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Abstract

A robust generalisation of the Gumbel distribution is proposed in this article. This family of

distributions is based on the T-X paradigm. From a list of special distributions that have

evolved as a result of this family, three separate models are also mentioned in this article. A

linear combination of generalised exponential distributions can be used to characterise the

density of a new family, which is critical in assessing some of the family’s properties. The

statistical features of this family are determined, including exact formulations for the quantile

function, ordinary and incomplete moments, generating function, and order statistics. The

model parameters are estimated using the maximum likelihood method. Further, one of the

unique models has been systematically studied. Along with conventional skewness mea-

sures, MacGillivray skewness is also used to quantify the skewness measure. The new

probability distribution also enables us to determine certain critical risk indicators, both

numerically and graphically. We use a simulated assessment of the suggested distribution,

as well as apply three real-world data sets in modelling the proposed model, in order to

ensure its authenticity and superiority.

1 Introduction

The employment of traditional probability models to anticipate real-life occurrences is causing

increasing dissatisfaction among applied practitioners. Tail characteristics and goodness of fit

metrics may have a constraining tendency, which could be one of the reasons. As a response,

in recent years, there has been a substantial rise in the generalisation of well-known probability

distributions. The challenge is to find such versatile families that can fit both skew and sym-

metric data. It’s important to realize that the majority of generalised distributions described in

the literature are constructed using the generalised classes approach (G-class) and the com-

pounding principle. In [1], the authors provided a concise review of literature regarding gener-

alization of distributions and transformation through versatile parameter induction

techniques. We offer to the readers a few, but not exhaustive, lists in chronological sequence:

[2–14].
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According to [15], Emil J. Gumbel originated the use of the Gumbel distribution (GuD) on

data bearing extreme values. By “extreme data” we mean the behaviour of a random variable

that occurs at the sample threshold level and is seen using intense data and insights. In the ref-

erence [16], the authors defined the GuD, alternatively known as extreme value distribution-

type I (γ = 0), as the predominant model for quantifying extreme occurrences such as flood fre-

quency analysis, droughts, earthquakes, sea currents and wind speed in order to understand

the trajectory, magnitude, and pattern of complex phenomena. Environmental sciences, geol-

ogy, accelerated life testing, meteorology, risk assessment and epidemiology are just a few of

the a set of diverse fields where it might well be utilized. The authors in [17] showed that the

score statistics of global sequence alignment follows a Gumbel distribution. In the reference

[18], a comprehensive list of real life scenarios to which GuD can be applicable is provided by

the authors. To learn more, see references [19–24].

Earliest generalizations of GuD was reported by [25] by introducing a shape parameter to

Gumbel distribution. [26] provided a generalization of GuD based on the asymptotic distribu-

tion of the mth extreme, tracing back to [27]. [28] emphasized on a trivial choice of distribu-

tion since the GuD with only location and scale parameter yields narrower confidence

intervals and has also the danger of underestimating the level of return. In the reference [29], a

unique modification of GuD was proposed. It is based on the logarithmic transformation of an

odd Weibull variable and is defined as

Fðx; b; m; sÞ ¼ 1 � ½1þ ðeD � 1Þ
b
�
� 1
; ð1Þ

where Δ = e(x−μ)/σ, −1� x� +1, −1� μ� +1 and 0� βσ� +1.

Since then, researchers adopted a more formalistic approach to generalize GuD. Some nota-

ble generalizations include [30] to define Beta-Gumbel (BGu), [31] to propose Kumaraswamy-

gumbel (KumGu), [32] to define exponentiated-Gumbel (EGu), [33] to define exponentiated-

generalized Gumbel (EGGu), just to mention some.

[14] proposed a simplified approach to generalize any continuous distribution viz. a viz. the

transformed-transformer (T-X) family, which has become an indispensable part of modern dis-

tribution theory. Let z(t) be the probability density function (pdf) and Z(t) be the cumulative

distribution function (cdf) of a random variable (av) T such that t�(a1, a2) with support −1<

a1 < a2 <1. Let W[Z(x)] act as generator function of the cdf Z(x) of any baseline av such that

K[Z(x)] is differentiable and increasing, lies in the defined range, i.e. a1� K[Z(x)]� a2 such

that when x! −1 as K[Z(x)]! a1 and x! +1 as K[Z(x)]! a2.

