

tion of nonsynonomous and synonomous env mutations in subjects

CH40 (Figure 2A), CH77 (Figure 3A), and CH58 (Figure 4A).
CH40. For subject CH40, 83 SGA-derived env sequences

from longitudinal time points 45–412 days post-seroconversion

were aligned beneath the T/F env sequence (Figure 2A). The

median number of env sequences per time point was 12 (range 9–

22). Sequences from the earliest sample 45 days post-seroconver-

sion were highly homogeneous (0.04% maximal diversity) and

conformed to a Poisson distribution of random changes and ‘‘star-

like’’ phylogeny [10,11]. In contrast, by day 111, there was

Author Summary

Characterizing early adaptive immune responses to HIV-1
can inform studies of virus persistence, pathogenesis and
natural history and can guide rational vaccine design.
Previous studies examined the role of neutralizing
antibodies (Nab) in acute and chronic HIV-1 infection but
not against the precise envelope (Env) glycoproteins of
transmitted/founder (T/F) viruses and not in direct com-
parison with autologous cellular immune responses in the
same subjects. Here, we identified T/F HIV-1 env genes and
their progeny in three subjects by single genome
sequencing and performed a dynamic assessment of Nab
responses based on env evolution and phenotypic
changes in the Env glycoprotein over time. Surprisingly,
we found genetic evidence of Nab activity as early as 2
weeks post-seroconversion, with Nab titers as low as 1:20 to
1:50 (IC50) selecting for virus escape. Nabs targeted different
regions of the HIV-1 envelope (Env) in a strain-specific,
conformationally sensitive manner. Although delayed in
comparison with autologous CD8 T-cell responses, Nabs
appeared earlier in HIV-1 infection than previously recog-
nized and impeded virus entry at low titers. This raises the
possibility that similarly low concentrations of vaccine-
induced Nabs could impair virus acquisition in natural HIV-1
transmission, where the risk of infection is low and the
number of viruses responsible for transmission and
productive clinical infection is typically one.

Low-Titer Antibodies Select for HIV Escape
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evidence of complete replacement of the T/F virus with a

population of mutants that differed in one of two adjacent amino

acids at positions 145 and 146 in V1 (Figure 2B). Three different

substitutions combined to completely replace the T/F sequence

over this two amino acid span. Eight of nine sequences contained a

substitution at position 146, including seven of nine sequences with

an identical E146K substitution. Later time points confirmed

persistent selection pressure directed against this narrow span of

V1, with the virus exploring multiple amino acid substitutions

within this region; glutamate was the predominate amino acid at

Table 1. Neutralization sensitivities of Env clones and site-directed mutants to autologous plasma and monoclonal antibodies.

Env clone/mutant
day 45
plasmaa day 111 plasma day 181 plasma AbCH83b AbCH84

CH40 T/F Env ,20 1446 (6330) 2432 (6900) 0.076 (6.012) 0.034 (6.0067)

E146K ,20 38 (630)* 3288 (61237) .10* .10*

E146G ,20 69 (642)* 1718 (6397) .10* .10*

G145E ,20 523 (699)* 1146 (6305) 0.13 (6.02)* 0.038 (6.00076)

N144K ,20 736 (6347) 1507 (6441) 0.056 (6.008)* 0.046 (6.0046)

N139T/E146T/M147L ,20 37 (611)* 186 (614)* .10* .10*

E146G/R327K/E332K ,20 18 (610)* 39 (635)* .10* .10*

R327K/E332K ,20 20 (614)* 90 (666)* .10* .10*

R327K ,20 529 (649)* 1216 (6247) 0.038 (6.011)* 0.018 (6.0016)*

E332K ,20 532 (662)* 1098 (687) 0.033 (6.014)* 0.018 (6.0015)*

T295N ,20 332 (6102)* 471 (6135)* 0.17 (6.030)* .076 (6.012)*

N300K ,20 24 (622)* 248 (6148)* .10* .10*

K160N ,20 1575 (6596) 2048 (6666) 0.080 (6.0073) 0.029 (6.0061)

day 32
plasma day 102 plasma day 159 plasma

CH77 T/F Env ,20 38 (64.7) 100 (666)

N130D ,20 22 (612) 85 (639)

T186A ,20 17 (66.1)* 45 (65.8)

K187E ,20 10 (60)* 32 (66.7)

T187aN ,20 17 (66.4)* 39 (61.0)

T187aA ,20 14 (66.9)* 44 (64.6)

N187bS ,20 17 (66.1)* 64 (66.0)

N187bD ,20 14 (66.9)* 71 (68.2)

T188I ,20 10 (60)* 41 (610)

del 187b–188 ,20 20 (68.9)* 45 (611)

D230E ,20 27 (65.5) 68 (617)

day 85
plasma day 154 plasma day 350 plasma

CH58 T/F Env ,20 48 (61.5) 243 (6119)

T232A ,20 48 (611) 172 (657)

E336K ,20 23 (612)* 122 (65.5)

N339H ,20 22 (610)* 110 (653)

N339T ,20 31 (624) 156 (677)

N339S ,20 30 (618) 92 (641)

N339D ,20 21 (616)* 88 (65.7)

K343Q ,20 28 (616) 136 (671)

K343R ,20 29 (617) 158 (649)

G410E ,20 20 (68.7)* 53 (66.9)*

del 409–411 ,20 19 (68.2)* 36 (64.2)*

aNeutralization sensitivity determined in TZM assay using autologous plasma starting at 1:20 dilution and reported as the IC50 titer. Each value represents the mean (6
standard deviation) of at least three independent experiments. For calculating means and standard deviations, IC50,20 were counted as 10.
*p,0.05, when mutant titers were compared with the T/F titer by two-tailed t-test.
bNeutralization sensitivity to autologous monoclonal antibodies (AbCH83 and AbCH84) from day 132 B-cells starting at a concentration of 10 ug/ml and reported in ug/
ml IC50. Each value is the mean of at least three independent experiments.
doi:10.1371/journal.ppat.1002721.t001
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transmission, which was replaced by a lysine at day 111 (7/9

sequences), a glycine by day 181 (10/14 sequences), and a

threonine by day 412 (11/12 sequences). The selection pressure in

this region also altered potential N-linked glycosylation (PNLG)

sites, with the first alteration seen in two sequences at day 181 and

subsequent emergence and fixation of a sequence motif (N139T/

E146T/M147L) that resulted in a shift of a PNLG site from

position 139 to 144 at day 412.

In addition to changes in V1, selected mutations emerged early

in the N- and C-terminal regions of V3 (Figure 2A and 2B). These

mutations were non-randomly distributed as assessed by formal

statistical analyses previously reported [7]. At day 111, only 3 of 9

sequences contained changes in the C-terminal V3 base. By day

132, 15 of 22 sequences had polymorphisms in either or both of

the N- or C-termini of V3. By day 181, mutants had completely

replaced the T/F sequence at the V3 base (N- or C-termini), and

this replacement persisted through one year of infection. The N-

terminal V3 mutations were associated with the addition of a

PNLG site at position 300. The selection pressure at the N- and C-

termini of V3 appeared to be interrelated, with sequences

containing changes in one area or the other, but rarely both.

This, along with the structural contiguity of the N- and C-terminal

V3 base, suggested that these two discontinuous polymorphic sites

might comprise a single epitope such that mutations in either site

could confer virus escape from a monotypic Nab response, a

hypothesis that we subsequently validated (see below). Late

selection at two positions in the carboxyterminus of gp41

represented CTL escape mutations [7].

CH77. Sequential gp160 env sequence analyses were also

performed on CH77 (days 32–592) and CH58 (days 45–350). For

CH77, 47 SGA env sequences (median 15; range 5–17) were

obtained at four time points. Previously, Goonetilleke [7]

phenotypically confirmed five CTL epitopes in the CH77 gp160

Env, plus an additional site of selection in the signal peptide

predicted to be a CTL epitope (Figure 3A). Excluding these

changes, we identified shared mutations in V1, V2 and C2 that

replaced the T/F sequence in the majority of sequences within the

first six months of infection. These clustered mutations were

located in regions previously associated with Nab escape [41] and

either directly involved or flanked PNLG sites, which further

suggested their potential involvement in Nab recognition

(Figure 3B). By day 102, the V2 region had accumulated nine

different amino acid polymorphisms that caused complete

replacement of the T/F sequence. The V2 mutations abutted a

PNLG site in the T/F sequence and 46% of these day 102

substitutions altered the glycan site. Perturbations of potential

glycans increased over time, with $80% of later sequences

containing mutations altering a PNLG. The next potential Nab

epitope was in C2, where three distinct polymorphisms over a 12

amino acid span led to complete replacement of the T/F sequence

by day 159 (Figure 3B). Finally, the V1 region also contained

evidence of selection; a shared polymorphism that affected a

PNLG arose as a minor variant at day 102 and fully replaced the

T/F sequence by day 350 post seroconversion. These findings

suggested that the evolving virus quasispecies in CH77 contained

Nab escape mutations in V1, V2 and C2.