FTXðx;φÞ ¼
Z K½Zðx;φÞ�

a1

zðtÞ dt ¼ ZðK½Zðx; φÞ�Þ: ð2Þ

The pdf corresponding to Eq (2) is

fTXðx; φÞ ¼ z K Z x; φð Þ½ �ð Þ
d
dx

K Z x; φð Þ½ �: ð3Þ

To generalize any continuous distribution, the methodology defined by the cdf in Eq (2)

has become indispensable part of modern distribution theory. In the same vein, Al-Aqtash

et al. [34] introduced the Gumbel-X family of distributions. Let z(t) be the density function

(pdf) and Z(t) be the distribution function (cdf) of an arbitrary variable (av) T such that t�(a1,

a2) with support −1< a1 < a2 <1. Let K[Z(x; φ)] = log [(Z(x; φ))/1−(Z(x; φ))] act as the

generator function of the cdf of any baseline av such that K[Z(x; φ)] fulfills the defined
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criterion. For μ = 0, the cdf of Gumbel-X family is given as

Fðx; sÞ ¼ e� D� 1=s x �R; s > 0 ; ð4Þ

where Δ = Z(x)/(1 − Z(x)).

This study introduces a new class of distributions following the T-X methodology, viz. a viz.

the exponentiated Gumbel-G (EGuG) family of distributions. This is achieved by replacing the

link function K[Z(x; φ)] = log[−log(1 − Z(x; φ))] in T-X family. It is worthy to remember that

the link function log[−log(1 − Z(x; φ))] = log[−log(Z(x; φ))] and either of the mentioned form

can be employ. EGuG family has thus far not been reported in the literature. We choose EGu

distribution to define new family due to its superiority over the ordinary GuD because of pres-

ence of shape parameter θ that entails the improvements in tail of the distribution. Moreover,

to the best of our knowledge, majority of the extreme value theory literature is supported by

data from meteorology, geology, seismology, and hydrology (see references [15, 18–22, 24, 30–

34]). The health implications of climate-related shifts in extreme event exposure, on the other

hand, have not been explored. This study’s theoretical investigation will presumably fill this

void in existing literature. Additionally, log[−log(1 − Z(x; φ))] function involves double log

transformation and cannot be employed on GuD, which somehow makes the link function

redundant. Following the success of the proposed generator to generalize Logistic and Normal

distributions, we use this generator to define EGuG distribution. We study some of its mathe-

matical properties and provide general properties and application of one of its specific model.

This article is outlined as follows: In Section 2, we define the EGuG family and present

some of its special models. In order to optimise the structure of the generalisation being pro-

posed, we provide the linear representation of EGuG density along with some of the mathe-

matical properties of the family such as shapes of density and hazard rate function, moments

and generating function, order statistics and estimation of model parameters. In Section 3, we

choose Nadarajah-Haghighi (NH) distribution as baseline model to form EGuNH distribution

whose mathematical properties as well as some risk measures are established. A simulation

study is also conducted for some parametric combinations. Section 4 comprises of the numeri-

cal illustrations based on three life data sets. In Section 5, the article’s concluding thoughts are

summed up.

2 The EGuG family

Let T follows the EGu av with μ = 0 and shape parameters θ� 0 and σ� 0, say EGu (θ, σ),

then its cdf is given by

Zðt;φÞ ¼ 1 � ð1 � e� e� t=sÞy ; t �R: ð5Þ

The corresponding pdf to Eq (5) is given as

zðt; φÞ ¼
y

s
ð1 � e� e� t=sÞy� 1 e� e� t=s e� t=s: ð6Þ

For any baseline distribution with cdf Z(x; F) and pdf z(x; F) = dZ(x; F)/dx, the cdf of EGuG

family is given as

Fðx; y;s;φÞ ¼ 1 �

Z K½Zðx;φÞ�

a1

zðtÞ dt

¼ ½1 � exp f� ð� log fZðx;FÞgÞ� 1=s
g�
y
; x > 0; y ; s > 0:

ð7Þ

where θ, σ are shape parameters and φ is the vector of baseline parameter.
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The pdf corresponding to Eq (7) is given by

f ðx; y;s;φÞ ¼
y zðt;φÞ
sZðt;φÞ

½� log fZðt;φÞg�� ð1=sÞ� 1 exp f� ½� log fZðt;φÞg�� 1=s
g

�½1 � exp f� ½� log fZðt;φÞg�� 1=s
g�
y� 1
;

ð8Þ

where Z(x; φ) is the baseline cdf and z(x; φ) is the baseline pdf. Furthermore, the dependence

on the vector φ of the parameters might be omitted at times and simply write Z(x) = Z(x; φ)

and z(x) = z(x; φ). Henceforth, X� EGu−G(θ, σ; φ) denotes an av having density Eq (8).

The survival function (sf), hazard rate function (hrf) and cumulative hazard rate function

(chrf) of this new family are, respectively, given by

SðxÞ ¼ 1 � ½1 � exp f� ð� log fZðxÞgÞ� 1=s
g�
y
;

hðxÞ ¼
y zðxÞ exp f� ½� log fZðxÞg�� 1=s

g½1 � exp f� ½� log fZðxÞg�� 1=s
g�
y� 1

sZðxÞ ½� log fZðxÞg�
1
sþ1
½1 � f1 � exp ð� ½� log fZðxÞg�� 1=s

Þg
y
�

and

HðxÞ ¼ � ln½1 � f1 � exp ð� ½� log fZðxÞg�� 1=s
Þg

y
�:

Simulating the EGuG family is simply done by inverting Eq (7) as follows: If U has a uni-

form U(0, 1) distribution, then

x ¼ QZðe� ½log ð1� u
1=aÞ� 1 �� sÞ ð9Þ

has the density function Eq (8), where QZ(.) = Z−1(.) is the baseline quantile function (qf).

2.1 Special models

Eq (7) can be useful in modelling real life survival data with different shapes of hrf. Table (1)

lists −log[Z(x; φ)] and the associated parameters for some special distributions.

Here three special models of EGuG family of distribution are defined.

2.1.1 EGu-Weibull(EGuW). The EGu-W model is defined from Eq (7) by taking Z(x; φ)

= 1 − exp{−axb}, z(x; φ) = abxb−1 exp{−axb}, as cdf and pdf of the baseline Weibull distribution

with a, b> 0, respectively.

Table 1. Distributions and corresponding −log[Z(x; φ)] functions.

Distribution −log[Z(x; φ)] φ

Burr XII (x > 0) −log[1 − (1 + xa)−b] (a, b)

Weibull (x> 0) � log ½1 � e� a xb � (a, b)

Normal (−1 < x <1) � log � x� m
s

� �� �
(μ, σ)

Nadarajah Haghighi (x > 0) � log ½1 � e1� ð1þl xÞa � (α, λ)

Rayleigh (x > 0) � log ½1 � e� a x2

� (a)

Exponential (x> 0) � log ½1 � e� a x� (α)

Power function (0 < x< a) � blog x
a

� �
(a, b)

Fréchet (x > 0) l

x

� �s
(λ, σ)

Inverted Rayleigh (x > 0) l

x2

� �s
(λ, σ)

Burr III (x > 0) z log[1 + x−c] (c, z)
Pareto (δ < x<1) −log[1 − (δ/x)λ] (δ, λ)

https://doi.org/10.1371/journal.pone.0267142.t001
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The cdf and pdf of EGu-W distribution are, respectively, given by

Fðx; y;s; a; bÞ ¼ ½1 � expð� f� log ð1 � e� a xbÞg� 1=s
Þ�
y
; x > 0 y; s; a; b > 0 ;

and

f ðx; y; s; a; bÞ ¼
y a b xb� 1 e� a xb

s½1 � e� a xb �
½� log ð1 � e� a xbÞ�� ð1=sÞ� 1e� ½� log ð1� e� a x

b
Þ�� ð1=sÞ

�½1 � expð� f� log ð1 � e� a xbÞg� 1=s
Þ�
y� 1
;

where θ, σ and b are shape parameters while a is scale parameter.

2.1.2 EGu-BurrXII(EGuBXII). Let us consider the parent distribution as BXII with

power parameters a, b> 0 by taking Z(x; φ) = 1−(1 + xa)−b, z(x; φ) = abxa−1(1 + xa)−b−1 be the

cdf and pdf of the distribution.

The cdf and pdf of EGu-BXII distribution are, respectively, given by

Fðx; y;s; a; bÞ ¼ ½1 � e� f� log ½1� ð1þxaÞ� b�g� 1=s

�
y
; x > 0; y; s; a; b > 0

and

f ðx; y; s; a; bÞ ¼
y a b xa� 1ð1þ xaÞ� b� 1

sf1 � ð1þ xaÞ� bg
½� log f1 � ð1þ xaÞ� bg�� ð1=sÞ� 1

�exp½� f� log ð1 � ð1þ xaÞ� bÞg� ð1=sÞ�

�½1 � expð� f� log ð1 � ð1þ xaÞ� bÞg� 1=s
Þ�
y� 1
;

ð10Þ

where θ, σ, a and b are shape parameters.