CH58. Subject CH58 was a virus controller, with plasma viral

loads 6–12 months after infection of 140 to 210 RNA/ml (Figure

S1). Due to technical limitations of amplifying plasma virus at

lower viral loads, we obtained fewer SGA-derived complete env

Figure 1. Sequences and autologous neutralization sensitivities of consensus infectious molecular clones. A. 6 mo and 6 mo-Nab IMC
sequences are aligned to the T/F sequence with red and blue tics indicating non-synonymous changes implicated in CTL and Nab escape,
respectively. Green tics denote synonymous changes and aqua tics changes in non-coding regions. B. Neutralization of IMCs by autologous 6 month
plasma is reported as mean (+/2 SD) reciprocal plasma dilutions (IC50). Experiments were conducted in triplicate and repeated three times.
doi:10.1371/journal.ppat.1002721.g001
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gp160 sequences (27 total, median 7 per time point, range 4–9). By

targeting SGA on shorter env fragments, we were able to obtain a

robust set of sequences (n = 95) for analysis of viral env quasispecies

evolution (Figure 4A). A confirmed CTL epitope and two areas of

selection in the intracytoplasmic domain of gp41 were excluded

(Figure 4A). The first evidence of potential Nab escape in gp120

was at day 45 and involved C2. Here, a nucleotide polymorphism

conferring a non-synonymous amino acid change that eliminated

a PNLG site was evident in one sequence in both day 45 and day

85 samples and became predominant thereafter. In C3, polymor-

phisms over an eight amino acid span first appeared by day 85 and

became predominant by day 154. All but one of the sequences

contained mutations that affected a PNLG. Other mutations

potentially related to early Nab in CH58 arose in the glycan rich

V4 region. Two V4 permutations, a single nucleotide substitution

and a three amino acid deletion, arose by day 154 and fully

Figure 2. Highlighter analysis and env sequence alignments of putative Nab epitopes in subject CH40. A. Highlighter plot traces acquired
mutations in gp160 env against the T/F sequence at top. Nucleotide differences from the T/F sequence are indicated (red: non-synonymous, green:
synonymous) according to days post-seroconversion. CTL epitopes previously confirmed in T cell assays, are indicated by blue triangles. Mutations
responsible for Nab escape are highlighted in yellow. B. Amino acid alignments of the V1 and V3 regions (HXB2 numbering). The two amino acid span
interrogated by PASS is underlined. SGA sequences were from 6 independent experiments.
doi:10.1371/journal.ppat.1002721.g002
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replaced the T/F virus by day 350. The V4 substitution abutted a

PNLG site and was the more prevalent of the two mutations at day

154, while the three amino acid deletion abrogated the glycan and

represented the majority of sequences at day 350. These findings

suggested that the evolving virus quasispecies in CH58 contained

Nab escape mutations in C2, C3 and V4.

Neutralization resistance of early HIV-1 variants
For each subject, we determined the effect on neutralization

sensitivity of early amino acid substitutions represented in

sequences from the earliest sampled time points through 6 months

post-seroconversion (Figures 2–4). This was done using site-

directed mutagenesis to introduce mutations alone or in combi-

nation into T/F envs and testing the Envs for neutralization

sensitivity. A total of 31 mutants were tested (Table 1).

CH40. Autologous plasma Nabs against the T/F virus were

first detected for subject CH40 111 days after seroconversion with

titers of 1:1400 (Figure S1; Table 1). This coincided with the first

appearance of selection in V1 by SGA sequencing (Figure 2). An

Env mutant containing a single amino acid substitution in V1,

E146K, conferred virtually complete escape from day 111 plasma

Nab (IC50 = 1:38). A different V1 substitution at the same position,

E146G, which was present at low frequency at day 111 but later

expanded to become the majority sequence at days 132 and 181,

also conferred significant escape from day 111 plasma (IC50 = 1:69).

An infrequent G145E substitution at day 111 had only an

intermediate effect on virus neutralization (IC50 = 1:523) and did

not expand to greater prevalence at later dates. Surprisingly, amino

acid substitutions at the amino- and carboxy-terminal base of V3

(N300H, R327K/E332K), which did not appear until day 132 in

the SGA sequences and did not predominate until day 181, also led

to complete neutralization escape from day 111 plasma

(IC50 = 1:,20–1:24). Other V3 base mutations, including T295N,

and R327K and E322K individually, conferred partial escape

(IC50 = 1:332–1:532). These findings raised the possibility that the

base of V3 could comprise a discontinuous epitope recognized by

the initial Nab response with V1 contributing directly or indirectly

to Nab recognition and escape.

Neutralization patterns of day 181 plasma revealed continued

evolution of fine Nab specificities (Table 1). Day 181 plasma

potently neutralized both the T/F virus (IC50 = 1:2432) and the

Env clones containing V1 mutations (E146K, IC50 = 1:3288;

E146G, IC50 = 1:1718) that conferred resistance to day 111

plasma Nabs. In contrast, mutations located in the V3 base

(N300H, R327K/E332K), with or without the V1 mutations,

conferred escape from day 181 plasma. Subsequent mutations in

the V1 sequence motif at day 412 (N139T/E146T/M147T),

however, also led to escape from earlier plasma antibodies

Figure 3. Highlighter analysis and env sequence alignments of putative Nab epitopes in subject CH77. A. Highlighter plots as described in
Figure 2. B. Amino acid alignments of segments of V1, V2 and C2 regions as described in Figure 2. SGA sequences were obtained from 7 independent
experiments.
doi:10.1371/journal.ppat.1002721.g003
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including those in day 111 and day 181 plasmas (IC50 = 1:37,

1:186, respectively). These findings are consistent with a well-

described cycle of Nab development and rapid virus escape

[6,30,31,33,42,43].

CH77. In contrast to the robust autologous Nab titers directed

against CH40’s T/F Env, CH77’s plasma Nab neutralized its

autologous T/F virus with a relatively low titer of 1:38 at day 102

and only modestly higher at day 159 (1:100) (Figure S1). Despite

the lower magnitude of titers, plasma antibody selected for

complete replacement of the T/F virus in the putative V2 Nab

epitope at the day 102 time point (Figure 3; Table 1). The lower

antibody titers made it more challenging to detect differences

between Nab sensitivity (highest titers of 1:38) and Nab resistance

(lowest level of detection 1:20 in our assay system). Nevertheless,

the V2 region at day 102 displayed nine different polymorphisms

over a five amino acid span; eight of these polymorphisms were

Figure 4. Highlighter analysis and env sequence alignments of putative Nab epitopes in subject CH58. A. Highlighter plots as described in
Figure 2. B. Amino acid alignments of segments of the C2, C3, and V4 regions as described in Figure 2. SGA sequences were obtained from 12
independent experiments.
doi:10.1371/journal.ppat.1002721.g004

Low-Titer Antibodies Select for HIV Escape
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tested for effects on virus neutralization sensitivity and all

conferred statistically significant escape from day 102 plasma

Nab, with titers less than 1:20 in each case (Figure 3B, Table 1). By

day 159, plasma Nab titers against the T/F virus had risen to

1:100, and the V2 mutations continued to confer some degree of

escape. This was corroborated by analyses performed with 6

month consensus viruses with and without putative Nab resistance

mutations T187aN (in V2) and D230E (in C2) (Figure 1). As with

CH40 viruses, CH77 viruses employed multiple pathways to

escape Nab pressure at the V2 site, and the mutations that came to

dominate the quasispecies at each time point were the most

neutralization resistant (Table 1). The V1 mutation, which never

completely replaced the T/F virus through the first 159 days,

conferred resistance to day 102 plasma but little or no resistance to

day 159 plasma. The C2 mutations, which accrued later than the

V2 mutations and fully replaced the T/F sequence by day 159,

conferred modest escape from both day 102 and 159 plasma Nabs.

CH58. Subject CH58 also developed a relatively delayed and

low titer autologous Nab response; the first detectable plasma

neutralization occurred at day 154 post-seroconversion with titers

of 1:48 (Figure S1 and Table 1). Again, despite the low titers of

Nabs, there was virtually complete replacement of the T/F virus

by variants with changes in C2, C3 and/or V4. Site-directed

mutants designed to distinguish the effects of the predominant

mutations present at days 154 and 350 were tested, revealing that

the C2, C3 and V4 mutations all conferred significant escape from

day 154 plasma Nab (Table 1). By 350 days, autologous Nab titers

against the CH58 T/F virus rose to 1:243 and contemporaneous

C3 and V4 mutations showed clear evidence of escape. In

addition, there appeared to be linkage between the mutations in

C3 and V4 at day 154, with a trend toward sequences having

either a C3 mutation or the G410E substitution in V4. This could

be demonstrated in the full-length env gp160 SGA sequences and

inferred from the partial env SGA sequences. These results suggest

that early CH58 Nabs, despite their low titers of 1:48 or less,

recognized a conformational epitope involving C2, C3 and V4

and selected for virtually complete virus escape by day 154.

Autologous HIV-1 monoclonal antibodies recapitulate
the early polyclonal plasma Nab response in subject
CH40

To further define the epitope specificities of the early Nab

responses in subject CH40, mAbs AbCH83 and AbCH84 were

generated from day 132 B cell cultures by screening for

neutralization of CH40 T/F virus. Both mAbs utilized VH 3–30

and Vk 3–15 VH and VL families, respectively, and were clonally

related (Tsao, CY et al. manuscript in preparation). Both AbCH83

and AbCH84 bound well to CH40 T/F Env gp140 (EC50 = 0.2

and 0.07 ug/ml, respectively) and both neutralized the CH40 T/F

Env pseudovirus potently (IC50 = 0.075 and 0.034 ug/ml)

(Table 1). AbCH83 and AbCH84 were strictly strain-specific,

failing to neutralize heterologous viruses including CH77 and

CH58 at concentrations as high as 10 ug/ml (not shown). When

tested against the panel of CH40 site-directed mutants shown in

Table 1, AbCH83 and AbCH84 demonstrated patterns of

neutralization that were strikingly similar to each other and to

the day 111 CH40 plasma (Table 1). For example, AbCH83 and

AbCH84, like the day 111 plasma, potently neutralized the T/F

virus, and V1 and V3 mutations that conferred resistance to day

111 plasma (E146K, E146G, N139T/E146T/M147L, R327K/

E332K, and N300H) also conferred resistance to the two mAbs

(Table 1). Mutations representing minor sequence variants that

conferred partial escape from day 111 plasma also conferred

similar degrees of partial escape from AbCH83 and AbCH84

(G145E, N144K, T295N). A site-directed K160N mutant of the

CH40 T/F virus did not alter neutralization sensitivity to plasma

Nabs or to the two mAbs (Table 1). Interestingly, the C-terminal

V3 mutations R327K and E332K together conferred complete

escape to each mAb and to day 111 plasma antibodies, but neither

mutation alone conferred resistance to the two mAbs and only

partial resistance to polyclonal antibodies in plasma. Thus, the two

mAbs AbCH83 and AbCH84 nearly recapitulated the polyclonal

Nab reactivity in plasma at the day 111 time point, suggesting that

the latter was monospecific and directed to a single epitope distinct

from that recognized by PG9/PG16/2909 [44].