2.1.3 EGu-Nadarajah Haghighi(EGuNH). Consider to take Nadaraah Haghighi (NH) as

baseline distribution with cdf as Z(x; φ) = [1 − exp{1−(1 + λx)β}] and pdf as z(x; φ) = λβ(1 +

λx)β−1exp{1 − (1 + λx)β}. Then, the cdf and pdf of EGuNH reduces to

Fðx; y; s; a; lÞ ¼ ½1 � exp f� ð� log ½1 � e1� ð1þlxÞa �Þ
� 1=s
g�
y
; x > 0; y;s; a; l > 0 ð11Þ

and

f ðx; y;s; a;lÞ ¼
yalð1þ lxÞa� 1e1� ð1þlxÞa

s½1 � e1� ð1þlxÞa �
½� log f1 � e1� ð1þlxÞag�

� ð1=sÞ� 1

�exp ½� f� log ð1 � e1� ð1þlxÞaÞg
� 1=s
�

�½1 � exp f� ð� log f1 � e1� ð1þlxÞagÞ
� 1=s
g�
y� 1
:

ð12Þ

where θ, σ and α are shape parameters while λ is scale parameter.

2.2 Useful expansion for the EGuG cdf

We provide a useful expansion for Eq (7) in terms of linear combinations of exp-G distribu-

tion. For a random baseline cdf Z(x), an av is said to have the exp-G distribution having

parameter ℓ such that ℓ> 0, say Y� exp-G (ℓ), if its pdf and cdf are given as

h‘ðxÞ ¼ ‘Z ‘� 1ðx;FÞ zðx;FÞ and H‘ðxÞ ¼ ZðxÞ‘

respectively. Thus, several properties of the proposed model can be derived from those proper-

ties of the exp-G distribution studied by the authors in [3–8], to mention few.
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By expanding Eq (7) using binomial and power series expansion, the resultant expression is

given

FðxÞ ¼
X1

j¼0

X1

i¼0

y

j

� �
ð� 1Þ

iþj ji

i!
½� log Zðx;FÞ�� i=s: ð13Þ

Using Mathematica software, it can be verified that we can start the limit of integers (i, j)
from 1 instead of 0 in above equation. Further, we can write [−log Z(x; φ)]−i/σ as

½� log f1 � �Zðx;�Þg�� i=s since ZðxÞ ¼ 1 � �ZðxÞ.
Now consider, for any real parameter c and z�(0, 1), the following formula holds:

½� log ð1 � zÞ�‘ ¼
X1

k¼0

PkðcÞzcðmþ1Þ ; ð14Þ

where P0(c) = 1/2; P1(c) = c(3c + 5)/24; P2(c) = c(c2 + 5c + 6)/48 etc is the stirling’s polynomial.

Then, the cdf F(x) in Eq (13) can be expressed (using Eq (14) and generalized binomial expan-

sion) as

FðxÞ ¼
X1

m¼1

PmHmðxÞ ; ð15Þ

wherePm ¼ ð� 1Þ
mþ1P1

i;j¼1

P1

k¼0

ð� 1Þiþj ji Gð� i=sðkþ1ÞþmÞ
i! j! m Gð� i=sðkþ1ÞÞ

y

s

� �
Pkð� i=sÞ.

By differentiating Eq (15), we obtain

f ðx : s; y;FÞ ¼
X1

m¼1

omhmðxÞ ; ð16Þ

where hm(x) = mZm−1(x; F) z(x; F) is the exp-G density function with power parameter m.

2.3 Shapes of density and hazard function

Analytical descriptions of density and hrf forms are conceivable. The roots of the equation rep-

resent the EGuG density’s critical points:

z0ðx;FÞ
zðx;FÞ

�
zðx;FÞz0ðx;FÞ

Zðx;FÞ
þ
½� log Zðx;FÞ�� ð1=sÞ� 1zðx;FÞz0ðx;FÞ

sZðx;FÞ

( )

þ
ðy � 1Þ½� log Zðx;FÞ�� ð1=sÞ� 1e� ½� log Zðx;FÞ�� 1=szðx;FÞz0ðx;FÞ

sZðx;FÞ

( )

¼ 0 :

ð17Þ

The equation is used to find the EGuG hrf’s crucial points.

z0ðx;FÞ
zðx;FÞ

þ
ðsþ 1Þzðx;FÞz0ðx;FÞ
s½� log Zðx;FÞ�Zðx;FÞ

�
½� log Zðx;FÞ�� ð1=sÞ� 1zðx;FÞz0ðx;FÞ

sZðx;FÞ

( )

þ
ðy � 1Þe� ½� log Zðx;FÞ�� 1=s

½� log Zðx;FÞ�� ð1=sÞ� 1zðx;FÞz0ðx;FÞ
sZðx;FÞ½1 � exp f� ½� log Zðx;FÞ�� 1=s

g�

( )

þ
y 1 � e� ½� log Zðx;FÞ��

1
s

h iy� 1

e� ½� log Zðx;FÞ��
1
s ½� log Zðx;FÞ��

1
s� 1 zðx;FÞz0ðx;FÞ

sZðx;FÞ 1 � f1 � e� ½� log Zðx;FÞ��
1
sg

y
h i

8
><

>:

9
>=

>;
¼ 0:

ð18Þ
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Any numerical software can be used to examine Eqs (17) and (18) to determine the local maxi-

mum and minimum and inflexion points.

2.4 Moments

The first formula for the sth moment of X follows from Eq (16) as

m0s ¼
X1

m¼1

Pm EðXs
mÞ: ð19Þ

where EðXs
mÞ ¼

R1
0
xshmðxÞdx: Setting s = 1 in Eq (refrthmoment1pdfmix1) can provide

explicit expression for the mean of several parent distributions.

A second alternative formula for m0n is obtained from Eq (19) in terms of the baseline qf as

m0n ¼
X1

i;j¼0

‘oi;j tðn; ‘ � 1Þ: ð20Þ

where tðn; ‘ � 1Þ ¼
R 1

0
QZðuÞ

n u‘du:
The central moments (μt) and cumulants (κt) of X can follow from Eq (19) as ms ¼

Pp
k¼0

s
k

� �
ð� 1Þ

k
m0s

1
m0s� k and ks ¼ m

0
s �
Ps� 1

k¼1
s� 1

k� 1

� �
kk m

0
s� k, respectively, where k1 ¼ m

0
1
. The skew-

ness g1 ¼ k3=k
3=2

2 and kurtosis g2 ¼ k4=k
2
2

can be calculated from the third and fourth stan-

dardized cumulants.

The sth incomplete moment of X can be determined from Eq (16) as

msðyÞ ¼
X1

m¼0

mom

Z ZðyÞ

0

QZðuÞ
n umdu : ð21Þ

The last integral can be computed for most G distributions.

A crucial applicability of the first incomplete moment m1(�) has to do with the Bonferroni

and Lorenz curves, which are extremely beneficial in a variety of fields. For a given probability

π, they are given by BðpÞ ¼ m1ðqÞ=ðp m01Þ and LðpÞ ¼ m1ðyÞ=m01, respectively, where m1(y)

comes from Eq (refincompletepdfmix1) with s = 1 and q = Q(π) follows from Eq (9). The

Lorenz and Bonferroni curve for EGuNH are displayed graphically (Figs 13 and 14,

subsequently).

The totality of excursions from the mean and median is used to estimate the degree of scat-

ter in a population and is defined by d1 ¼
R1

0
jx � mjf ðxÞdx and d2ðxÞ ¼

R1
0
jx � Mjf ðxÞdx,

respectively, where m0
1
¼ EðXÞ is the mean and M = Q(0.5) is the median. These measures can

be expressed as d1 ¼ 2m0
1
Fðm0

1
Þ � 2m1ðm

0
1
Þ and d2 ¼ m

0
1
� 2m1ðMÞ, where Fðm0

1
Þ is given by Eq

(refcdfEGuG).

The moment generating function (mgf) of X can be expressed as

MXðtÞ ¼
X1

m¼0

omMmðtÞ;

where Mm(t) is the mgf of Ym. Hence, M(t) can be determined from the exp-G generating

functions.