Protein adsorptions show that early monotypic plasma
Nab responses target conformational epitopes

To distinguish Nab reactivity targeting linear versus conforma-

tional (discontinuous) epitopes, we performed competition and

adsorption assays with linear Env peptides, full-length gp120

proteins, and full-length tethered gp140 proteins corresponding to

the sequences of the autologous T/F viruses, and as controls,

heterologous peptides and proteins and randomly shuffled peptide

sequences. First, we used overlapping linear peptides spanning

complete variable loop and constant region sequences where Nab

escape mutations first arose (V1 in CH40; V1 and V2 in CH77;

and C2 and V4 in CH58). At concentrations of 25 ug/ml, none of

the linear peptides reduced the neutralizing activity in patient

plasma (data not shown). As a positive control, we showed that

25 ug/ml of HIV-1 V3 peptides could inhibit V3-targeted Nabs in

the same TZM-bl assay [45]. To determine if Nabs in patient

plasma recognized epitopes presented on gp120, we performed

adsorption assays using autologous gp120 Env monomers and

tethered gp140 Env trimers. These Env proteins were attached to

magnetic beads, incubated with patient plasma, and then removed

before performing neutralization assay because Env alone can

neutralize HIV-1 infectivity by binding cell surface CD4. The

mAb b12, previously shown to neutralize all three subjects’ T/F

Envs (IC50 = 0.7–1.5 ug/ml), served as a positive control to assess

the conformational and antigenic integrity of the synthesized

gp120 and gp140 glycoproteins. As shown in Figure 5, b12 at a

concentration of 10 ug/ml reduced viral infectivity to below 25%

of control in each subject. This inhibitory effect was completely

eliminated by preadsorption of b12 with either the Env monomer

or Env trimer from each subject, indicating that the gp120 and

gp140 proteins had intact b12 binding sites. For CH40, the gp120

Env monomer was ineffective at adsorbing plasma Nab. The

tethered gp140 Env trimer, however, adsorbed neutralizing

activity allowing infectivity to rise to 57% against day 111 plasma

and 45% against day 181 plasma (Figure 5A). These data

suggested that CH40’s earliest plasma Nab recognized a confor-

mational epitope that is best displayed on trimeric Env, either on

contiguous components of neighboring monomers or within a

single Env monomer that is dependent on trimeric Env for

appropriate presentation.

For CH77 and CH58, weaker autologous Nab titers made the

effects of adsorption more difficult to discern, but in both cases, the

Env monomers and Env trimers were equally effective at

adsorbing neutralizing activity (Figure 5B,C). For CH77, the

baseline infectivity was high for the low titer day 102 plasma

(.60%), and increased with non-specific binding to the BSA-

coated bead, but both the Env monomer and trimer further

increased this to .100%. CH77’s day 159 plasma demonstrated

more clearly that the Env monomer and trimers could both

effectively bind and adsorb plasma Nab, with greater differences

between negative controls and the Env-coated beads. The

adsorption experiment in CH58 demonstrated similar findings;
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both the gp120 monomer and the gp140 trimer adsorbed

neutralizing activity equally (Figure 5C). The ability of gp120/

gp140 proteins, but not linear peptides, to adsorb neutralizing

activity suggests that the earliest plasma Nabs from CH77 and

CH58 targeted conformational epitopes that did not require

quaternary structure for effective presentation.

Structural modeling of Nab epitopes
Escape mutations were analyzed in the context of a relatively

complete model of gp120 that was assembled from crystal

structures of core gp120 with V3 and core gp120 with N and C

termini (Figure 6A–C, left panels) [46–48]. This model lacked only

the V1/V2 region, and escape mutations in V1/V2 were thus

modeled with the scaffolded structure of V1/V2 [49] (Figure 6,

right panels). Despite the availability of atomic-level structures of

each of these component portions of gp120, the overall

conformation of gp120 in the context of the functional viral spike

is still unknown, and so the positions of escape mutations in the

spike were inferred from lower resolution electron microscopy

results (Figure 6D) [50–52]. For CH40, Nab escape mutations

were observed at the amino- and carboxy-termini of the V3

region, and included an additional PNLG site at residue 295;

escape mutations in the V1 loop were also observed. Phenotyp-

ically-proven escape mutations in V1 predominated at the earliest

time point (day 111) (Figure 2; Table 1) and evolved through 412

days of follow-up, indicating that these mutations made a major

contribution to neutralization escape. A synergistic effect between

V1/V2 and V3 neutralization escape mutations has been noted in

other contexts [32–34,41], and these two epitopes are spatially

close on the low resolution viral spike (Figure 6D). The ability of

trimeric gp140, but not monomeric gp120, to absorb neutralizing

activity from the CH40 sera (Figure 5A), is consistent with this

interpretation and implicates a conformational epitope involving

the V1 and V3 regions that requires quaternary protomer

interactions for its integrity.

For CH77, the escape mutations appeared predominantly in

V2, with a number of different V2 mutations selected, several of

which alter a PNLG site. Escape mutations were also selected in

the V1 and C2 regions and these involved glycan modifications as

well. On the trimer structure (Figure 6D), the C2 and V1/V2

regions are not spatially close, suggesting that that the mutations

may have had conformational influence on distant sites or that

they were selected to escape different antibody responses. For

CH58, escape mutations appeared primarily on the gp120 outer

domain in the C2, C3 and V4 regions. These mutations map to a

glycosylated outer vertex of the viral spike, which is relatively

restricted in space, and therefore likely represents a single epitope

not expected to be quaternary in nature. This interpretation is

supported by the finding that monomeric gp120 absorbs

neutralizing activity from this serum (Figure 5C).

Deep sequencing of phenotypically confirmed Nab
epitope regions

SGA-based sequencing provides a proportional representation

of plasma viral populations but with limited sensitivity due to

practical constraints of gene-wide sequencing [10]. With a sample

size of 30 sequences, there is a 95% probability of detecting a

variant that comprises $10% of the population [10]. To detect

variants comprising substantially less than 10% of the circulating

plasma virus, we used parallel allele-specific sequencing (PASS)

and 454 pyrosequencing. PASS involves PCR amplification within

a polyacrylamide gel using modified primers and fluorophore-

labeled nucleotides to distinguish single nucleotide polymorphisms

in each amplicon [53]. Using PASS, we characterized hundreds to

thousands of sequences per time point over a six nucleotide span in

CH40 and CH77 corresponding to known Nab escape mutations.

Due to the low plasma viral load of CH58, PASS analysis was not

feasible in this subject. For CH40, SGA sampling (14 sequences) of

day 45 plasma revealed only T/F sequences in V1, whereas PASS

detected 1.1% (5/492) of sequences with the E146K Nab escape

mutation and 0.4% (2/492) of sequences with an M147L mutation

(Figure 2B; Table S1). PASS yielded similar increases in sensitivity

in detecting Nab escape mutations in subject CH77, where SGA

sequencing revealed 100% T/F virus at day 32 in V2 and PASS

identified a small variant population (0.2%) of the predominant

(T187aN) Nab escape variant seen in the subsequent time points

(Figure 3B; Table S2).

454 pyrosequencing extended these analyses in subject CH40

where the immunodominant V1 epitope was analyzed over time.

Sequences from days 16, 45 and 181 post-seroconversion were

amplified and bi-directional reads from two amplicons spanning

the V1 loop of the T/F sequence were codon aligned and

analyzed. The number of high-quality, interpretable reads

spanning V1 ranged from 10,275 to 22,344 (Table 2). These V1

sequences yielded 81, 110 and 249 unique nucleic acid sequences

Figure 5. Adsorption of plasma Nabs by autologous T/F Env
monomers and trimers. Plasma from CH40 (A), CH77 (B), and CH58
(C) was incubated with magnetic-bead bound gp120 or tethered gp140
protein corresponding to the T/F sequence from each subject. Beads
were removed and neutralization assessed by TZM-bl assay (BSA,
bovine serum albumen; b12 broadly neutralizing mAb positive control).
Results are the mean +/2 SD of three independently performed
experiments each performed in duplicate.
doi:10.1371/journal.ppat.1002721.g005
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and 63, 77 and 246 unique amino acid translations, for days 16, 45

and 181, respectively (Table 2). Compared to SGA and PASS

sequences, 454 sequencing substantially increased the sensitivity

for detection of rare variants (Figure 7). Over a six amino acid

span covering the V1 Nab epitope region NGEMME (HXB2

positions 144–149), SGA detected only the T/F among fourteen

day 45 plasma viral genomes (Table S1) and PASS detected two

variant sequences in 7 of 459 viral genomes (Table S1), whereas

454 pyrosequencing detected 18 variants among 481 sequences

that differed at day 45 from the T/F genome.

To test whether the detection of rare Nab escape variants by

454 sequencing constituted statistically significant evidence of

Figure 6. Env models. Models of gp120 molecules from (A) CH40, (B) CH77, and (C) CH58 are shown as white surface projections, with the V3 and
V4 loop regions colored in blue and cyan. Models of the V1/V2 regions of CH40 and CH77 are shown as yellow ribbons with parts of the variable V1
and V2 loops shown as dotted lines. Potential N-linked glycans are modeled as grey spheres. Nab escape mutations are shown in red (HXB2
numbering), with mutations removing or adding a potential N-linked glycosylation site marked with an asterisk. (D) Schematic of putative V1/V2
(yellow dot), V3 (blue dot), and V4 (cyan dot) locations on the Env trimer.
doi:10.1371/journal.ppat.1002721.g006
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selection at this epitope, we compared this region of env with an

adjacent control region. The Nab epitope region (NSNGEM-

MEKGEV) corresponded to Env codons 142–154 (Figure 7B) and

contained the phenotypically-confirmed early Nab escape muta-

tions (Figure 3 and Table 1). We compared this region with an

adjacent control region composed of the remaining 12 amino acids

falling between the two conserved cysteine residues that bound the

V1 loop. These two regions had similar sizes, were both located in

a variable region, and were covered within the same 454 reads,

thus precluding issues of differential sequence coverage and error

rates. We compared the two regions using three different statistical

methods. Entropy comparisons: Using Shannon entropy, a simple

measure of variation in DNA and protein sequence alignments

that reflects both the number of variants and their distribution, we

computed the amino acid entropies per site and then compared

the entropies inside and outside of the Nab epitope region.

Entropies increased with time (Figure 7B) and were significantly

greater inside than outside of the Nab epitope region for each time

point, including just day 16 post-seroconversion (p = 0.0302) and

day 45 (p = 1.9761025 by one-sided Wilcoxon rank-sum test).

This significant difference in entropies resulted from a rank-based

statistic, which is insensitive to the extremes of values, as seen as

large peaks at N143 and E145 (Figure 7B). This indicates greater

variability among nearly all sites inside compared to outside the

Nab epitope region. Positive Selection: To detect evidence of positive

selection pressure, we assessed the ratio of non-synonymous to

synonymous substitution rates (dN and dS, respectively). When

dN,dS, negative selection is evident; conversely, dN.dS

indicates positive selection. The large sample sizes that result

from 454 pyrosequencing are computationally intractable for most

established procedures that test for positive selection. We used

SNAP (Synonymous Non-synonymous Alignment Program),

which corrects for alternative mutational pathways in a codon

and performs efficiently for large sequence sets. Again, we

compared the 12 amino acid Nab epitope region with the

remaining 12 amino acids in V1 and computed the distance-

corrected synonymous and non-synonymous substitution rates

with SNAP. For each amplicon sampled, we summarized SNAP

results as contingency tables, wherein columns indicate dN,dS or

dN.dS and rows indicate sites inside or outside the epitope. We

then populated the table with counts for each sequence relative to

the T/F sequence (excluding cases where dS = dN) and used one-

sided Fischer’s exact tests to evaluate whether the epitope was

enriched for non-synonymous substitutions (Table 3). These

comparisons indicate significant increases in positive selection

within the epitope at day 45 (p = 0.013) and day 181 (p = 0.002),

with a trend at day 16. Poisson Model: Following the method of

Giorgi et al. [54], we used a simple model of sequence evolution to

test for homogeneous infection. The model gives a null hypothesis

of Poisson-distributed intersequence distances. For the single

variant transmission of CH40, rejecting the null model indicates

that selection is present in the sequences sampled. Because

APOBEC hypermutations violate model assumptions, the test is

repeated without APOBEC mutated sites. With APOBEC

mutations excluded, the Poisson model test results indicate simple

evolution and no selection in reads sampled at day 16 and day 45

(P.0.9, Table 4). When APOBEC sites are retained in the

analysis, the Nab epitope fails to conform to the Poisson (P,1029,

Table 4), consistent with selection facilitated by APOBEC. By 181

days post-screening, the Poisson model is rejected regardless of

whether or not APOBEC hypermutations are excluded (P,1029,

Table 4). All three methods indicated that variation within the

putative V1 Nab epitope region was statistically significantly

enriched over background mutations; selection for Nab escape

mutations was unequivocal by all methods of analysis at day 45

and day 181 and supported at day 16 by an increase in entropy

within the epitope region (p = 0.03, Figure 7).

Discussion

We used three increasingly sensitive DNA sequencing methods

– SGA, PASS and 454 – to look for genetic evidence of Nab

selection on the evolving HIV-1 quasispecies. By three to six

months post-seroconversion, SGA sequencing identified a set of

candidate Nab escape mutations, which in every subject was

discontinuous and could be distinguished from CTL escape

mutations [7]. Each of the candidate Nab escape mutations that

we inferred from SGA sequencing was shown phenotypically to

confer significant (2 to .70 fold) resistance to early Nabs (Table 1).

Remarkably, at the time of initial detection of Nab titers,

regardless of titer, the virus quasispecies in each subject

demonstrated complete or near complete replacement of the T/

F sequence by escape mutants at their respective Nab epitopes.

This indicated a pre-existent Nab response. PASS analysis

corroborated this finding by revealing genetic evidence of Nab

escape significantly earlier at just 45 days and 32 days post-

antibody seroconversion in subjects CH40 and CH77, respectively

(Tables S1 and S2). This was at a time point when Nab titers to

each T/F virus were undetectable at a 1:20 plasma dilution in the

TZM assay (Table 1). Nabs at this early time point were also below

the level of phenotypic detection when tested in the sensitive A3R5

cell-based virus entry assay [55] (D. C. M., unpublished). In

subject CH40, where viral loads were highest and deeper

sequencing could be done, 454 analysis identified a much larger

number of variants in the V1 epitope region of the T/F virus

sequence at a still earlier time point 16 days post-seroconversion as

well as at 45 and 181 days post-seroconversion (Table 2). The 454

data further suggested a role for APOBEC mutations facilitating

Table 2. 454 pyrosequencing sequence characteristics.

Readsa Cleanb NTsc Transd AAse Reads Excluded %Reads Excluded

day 16 10,275 10,215 81 10,215 63 60 0.58

day 45 15,487 15,420 110 15,420 77 67 0.43

day 181 22,344 21,255 249 21,252 246 1089 4.87

aTotal number of reads that spanned V1.
bNumber of reads used for analysis excluding reads with multiple deletions and inversions from sequencing error.
cNumber of distinct nucleotide sequences among the cleaned reads.
dNumber of reads whose amino acid translations exclude incomplete and stop codons.
eNumber of distinct amino acid sequences among the cleaned reads, excluding reads with incomplete and stop codons.
doi:10.1371/journal.ppat.1002721.t002
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this escape, since at days 16 and 45 post-seroconversion the V1

Nab epitope region was enriched for mutations at APOBEC

motifs (Table 4). APOBEC and Vif function have been implicated

in virus escape from early CTL immune pressure [56], and our

results suggest that APOBEC may play an analogous role in the

dynamics of early Nab escape at certain epitopes. It is possible that

the increased genetic diversity in V1 arising from APOBEC

mediated polymorphisms facilitated more rapid escape in this

region than in other regions of the Nab epitope. Overall, a

combination of SGA, PASS and 454 pyrosequencing enabled the

genetic detection of Nab escape variants significantly before Nabs

rose to titers detectable in the TZM assay. This enhancement in

detection amounted to 95 days in subject CH40, 70 days in subject

CH77, and 109 days in subject CH58. Future studies in other

subjects with more narrowly spaced sampling intervals may better

define these windows.

In each subject we found an early monospecific Nab response

directed toward a single conformational epitope that was unique to

each T/F virus strain. This was demonstrated most clearly in

subject CH40 where polyclonal plasma antibodies and autologous

mAbs targeted essentially the same epitope at the base of V3

(depicted in Figure 6). Previous studies have reported epitopes in

this region of gp120 to be immunogenic and a target of both

broadly and narrowly reactive neutralizing mAbs [37,57].

Interestingly, we observed that the binding of both AbCH83

and AbCH84 to autologous CH40 Env gp140 as assessed by

Biocore analysis could be blocked by the potent and broadly

neutralizing PGT 121 mAb, which in other contexts is dependent

on N332 [57] (B.F.H., unpublished). The early Nab response in

CH40, unlike responses in CH77 and CH58, targeted an epitope

dependent on trimeric Env for structural integrity. Thus, structural

modeling and empirical analyses suggested that in subject CH40,

virus escaped Nab pressure indirectly by early mutations in V1

and directly through mutations in the putative V3 epitope,

indicating a close association between V1 and V3 in the context of

the native functional Env trimer. In all three subjects, we identified

Table 3. Comparison of synonymous and non-synonymous
substitutions inside and outside of the V1 Nab epitope region.

Inside Nab
Epitope

Outside Nab
Epitope

Sample Pa ORb CIc dN,dSd dN.dSe dN,dSf dN.dSg

day 16 0.250 0.609 ,1.665 8 37 10 28

day 45 0.013 0.372 ,0.079 15 60 19 28

day 181 0.002 0.457 ,0.733 35 197 37 95

aP-value from one-sided Fisher’s exact test.
bOdds ratio.
c95% confidence interval.
d,eNumber of nucleotide sequence variants with mutated sites inside the V1
epitope region, where synonymous substitution rate exceeds non-synonymous
substitution rate, and non-synonymous substitution rate exceeds synonymous
substitution rate, respectively.
f,gNumber of nucleotide sequence variants with mutated sites in V1 outside the
epitope region, where synonymous substitution rate exceeds non-synonymous
substitution rate, and non-synonymous substitution rate exceeds synonymous
substitution rate, respectively.
doi:10.1371/journal.ppat.1002721.t003

Figure 7. Sequence entropy and viral dynamics at the CH40 V1
Nab epitope. (A) 454 sequence entropies inside (grey) and outside
(white) of a 12-amino acid Nab epitope region in V1. Bar length
indicates Shannon entropy computed bidirectionally (a and b) (one-
sided Wilcoxon analysis). (B and C) Plasma viral RNA (black asterisks)

consist of epitope variants in various abundances as determined by SGA
or 454 sequencing. Error bars depict 95% confidence intervals from the
binomial distribution.
doi:10.1371/journal.ppat.1002721.g007
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Nab epitopes involving unique sites on the Env glycoprotein, with

continuous virus evolution at the respective epitopes, without

evidence of broadening of the Nab response to additional sites on

the Env trimer over the first year of infection (Figures 2–4). In

CH77, escape occurred predominantly in V2, where the addition

of PNLG site conferred Nab escape at a likely protein epitope. In

CH58, modeling suggested that early Nabs targeted a single

conformational epitope involving the Env outer domain, with

escape arising through the loss of any of several component

glycans. Thus, in each subject, virus employed glycan shifts as well

as gain or loss of glycans to mediate escape from the sequential

rounds of the Nab response. These findings, in conjunction with

reports of monospecific early Nab responses in subtype C infection

[58,59], suggest that individual immunodominant regions of Env,

specific to the unique conformation of each T/F Env, are targeted

by early Nab responses.