2.5 Order statistics

Order statistics are used in a wide range of statistical theory and practise. Let X1, . . ., Xn is a

random sample from the EGu-G distribution and Xi: n denote the ith order statistic. Then, pdf
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of Xi:n can be written as

fi:nðxÞ ¼
1

bði; n � iþ 1Þ
f ðxÞ FðxÞi� 1

f1 � FðxÞgn� i

¼
1

bði; n � iþ 1Þ

Xn� i

j¼0

ð� 1Þ
j n � i

j

� �

f ðxÞ FðxÞjþi� 1
:

Inserting Eq (refcdfEGuG) and Eq (refpdfEGuG) in the last equation, and expanding it as in

section (3.1), we get

fi:nðxÞ ¼
Xn� i

j¼0

Zj hmðxÞ ; ð22Þ

where

Zj ¼
ð� 1Þ

j

bði; n � iþ 1Þ

n � i
j

� �
X1

m¼0

P�m

and

P�m ¼ ð� 1Þ
m
X1

i;j¼1

X1

k¼0

ð� 1Þ
iþjjiGf� i=sðkþ 1Þ þmg

i!j!Gf� i=sðkþ 1Þ þmgm
yðiþ jÞ

j

� �

Pkð� i=sÞ:

2.6 Estimation

The three alternate approaches for inference are point estimation, interval estimation, and

hypothesis tests. Several approaches for parameter point estimation have been published in the

literature, the most extensively utilised of which is the maximum likelihood method. MLEs

(maximum likelihood estimates) have properties that can be used to construct confidence

ranges for model parameters. Large sample theory provides simple approximations that work

well in repeated sampling for these estimations. The normal approximation for MLEs can be

tackled analytically or computationally in distribution theory.

We use the optimum likelihood method to estimate the unknown parameters of the new

distribution. Let x1, � � �, xn be n observations from the EGu-G family given by Eq (8) with

parameter vector Θ = (θ, β;F)>. The log-likelihood I = I(Θ) for Θ is given by

n log ðyÞ � n log ðsÞ þ
Xn

i¼1

log zðxi;FÞ �
Xn

i¼1

log Zðxi;FÞ �
1þ s

s

� �
Xn

i¼1

log � log Z xi;Fð Þ½ �

�
Xn

i¼1

½� log Zðxi;FÞ�
� 1=s
þ ðy � 1Þ

Xn

i¼1

log ½1 � exp f� ½� log Zðxi;FÞ�
� 1=s
g� :

ð23Þ

Eq (refmleegug) can be maximized either directly by using the R (optim function), SAS
(NLMixed procedure) or Ox (MaxBFGS function), or then by solving the nonlinear
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likelihood equations by differentiating it. The components of the score vector U(Θ) are

Uy ¼
n
y
þ
Xn

i¼1

log 1 � exp f� ½� log Zðxi;FÞ�
� 1=s
g

h i
;

Us ¼ �
n
s
þ

1

s2

Xn

i¼1

log � log Z xi;Fð Þ½ � �
Xn

i¼1

½� log Zðxi;FÞ�
� 1=s

;

UFk
¼

Xn

i¼1

z 0ðxi;FÞ
zðxi;FÞ

� �

�
Xn

i¼1

z 0ðxi;FÞ zðxi;FÞ
Zðxi;FÞ

þ
1þ s

s

� �
z 0ðxi;FÞ zðxi;FÞ

Zðxi;FÞ½� log Zðxi;FÞ�

�
Xn

i¼1

½� log Zðxi;FÞ�
ð� 1=sÞ� 1 zðxi;FÞz 0ðxi;FÞ
sZðxi;FÞ

þðy � 1Þ
Xn

i¼1

exp ½� f� log Zðxi;FÞg�½� f� log Zðxi;FÞg�
ð� 1=sÞ� 1zðxi;FÞz 0ðxi;FÞ

sZðxi;FÞ½1 � exp f� ½� log Zðxi;FÞ�
� 1=s
g�

:

Setting these equations to zero and solving them simultaneously yields the MLEs Ŷ of the fam-

ily parameters.

The observed information matrix for the parameter vector Θ = (θ, σ, Fk)
> is given by

JðyÞ ¼ �
@

2
‘ðYÞ

@Y @Y
>
¼ �

Jyy Jys JyFk

� Jss JsFk

� � JFkF‘

0

B
B
B
@

1

C
C
C
A
;

whose elements can be determined by using any mathematical software. Under normal condi-

tions of regularity, the multivariate normal N3ð0; JðŶÞ
� 1
Þ distribution, where JðŶÞ� 1

is the

observed information analysed at Ŷ, can be used to estimate confidence ranges for model

parameters. Furthermore, we may use likelihood ratio (LR) statistics to assess the EGuG model

to any of its specific models.