The observation that very low level Nab titers can impede virus

entry and select for virus escape in vivo is consistent with recent

findings of selection for SIVmac251 and SIVsmE660 Nab escape

mutations in early-chronic infection of rhesus macaques by low

titers of Nabs [60], the association of low-titer Nabs with

protection against SIVsmE660 challenge in the nonhuman

primate (NHP) model [26], and results from low dose mucosal

NHP challenge models in which concentrations of Nabs corre-

sponding to modest in vitro titers were able to effectively prevent

SIV acquisition [24,25]. To our knowledge, however, this is the

first demonstration in human HIV-1 infection that very low titers

of Nabs in the range of 1:50 to 1:20 or even lower can impede

virus replication and select for virus escape. To explore

quantitatively the in vivo activity of early Nab responses, we

employed a mathematical model to estimate the proportion of de

novo infection events blocked by Nabs, or the Nab efficacy (see

Figures S3, S4 and Dataset S1). The results, which represent

minimum estimates, ranged from a low of 19.6% to a high of

35.2% and represent a Nab response that is sufficiently potent to

drive replacement of the T/F virus within several weeks (Figure S4

and unpublished data). Our conservative modeling likely under-

estimated true Nab efficacy because we utilized minimum

estimates for biological parameters with uncertain quantities and

did not account for potential fluctuations in Nab efficacy. Future

studies where sampling time points are better structured for

evaluating dynamic changes in Nab titers and viral quasispecies

composition would allow for greater precision in estimations of

Nab efficacy in vivo and a better understanding of the kinetics of

Nab development.

These caveats notwithstanding, the data raise the possibility that

in the setting of sexual transmission, where the risk of infection per

coital act is low and the number of transmitted viruses responsible

for productive clinical infection is typically one, a vaccine that

elicited Nabs of sufficient breadth but at titers as low as 1:50 to

1:20 or possibly even lower could have a demonstrable protective

effect. It is possible that such a low titer neutralizing activity in

vaccinees from the Thai RV144 trial could have contributed to the

observed 31% protective effect of the vaccine [27,61,62].

The rates of Nab-driven T/F sequence replacement are more

rapid than previously reported [6,30,32,33,35,36,40,42,59] but

substantially slower than rates of loss due to the initial CTL

responses [4,63] A unique aspect of the present study is that we

could directly compare the rate of Nab escape with the rate of

CTL escape in the same three subjects [7]. Based on SGA

analyses, we previously observed virtually complete replacement of

the T/F virus population at defined CTL epitopes within 45 days

(CH40), 14 days (CH77) and 45 days (CH58) of antibody

seroconversion [7,8]. This contrasts with 111, 102 and 154 day

intervals shown in the present report for Nab escape. Similarly, in

a 454 pyrosequencing analysis of CTL escape kinetics, we

previously observed in subject CH40 a 1% replacement of T/F

sequences just prior to antibody seroconversion (corresponding to

Table 4. Comparison with Poisson model of random sequence evolution.

Sample Readsa APOBECb positions NTsc meanHDd Max HDe Pf

day 16 V1 10,215 included 73 0.122 4 0.006

excluded 55 0.063 4 0.988

day 16 Nab epitopeg included 37 0.082 4 ,1029

excluded 23 0.030 2 0.494

day 16 non-epitopeh included 37 0.040 3 0.880

excluded 31 0.033 3 0.978

day 45 V1 15,420 included 73 0.125 6 ,1029

excluded 55 0.043 4 0.966

day 45 Nab epitope included 37 0.100 6 0

excluded 23 0.023 4 0.525

day 45 non-epitope included 37 0.025 2 0.530

excluded 31 0.018 2 0.711

day 181 V1 22,304 included 73 1.170 10 ,1029

excluded 54 0.367 7 ,1029

aNumber of reads in Poisson distance distribution.
bAPOBEC sites were included or excluded from the analysis.
cNumber of nucleotides used to compute pairwise sequence distances.
dMean Hamming distance in pairwise sequence distance distributions.
eMaximum Hamming distance in pairwise sequence distance distributions.
fP-value for goodness-of-fit to the Poisson distribution by chi-squared test; where P.0.01, the sample fits the Poisson null model.
gNab epitope includes the 12 amino acids encompassing phenotypically-proven Nab escape mutations; see Figure 7.
hNon-epitope includes the 12 remaining amino acids in V1 not included in Nab epitope region; see Figure 7.
doi:10.1371/journal.ppat.1002721.t004
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day 0 in the present study), a 52% replacement by day 16, and a

99.4% replacement by day 45 [38]. Comparable numbers for Nab

escape variant frequencies in subject CH40 in the present study

were ,1%, 2% and 3%, respectively, again highlighting the much

faster rate of CTL escape compared with Nab escape. Further-

more, in the former study, we found that the average rate of HIV

escape from CTL responses in acute infection to be 0.17 day21

with a maximum of 0.42 day21 [7,38]. The average rate drops to

0.03 day21 by 100 days post seroconversion [64]. This slower rate

of virus escape from chronic CTL responses is similar to that of

contemporaneous Nab responses measured in the current study,

suggesting that Nabs could contribute along with CTLs to virus

containment during this later time period. In acute infection of

unvaccinated subjects, however, Nab responses likely contribute

negligibly to early virus containment.

The costs to replication fitness associated with virus escape from

autologous Nab responses have not been well characterized but could

contribute to partial virus containment at setpoint viremia. Fitness

costs of Nab escape mutations have frequently been considered to be

minimal [35,65], but Derdeyn and colleagues described a Nab escape

mutation in V2, which when placed in the autologous T/F virus

backbone, conferred a measurable fitness cost [58]. Morris and

colleagues [31] similarly noted transient decrements in plasma virus

load coincident with the development of strain-specific Nabs. We

studied Nab escape mutations within the context of a 6 month

consensus IMC so the effects of compensatory mutations could be

accounted for and so mutations resulting from escape from Nabs

could be distinguished from those resulting from escape from CTLs.

Our analyses suggested that Nab escape mutations conferred

reductions to replication fitness ranging from 0 to 24%. This

corresponds to an estimated average impairment to virus entry due to

early strain-specific Nabs of as much as 31.3% to 48.8%.

Finally, we note that the exquisite sensitivity and rapid adaption

of HIV-1 Env to Nabs contrasts with recent observations for the

HIV-2 Env, where high-titer Nabs register little effect on env

evolution or Env Nab escape [66–68]. A biological explanation for

these differences is not obvious. For HIV-1, the enhanced

sensitivity and rapid adaptation to Nab pressure in vivo provides

an explanation for the HIV-1 Env’s propensity to maintain a fully

assembled glycan/conformational shield [6]. Paradoxically, it is

this enhanced sensitivity of HIV-1 to Nabs in vivo that appears to

be responsible for its vaunted ability to resist neutralization by all

but the most broadly reactive and potent Nabs. Another

provocative implication of the current study is that, in vivo, Nabs

impede HIV-1 spread whether this is occurring by ‘cell-free’ or

‘cell-to-cell’ mechanisms. This is at odds with the suggestion that

‘cell-to-cell’ spread of HIV-1 provides a mechanism for replicating

virus to escape Nab or antiretroviral drug pressure [69,70].

Further investigation is needed to resolve this question.

Materials and Methods

Ethics statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. It was approved by the Institutional

Review Boards of the University of Pennsylvania, the University of

Alabama at Birmingham, the University of North Carolina and

Duke University. All subjects provided written informed consent

for the collection of samples and subsequent analysis.

Experimental strategy overview
The experimental strategy was first to define the kinetics of

appearance of autologous and heterologous Nabs in each subject by

a conventional single-cycle virus entry assay [6,71]. Next, we

performed an in-depth SGA-based analysis of plasma viral env gp160

RNA sequences at serial time points beginning prior to antibody

seroconversion and extending beyond the first year of infection. The

SGA approach allowed us to look for amino acid selection across

intact env gp160 genes not accounted for by CTL-driven virus escape

[7] that might reflect Nab-mediated virus escape. Next, putative Nab

epitopes were corroborated by cloning and analyzing full-length

infectious molecular clones (IMCs) corresponding to T/F and

consensus 6 month sequences and by performing site-directed

mutagenesis on T/F env genes so as to introduce individual putative

escape mutations arising in the first year of infection for phenotypic

testing against sequential patient plasma specimens and monoclonal

antibodies. Plasma samples containing neutralizing activity were

adsorbed with autologous or heterologous Env peptides or

polyproteins to distinguish linear from conformational Nab epitopes.

This was followed by deeper sequence analyses using parallel allele-

specific sequencing (PASS) and 454 pyrosequencing to identify the

earliest genetic signatures of Nab escape at confirmed epitopes. T/F

and consensus 6 month IMCs, with and without Nab escape

mutations, were evaluated for in vitro replication kinetics to access

fitness costs of Nab escape, and structural and mathematical models

were used to interpret data within the context of viral Env structure

and replication kinetics in vivo.

Study subjects
Peripheral blood samples were obtained from subjects

700010040 (CH40), 700010058 (CH58), and 700010077 (CH77)

after obtaining informed consent under the Duke University and

University of North Carolina human use review boards. All

subjects were North American men who had sex with men (MSM)

who denied injection drug use all were infected with HIV-1

subtype B, and all were antiretroviral drug naı̈ve throughout the

study course. At initial sampling, the three subjects were at peak

viremia (Fiebig stage II, plasma vRNA+, and Ab2) just prior to

HIV antibody seroconversion [10,72,73].

Viral RNA extraction and cDNA synthesis
Viral RNA from each time point was extracted and reverse

transcribed to cDNA as previously described [8]. Approximately

20,000 viral RNA copies were extracted using the BioRobot EZ1

Workstation with EZ1 Virus Mini Kit (version 2.0; QIAGEN), and

5,000 vRNA molecules were reverse transcribed using SuperScript

III (Invitrogen) and the primer R2.B3R 59-ACTACTTGAAG-

CACTCAAGGCAAGCTTTATTG-39.

Single Genome Amplification
SGA was performed as described previously [8,10]. Briefly, cDNA

was serially diluted so as to identify a dilution where PCR positive wells

constituted less than 30% of the total number of reactions. At this

dilution, most wells contain amplicons derived from a single cDNA

molecule. PCR reactions used Platinum Taq High Fidelity polymerase

(Invitrogen) and nested primers OFM19 and Vif1 (first-round) and

EnvA and EnvN (second round) to generate full-length gp160 env

sequences. To obtain subgenomic sequences containing putative Nab

epitopes in CH58, nested primers CH58C2.OutF, CH58C2.OutR,

CH58C2.InF, and CH58C2.InR were used to amplify a 554

nucleotide region spanning V1 through C3, and nested primers

CH58.C3V4.5outA, CH58.C3V4.3outA, CH58.C3V4.

5InA, and CH58.C3V4.3InA were used to amplify a 377 nucleotide

region spanning regions V3 through C4. PCR parameters were as

follows: 94uC for 2 min, followed by 35 cycles of 94uC for 15 s, 58uC
for 30 s, and 68uC for 4 min, followed by a final extension of 68uC for

10 min. The product of the first-round PCR was used as a template in

the second-round PCR reaction under the same conditions, but with a
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total of 45 cycles. The amplicons were inspected on precast 1% agarose

E-gel 96 (Invitrogen Life Technologies). All PCR procedures were

carried out under PCR clean room conditions. SGA primer sequences:

OFM19: 59-GCACTCAAGGCAAGCTTTATTGAGGCTTA-

39

Vif1: 59-GGGTTTATTACAGGGACAGCAGAG-39

EnvA: 59 GGCTTAGGCATCTCCTATGGCAGGAAGAA-

39

EnvN: 59-CTGCCAATCAGGGAAGTAGCCTTGTGT-39.

CH58C2.OutF: 59-CCATGTGTACAATTAACCCCACTC-

TGTGTC-39

CH58C2.OutR: 59-CTGTTCTCTTAATTTTGTAACTAT-

CTTC-39

CH58C2.InF: 59-GTAGCGAGGGAAAGGAAATGAAGAA-

CTG-39

CH58C2.InR: 59-GTGTTATTCCATTGTTCTCTACTAA-

GGTTAC-39

CH58.C3V4.5outA: 59-CTGCTGTTAAATGGCAGTCTAG-

CAGAAAAAGATATAG-39

CH58.C3V4.3outA: 59-CTCATATCTCCCCCTGCAGGTC-

TGAAGGTC-39

CH58.C3V4.5InA: 59-GTACAAGACCCAACAACAATACA-

AGAAAAAGTATAAC-39

CH58.C3V4.3InA: 59-CCTTTGATGGGAGGGGCATACA-

TTGCTTTTC-39

DNA sequencing
Amplicons were directly sequenced by cycle-sequencing using

BigDye Terminator chemistry (Applied Biosystems). Sequencing

reaction products were analyzed with an ABI 3730xl genetic

analyzer (Applied Biosystems). Both DNA strands were sequenced

using overlapping fragments. Individual sequence fragments for

each amplicon were assembled and edited using the Sequencher

program 4.8 (Gene Codes; Ann Arbor, MI). Chromatograms

containing mixed bases (double peaks) were excluded.

Sequence alignments
All sequences were manually inspected and aligned in

MacClade 4.08 to optimize alignments. Consensus sequences

were generated for each individual from the earliest sample (pre-

antibody seroconversion, Fiebig Stage II) and longitudinal

sequences aligned accordingly. All sequences were deposited in

GenBank (accession numbers: JQ957568–JQ957796).

Env gene cloning, sequencing, and site directed
mutagenesis

Full-length gp160 env genes were amplified by nested PCR from

acute infection plasma HIV-1 RNA, cloned, and sequenced to confirm

their identity with T/F genomes [6,10]. Site-directed mutations

corresponding to naturally-occurring mutations were introduced with

QuickChange site-directed mutagenesis kit (Strategene).

Generation of Infectious Molecular Clones (IMCs)
corresponding to T/F and six month consensus genomes
with and without putatitive Nab escape mutations

IMCs of T/F genomes were previously described [8,39]. SGA-

derived sequences from 6 months (159–181 days) post-serocon-

version were used to determine a consensus sequence. At

polymorphic positions, the majority nucleotide was selected. At

positions where there was no single nucleotide representing .50%

of sequences, the most prevalent nucleotide was selected. Six

month IMCs, with and without putative Nab escape mutations,

were constructed by chemical synthesis (Blue Heron) and site-

directed mutagenesis by methods previously described [8,39]. All

IMCs were sequence confirmed.

Neutralization assays
Plasma samples were assayed for Nab activity against IMC-

derived virions or Env- pseudotyped virions using a single-round

JC53BL-13/TZM-bl pseudotype reporter assay [6]), JC53BL-13

cells were plated and cultured overnight. A total of 2,000 infectious

units of each pseudotyped virus were combined with fivefold

dilutions of heat-inactivated test plasma or serum and incubated

for 1 h at 37uC. Non-HIV-infected heat-inactivated human

plasma was added as necessary to maintain a constant overall

concentration. The virus-Ab mixture was then added to JC53BL-

13 cells, and after 2 days, the cells were lysed, and the luciferase

activity of each well was measured using a luciferase assay reagent

(Promega, Madison, WI) and an ABI Tropix (Applied Biosystems,

Foster, CA). Background luminescence was determined in

uninfected wells and subtracted from all experimental wells. Cell

viability and toxicity were monitored by basal levels of luciferase

expression and by visual inspection. Relative infectivity (percent-

age of control) was calculated by dividing the number of luciferase

units at each plasma dilution by the values in wells containing no

test plasma. The dilution of test plasma or serum that inhibited

50% of virus infectivity (IC50 titer) was determined using a linear

regression-least squares fit method. mAbs were tested for

neutralizing activity beginning at 10 ug/ml and proceeding with

five-fold dilutions, as previously described [6].

Isolation of monoclonal antibodies
IgG+ memory B cells were isolated from frozen peripheral blood

mononuclear cells (PBMCs) from day 111 after enrollment and

cultured at near clonal dilution as described [74]. Cells were obtained

from CH40 at 132 days post-seroconversion by selecting CD22,

CD142, CD162, CD235a2, IgD2 and IgG+ cells through two

rounds of separation with magnetic beads (Miltenyi Biotec, Auburn,

CA). Cells were then resuspended in complete medium containing

2.5 mg/ml CpG ODN2006 (tlrl-2006; InvivoGen, San Diego, CA),

5 mM CHK2 kinase inhibitor (Calbiochem/EMD Chemicals,

Gibbstown, NJ) and EBV (200-ml supernatant of B95-8 cells/104

memory B cells). After overnight incubation at 37uC in 5% CO2,

21,600 viable cells were seeded in 96-well round-bottom tissue culture

plates at a cell density of 3 memory B cells/well in presence of

ODN2006, CHK2 kinase inhibitor and irradiated (7,500 cGy) CD40

ligand-expressing L cells (5,000 cells/well). Cells were re-fed at day 7

and harvested at day 14. The two 96 well supernatants that most

effectively neutralized CH40 T/F Env pseudotyped virus in the

TZM-bl assay, as previously described [74], were selected for further

analysis. RNA from positive cultures was extracted (RNeasy minikit;

Qiagen), and the genes encoding Ig V(D)J rearrangements were

amplified by RT and nested PCR, and the mAbs expressed as

recombinant IgG1 antibodies (designated AbCH83 and AbCH84) as

previously described [74]. Recombinant monoclonal antibodies

AbCH83 and AbCH84 were assessed for neutralization in TZM-bl

neutralization assays against autologous and heterologous pseudo-

typed viruses and for Env binding with enzyme-linked immunosor-

bent assays with a panel of autologous and heterologous tier 1 and 2

viruses and viral proteins [74].

HIV-1 peptides and polyproteins for antibody
adsorptions

For CH40, a 26-mer peptide corresponding in sequence to the

CH40 T/F virus V1 region and a control 26-mer scrambled

peptide were synthesized (New England Peptide, Gardner, MA).
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For CH77 and CH58, 18-mer peptides overlapping by 10 amino

acids were synthesized (Sigma-Aldrich; Medical Research Council

Human Immunology Unit, WIMM, Oxford, UK) to match the

T/F sequences of interest for CH77 and CH58. For CH77,

peptides spanning V1: LTPLCVTLNCTDSNGDS (3284), V2:

PIDTKTNTSKYRLISCNT (3292), DVVPIDTKTNTSKYRLIS

(3291), and C2: IPIHYCAPAGFAILKCKD (1181), AGFAIL-

KCKDKKFNGTGP (1467), KDKKFNGTGPCKKVSTVQ

(3297) were used. For CH58, peptides matching the sequence of

the C2: AGFAILKCNNKTFNGTGQ (3549), NNKTFNG-

TGQCTNVSTVQ (3550), and V4: KANGTTGNDTIILPCRIK

(3570) were used. For both CH77 and CH58, two control peptides

matching regions other than Env were used [IVYIEYRKIVRQR-

KIDRL (3512), MQSLYILGIVALVVAAIL (3509)]. Autologous

gp120 and gp140-tethered Env glycoproteins were generated as

described [49,75]. HIV-1 gp140 trimeric envelope glycoproteins

contained a mutated furin cleavage site and a C-terminal fibritin

trimerization domain with 8xHisTag. Mammalian codon-opti-

mized genes encoding the wild type and mutant gp120s and

gp140s were synthesized and cloned into the mammalian

expression vector pHLSec2 (GENEART AG, Regensburg,

Germany). For preparation of each envelope glycoprotein,

500 ug of the plasmid DNA was mixed with 1 ml of 293fectin

(Invitrogen, Carlsbad, CA) for 20 minutes before the DNA-

293fectin complex was added into 850 ml of FreeStyle 293F cells

(1.46106 cells/ml) in a 2 L shaking flask. After transfection, the

cells were returned to suspension incubation for 24 hours at 37uC,

8% CO2 and 125 rpm. The culture was fed with 50 ml of the

enriched medium CellBoost-5 (HyClone, Logan, UT) and sodium

butyrate at final concentration of 2 mM (SIGMA, St. Louis, MO).

After 5 days of suspension culture post transfection, supernatant

was harvested by centrifugation and filtered through 0.22 mm

filter. For the gp120 protein preparation, the supernantant was

purified through an affinity column of 17b (made by cross-linking

17b antibody with Protein A plus agarose (Pierce, Thermo,

Rockford, IL). For the gp140 protein preparation, the supernantnt

was concentrated and buffer exchanged through a Tangential

Flow Filtration system (Pall, Ann Arbor, MI) against Ni-binding

buffer, and purified through a Ni-NTA resin column (QIAGEN,

Valencia, CA). The purified proteins were concentrated and

dialyzed against PBS and characterized by SDS-PAGE and

immune blotting with anti HIV-1 IgG (HIVIG).

Protein-paramagnetic bead coupling
The gp120 Env monomers and tethered gp140 trimers were

coupled to a solid phase tosylactivated magnetic Dynabeads MyOne

beads (Invitrogen) as previously described [76]. One mg of protein

was coupled to 50 mg (0.5 ml volume) of tosylactivated magnetic

beads. Coupling was performed at 37uC in a total volume of 1.25 ml

in coupling buffer (0.1 M sodium borate buffer (pH 9.5) w 1 M

ammonium sulfate) with gentle rocking over 8 to 12 hours. The Dyna

beads and bound protein were separated from the coupling buffer

with a magnet and resuspended with 5 ml of blocking buffer (PBS

(pH 7.4) with 0.1% (wt/vol) BSA and 0.05% Tween 20). The beads

were then resuspended in 0.5 ml of storage buffer (pBS (pH 7.4)

supplemented with 0.1% (wt/vol) BSA, 0.05% Tween 20, and 0.02%

sodium azide and stored at 4uC. Stocks of beads coupled with BSA, to

assess for non-specific binding, were prepared in the same manner,

incubating in the blocking buffer (PBS (ph7.4) with 0.1% (wt/vol)

BSA and 0.05% Tween 20) for the initial step.

Antibody competition and adsorption
Competition assays were performed with linear peptides having

sequences described above. Neutralization assays were performed

with additional peptide and plasma incubation for 30 minutes at

37uC prior the addition of the 2,000 infectious units of each virus

for 1 hour at 37uC. The neutralization assay was then completed

as described above with a final concentration/well of each peptide

of 25 ug/ml. For the polyprotein adsorption studies, the plasmas

were incubated with 12 uls of the protein-bead complex (or BSA-

bound beads) for 30 minutes. The beads were removed with a

magnet and discarded. This process was repeated an additional 2

times, using a total of 36 uls (0.036 mg) of bead slurry. In previous

reports, three rounds of bead adsorption resulted in nearly

complete removal of Env-specific antibodies from serum/plasma

samples [76]. After the final incubation, the plasmas were

centrifuged at 7000 rpm for 7 minutes. Neutralization assays were

then performed as described above.

Parallel allele specific sequencing
The PASS assay was performed as previously described [53].

Briefly, 20 ml of a 6% acrylamide gel mix (1 mM acrydite-modified

primer (CH40-rev or CH77-rev), cDNA template, 0.3% diallyl-

tartramide, 5% rhinohide, 0.1% APS, 0.1% TEMED and 0.2%

BSA) was cast on a bind-saline (Amersham Biosciences, Piscat-

away, NJ) treated glass slide. In-gel PCR amplification was then

performed with a 300 ml PCR solution (1 mM primer (CH40/77-

for), 0.1% Tween-20, 0.2% BSA, 16PCR buffer, 100 mM dNTP

mix and 3.3 units of Jumpstart Taq DNA polymerase (Sigma, St.

Louis, MO) under a sealed SecureSeal chamber (Grace Bio-Labs,

Inc., Bend, OR) in a PTC-200 Thermal Cycler. PCR conditions

were as follows: incubation at 94uC for 3 min, 65 cycles of a

denaturing step at 94uC for 30 sec., an annealing step at 56uC for

45 sec., and an extension step at 72uC for 1 min; and one cycle of

an additional extension step at 72uC for 3 min. After PCR

amplification, single-base extension (SBE) was performed using the

fluorescently labeled nucleotides dGTP-Cy3 (PerkinElmer, Wal-

tham, MA), dTTP-Alexa-568 (Invitrogen, Carlsbad, CA), dATP-

Cy5 (PerkinElmer, Waltham, MA), and dUTP-Cy5.5 (GE

Healthcare, Piscataway, NJ). Sequencing primers (CH40-seq or

CH77-seq) annealed just upstream of the mutation site as well as

for the next five consecutive bases. The gel was scanned with an

Axon GenePix 4300A Microarray Scanner (Molecular Devices,

Sunnyvale, CA) and analyzed with Progenesis PG200 (Nonlinear

Dynamics, Durham, NC) software. Sequenced nucleotides were

determined by comparing each polony’s normalized intensity in all

four channels. PASS PCR primer sequences:

CH40-rev: 59Acr-TTTCCCTGGTCCCATGGGTATACTT-

TTTC-39 or

CH77-rev: 59Acr-ATTATTGCCGGGTCTCATACATTTG-

39

CH40/77-for: 59-CCACAGACCCCAACCCACAAGAAG-39

PASS sequencing primer sequences,

CH40: 59-TACTAATACCACTAATAGTAACGGG-39 (nt

6635–6659), 59-TACTAATACCACTAATAGTAACGGGG-39,

59-TACTAATACCACTAATAGTAACGGGA-39, 59-TACTA-

ATACCACTAATAGTAACGGGGAA-39, 59-TACTAATACC-

ACTAATAGTAACGGGACA-39, 59-TACTAATACCACTAA-

TAGTAACGGGAAA-39, 59-TACTAATACCACTAATAGTA-

ACGGGGGA-39

CH77: 59-TTATAAACTTGATGTAGTACCAATAGATA-

CA-39 (nt 6752–6782)

59-TTATAAACTTGATGTAGTACCAATAGATACAA-39

59-TTATAAACTTGATGTAGTACCAATAGATACAG-39

59-TTATAAACTTGATGTAGTACCAATAGATACAC-39

59-TTATAAACTTGATGTAGTACCAATAGATACAAA-39

59-TTATAAACTTGATGTAGTACCAATAGATACAGA-39

59-TTATAAACTTGATGTAGTACCAATAGATACACA-39
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59-TTATAAACTTGATGTAGTACCAATAGATACAAC-39

59-TTATAAACTTGATGTAGTACCAATAGATACAAC-39

59-TTATAAACTTGATGTAGTACCAATAGATACAAAA-39

59-TTATAAACTTGATGTAGTACCAATAGATACAGAA-39

59-TTATAAACTTGATGTAGTACCAATAGATACACAA-39

59-TTATAAACTTGATGTAGTACCAATAGATACAACA-39

59-TTATAAACTTGATGTAGTACCAATAGATACAAAAA-

39

59-TTATAAACTTGATGTAGTACCAATAGATACAAAAG-

39

59-TTATAAACTTGATGTAGTACCAATAGATACAGAAA-

39

454 pyrosequencing
RNA was extracted from pelleted virions containing at least

200,000 viral RNA copies using EZ-1 viral RNA kit (Qiagen) from

CH40 plasma from days 16, 45, 181, and 412 post-seroconversion.

cDNA was synthesized using superscript III reverse transcriptase

(Invitrogen) in 5 replicates with the antisense primer 1.R3.B3R.

The cDNA was immediately subjected to nested PCR amplifica-

tion using Platinum Taq DNA Polymerase High Fidelity

(Invitrogen). For each time point, 96 replicate PCR reactions

(40 ml each) were performed with 5 ml cDNA, using forward

primer BKB3F2 and the same reverse primer used for cDNA

synthesis (1.R3.B3R). All 96 first round reactions for each time

point were pooled and used as template for three inner PCR

reactions. Each inner PCR reaction was performed with 32

replicates (40 ml each) using 5 ml of pooled first round template,

and specific primers that incorporated a 4 base identification tag as

well as a 19 base 454 adaptor sequence. Agarose gel-run PCR

amplicons were visualized with crystal violet/white light and then

subjected to 454 sequencing. Each sample was run on a separate

picotiter plate with GS-FLX titanium reagents. All amplicons were

agar-gel purified, eluted in EB buffer (QIAquick gel extraction kit),

and visualized with gentian violet. Directional reads were codon-

aligned from two amplicons that span the V1 loop to the T/F

sequence and reviewed for sequencing errors as described

previously [38]. The forward and reverse reads had similar

variant frequencies and entropies per site (P.0.8 by Wilcoxon test)

and thus were pooled to increase the sensitivity of minor variant

detection. Where single-site deletions resulted from sequencing

errors, we edited the reads to match the T/F sequence. We

excluded from analysis reads with multiple consecutive deletions or

insertions from base calls out of phase with the flow order, and

withheld from selection tests translations that contained premature

stop codons. We used the R package ‘binom’ (version 1.025) to

compute exact 95% confidence intervals from the binomial

distribution, which quantifies uncertainty of variant frequencies

due to resampling.

Bulk PCR primers:

1.R3.B3R (59-ACTACTTGAAGCACTCAAGGCAAGCTT-

TATTG-39; nt 9642-9611 HXB2).

BKB3F2 (59 CGGGTTTATTACAGGGACAGCAG 39; nt

4899–4921 HXB2)

454 patient-specific primer pairs for two amplicons (A & B):

A–F: GTGGGTCACAGTCTATTATGGG HXB2 nt

6326–6347

A–R: GGCTCAAAGGATACCTTTGGAC HXB2 nt

6859-6838

B–F: GGGATCAAAGCTTAAAACCATG HXB2 nt

6015–6036

B–R: GCATTGTCACTGAAATTGACTG HXB2 nt

6522-6501

Specific adapter sequences ligated to 59 end of each primer for

directional sequencing:

F: CGTATCGCCTCCCTCGCGCCATCAG

R: CTATGCGCCTTGCCAGCCCGCTCAG

Virus replication fitness assays
Viral replication was assessed in activated primary CD4+ cells

from normal human donors as previously described [8] with

modifications. Relative replication rates were evaluated in parallel

cultures infected by single virus strains and in competition cultures

where cells were inoculated with identical numbers of two or three

genetically-distinct virus strains. Relative growth rates were

distinguished by PASS analysis. Fresh or frozen cells were treated

with either 50 ng/ml or 3 mg/ml of staphylococcal enterotoxin B

(Toxin Technology, Sarasota, FL) for 72 hours at 37uC to activate

lymphocytes. 56105 cells were incubated with 50,000 IU of virus

(multiplicity of infection 0.1) overnight at 37uC in 250 ml RPMI

1640 with 15% FBS and 30 U/ml IL-2. Cells were washed three

times and plated in 24-well polystyrene tissue culture plates in a

volume of 500 ml RPMI 1640 with 15% FBS and 30 U IL-2/ml.

50 ml of media was removed for day 1 p24 baseline analysis. Every 2

days, 50 ml lf media was removed and frozen for p24 analysis. For

viral replication competition assays, cells were isolated and activated

as described above. 16106 cells were incubated with 50,000 IU of

each virus (for a combined multiplicity of infection of 0.1) overnight

at 37uC in 250 ml RPMI 1640 with 15% FBS and 30 U/ml IL-2.

Cells were washed three times and plated in 24-well polystyrene

tissue culture plates in a volume of 1 ml RPMI 1640 with 15% FBS

and 30 U IL-2/ml. 50 ml of media was removed for day 1 p24

baseline analysis, and 80 ml for an estimate of the input stock for

PASS (see above). Every 2 days, 50 ml lf media was removed and

frozen for p24 analysis and 80 ml was frozen for PASS analysis.

Mathematical models for virus escape from Nab response
To investigate quantitative relationship between virus replication,

diversification, and antibody-mediated selection, we extended a

previous model of virus dynamics in HIV-1 infection [77]. In the

new model, wild-type (WT) virus, Vwt, is defined as virus that has

the T/F sequence in the Nab epitope under consideration. It is

produced from infected cells, Iwt, at rate pwt per cell and is cleared at

rate cv per virion. The virus infects uninfected target cells, T , at rate

1{að ÞbwtVwtT , where a is the efficacy of circulating antibodies at

neutralizing the wild-type virus and bwt is the rate constant

characterizing infection by WT virus in the absence of Nabs. A Nab

escape mutant, Vmut, is resistant to neutralization by these Nabs. It

infects target cells at rate bmutVmutT , it is produced from infected

cells, Imut, at rate pmut and it is cleared at rate cv per virion. Cells

producing virus die at rate d. Uninfected target cells are produced at

rate l~dT0 and die at rate d . The dynamics of the virus and cell

populations are thus given by the following equations:

dT

dt
~l{dT{ 1{aÞðð bwtVwtzbmutVmutÞT ,

dIwt

dt
~ 1{að ÞbwtVwtT{dIwt,

dImut

dt
~bmutVmutT{dImut,

dVwt

dt
~pwtIwt{cvVwt,

dVmut

dt
~pmutImut{cvVmut,

ð1Þ
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where we assume that at the start of selection, both WT and escape

variants are present in the population. Our results are quantitatively

similar if we include generation of the escape variant from the T/F

virus by mutation (not shown). Modeling escape of HIV from CTL

responses, we and others have previously shown that the model (1)

can be simplified due to the rapid clearance of viral particles from

circulation [64] so as to consider only the dynamics of cells

productively infected with wild-type virus, w, and escape mutant, m.

In this model the concentration of virus is directly proportional to

the density of infected cells, so that the ratio m=w is also the ratio of

mutant to WT virus. The simplified model is

dw

dt
~ 1{að Þrw{dw,

dm

dt
~ 1{cð Þrm{dm,

ð2Þ

where r~bwtTp=cv is the rate of growth of the population of cells

infected with WT virus in the absence of a Nab response, and

c~1{ bmutpmut=bwtpwtð Þ is the fitness cost of the escape mutation.

Because the density of infected cells is proportional to the density of

free virus particles, the rate of expansion of infected cells and free

virus are identical. It is important to note that if target cell levels vary

r will be a function of time t. In the model (2) the dynamics of the

ratio of the density of the escape variant to the WT virus in the

population, z~m=w, is given by

dz

dt
~ a{cð Þrz: ð3Þ

The change in frequency of the WT, or T/F virus in the

population, f ~w= wzmð Þ~1= 1zzð Þ over time since the Nab

response began is given by

f tð Þ~ 1

1z 1{f0ð Þ=f0½ �ee t{t0ð Þ , ð4Þ

where f0 is the frequency of the WT virus at the start of Nab

response, assumed to occur at time t0, and e~S a{cð ÞrT is the

average rate of escape of the virus from Nab response over the

considered time period [64]. It is clear from this model that escape

will only occur if the efficacy of the Nab response in vivo is larger

than the fitness cost associated with escape, i:e:, if awc.

The efficacy of the Nab response may change over time, for

example, because of an increase in the level of Nabs. To describe

the kinetics of the Nab response to the WT virus, we use a simple

model where the level of Nabs begins increasing after a time delay,

t0, and saturates over time:

A tð Þ~ Amax 1{e{s t{t0ð Þ
� �

0,

(
,
if twt0

otherwise,
ð5Þ

where s is the rate of increase of Nab levels over time. The efficacy

of Nabs at blocking new infections is likely to be proportional to

their concentration. We describe the change in Nab efficacy at

blocking de novo infections by the Emax model commonly used in

pharmacodynamic modeling, i.e.

a tð Þ~ amaxA tð Þ
EC50zA tð Þ ð6Þ

where EC50 is the antibody concentration which is 50%

neutralizing. By using eqns. (6) and (7) and numerically solving

eqn. (3), we find the change in the frequency of the founder virus

due to escape from the Nab response. In our SGA data the

frequency of the WT or T/F virus sequence changes from 100%

at an early time point to 0% at the subsequent time points. To

estimate the minimal escape rate we replaced the value for the

frequency of WT virus at the early time point, 100%, with

N= Nz1ð Þ and at a later time point, 0%, with 1= Nz1ð Þ where N
is the number of SGA-derived sequences available. This generates

a lower bound estimate of the escape rate.

Structural models of Nab escape mutations on CH40,
CH77 and CH58 Env trimers

A model of HIV-1 gp120 for all regions except V1/V2 was

constructed from crystal structures of HIV-1 gp120 core with

complete N and C termini [48] and of HIV-1 gp120 core with V3

[46]. A model of V1/V2, meanwhile, was utilized directly from

the scaffold determined context with PG9 [49]. The GlyProt

server was used to model basic glycans at accessible potential N-

linked glycosylation sites. Residues of gp120 involved in viral

escape were mapped onto these atomic-level models. For the

oligomeric viral spike context, the approximate locations of these

residues were mapped as determined by cryo-electron microscopy

[50–52].

Supporting Information

Dataset S1 Fitness costs of Nab escape mutations and
mathematical modeling of Nab efficacy.
(DOCX)

Figure S1 Kinetics of autologous Nab responses, plas-
ma viral load and CD4+ T lymphocyte counts. Autologous

plasma Nab titers against the respective T/F Envs for subjects

CH40, CH77 and CH58, as measured by TZM assay and

expressed as reciprocal IC50s, are shown in bold lines. Each value

is the average of four independent experiments, performed in

duplicate. The minimal plasma dilution used in the assay was 1:20,

and for this plot Nab titers of ,1:20 are denoted as zero. Each

subject’s plasma viral load is color-coded and represented by

dashed lines; the CD4+T lymphocyte count is represented in black

with the scale to the right.

(EPS)

Figure S2 Replicative fitness of Nab escape mutants. A.

Replication kinetics of CH40 T/F, 6 mo, and 6 mo-Nab IMCs

cultured in parallel. Virus stocks were generated on CD4+ T cells

and equal M.O.I.s were inoculated onto parallel cultures of

CD4+T cells from two seronegative donors. Viral p24 antigen was

measured every 2 days. B. Replication kinetics of CH40 IMCs

grown in direct competition. Equal quantities of viruses derived

from CH40 6 mo IMC and CH40 6 mo-Nab IMC were co-

cultured in the same CD4+ T lymphocytes. 50 ul of supernatant

was removed every two days and assayed for viral growth by p24

antigen ELISA and tested for relative proportions by PASS.

Replication kinetics of CH77 (C) and CH58 (D) T/F, 6 mo, and

6 mo-Nab IMCs. Results represent mean (+/2 SD) of three

independently performed experiments.

(EPS)

Figure S3 Model of HIV infection and Nab escape in
acute infection. In this model, wild-type (WT) or T/F virus,

Vwt, is produced from infected cells, Iwt, at rate pwt and is cleared

at rate cv per virion. The virus infects uninfected target cells, T , at

rate 1{að ÞbwtVwtT where a is the efficacy of circulating
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antibodies at neutralizing the wild-type virus. A Nab escape

mutant, Vmut, is resistant to neutralization by these Nabs. It infects

target cells at rate bmutVmutT , it is produced from infected cells,

Imut, at rate pmut, and it is cleared at the rate cv per virion. Cells

producing virus die at the rate d, while uninfected target cells are

produced at the rate l and die at the rate d .

(EPS)

Figure S4 Estimation of Nab efficacy to block de novo
infections. Using the data on the loss of the T/F sequence, we

estimate the average efficacy of the Nab response at blocking de

novo infections by the T/F virus. Our model assumed that the Nab

response started at t~0 and had a constant average efficacy a.

The rate of the loss of the founder virus e was directly proportional

to the average in vivo efficacy of the Nab response, a~e=rzc,

where r is the average rate of virus replication and c is the cost of

escape mutations. The estimated escape rate was e~0:073 d{1

and 0:099 d{1 for CH40 and CH77 (SGA, panel A) and

e~0:11 d{1 and 0:096 d{1 for CH40 and CH77 (PASS, panel

B), respectively. Model predictions are shown in (A) and (B) by

lines. The estimates of the average Nab efficacy were independent

of the time at which Nab response started as long as that time was

earlier than 45 (CH40) and 50 (CH77) days post-seroconversion.

To determine whether the rise in Nab titers can predict viral

escape, we estimated the kinetics of the Nab response from the

experimental titer data using Eqn. (6) (panel C), and predicted the

in vivo efficacy of the Nab response (panel D) and the loss of the T/

F virus (panel E) using Eqns. (4) and (7). The estimated parameters

for the kinetics of the Nab response are t0~57:4 days and

s~8:5x10{3d{1 for CH40 and t0~85:4 days and

s~0:25x10{3 d{1 for CH77. The estimated half-saturation

constant for Nab efficacy assuming r~1d{1 and c~0 is

EC50~9:7x103 and EC50~39:7 for CH40 and CH77, respec-

tively.

(EPS)

Table S1 Frequency (%) of CH40 V1 Nab epitope
sequence variants measured by SGA and PASS.
(DOCX)

Table S2 Frequency (%) of CH77 V2 Nab epitope
sequence variants measured by SGA and PASS.
(DOCX)
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