3 Properties of EGuNH

In comparison to Gamma, Weibull, and exponentiated exponential distributions, NH distribu-

tion (also known as extended exponential distribution) is the preferred option for zero inflated

data. The cdf and pdf of NH distribution has already been defined in Section (3.1.3). For λ = 1,

we define the cdf and pdf of EGuNH distribution as

FðxÞ ¼ ½1 � exp f� ð� log ½1 � eC�Þ� 1=s
g�
y
; ð24Þ

and

f ðxÞ ¼
yað1þ xÞa� 1eC

s½1 � eC�
½� log f1 � eCg�� ð1=sÞ� 1 e� f� log ð1� eCÞg

� 1=s

�½1 � exp f� ð� log f1 � eCgÞ� 1=s
g�
y� 1
;

ð25Þ

where C = 1 − (1 + x)α and θ, σ and α are shape parameters.

Henceforth, we denote by X a av having density (25). The sf and hrf of X has the form

sðxÞ ¼ 1 � ½1 � exp f� ð� log ½1 � eC�Þ� 1=s
g�
y
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and

hðxÞ ¼ a y s� 1ðxþ 1Þ
a� 1e� C ð1 � eCÞ� 1

½� log ð1 � eCÞ�� ð1=sÞ� 1

�½e� ½� log ð1� eCÞ�� 1=s

� ½1 � e� f� log ð1� eCÞg� 1=s

�
y� 1

�½1 � ð1 � e� f� log ð1� eCÞg� 1=s

Þ
y
�
� 1
:

3.1 Shapes of density and hazard rate function of EGuNH distribution

The crucial points of the pdf of X are obtained from the equation:

a� 1e� Cðxþ 1Þ
1� a
½ða � 1Þa eCðxþ 1Þ

a� 2
� a2eCðxþ 1Þ

2a� 2
�

�
a ðxþ 1Þ

a� 1 eC½� log ð1 � eCÞ�� ð1=sÞ� 1

s½1 � eC�
�
a ðxþ 1Þ

a� 1eC

1 � eC

þ
a ðy � 1Þðxþ 1Þ

a� 1
½� log f1 � eCg�� ð1=sÞ� 1e� ½� log ð1� eCÞ�� 1=s

s eC ½1 � eC�½1 � e� f� log ð1� eCÞg� 1=s
�

:

Similarly, the critical points of the hrf of X are obtained from the equation:

a� 1e� Cðxþ 1Þ
1� a
½ða � 1Þ a eCðxþ 1Þ

a� 2
� a2eCðxþ 1Þ

2a� 2
�

þ
a eCðxþ 1Þ

a� 1
½� log ð1 � eCÞ�

�

1

s
� 1

sð1 � eCÞ
�

a
1

s
þ 1

� �

eCðxþ 1Þ
a� 1

½1 � eC� log ð1 � eCÞ

�
aða � 1Þ ðxþ 1Þ

a� 1
½� log ð1 � eCÞ�� ð1=sÞ� 1

s ½1 � eC�½1 � ef� log ð1� eCÞg� 1=s
�

þ
½1 � eð� log f1� eCgÞ� 1=s

�
y� 1

s e� C½1 � eC�½1 � ð1 � eð� log f1� eCgÞ� 1=s
Þ
y
�

�
exp f½� log ð1 � eCÞ�� 1=s

� Cga yðxþ 1Þ
a� 1
½� log ð1 � eCÞ�� ð1=sÞ� 1e½� log ð1� eCÞ�� 1=s

s ½1 � eC�½1 � ef� log ð1� eCÞg� 1=s
�

:

Some plots of the density of EGuNH for selected parameter values are presented in Figs 1–4

while plots of the hrf of EGuNH for random parameter values are presented (Figs 5–8). It is

apparent that the density of EGuNH can be reversed-J, unimodal, and symmetrical. Similarly,

EGuNH hazard rate shapes may tend to be increasing, decreasing, bathtub, or upside-down

bathtub. The new model is much superior at fitting data sets in a variety of risk evaluation

scenarios.

3.2 Central properties of EGuNH distribution

In this section, some useful expressions for the linear expansion, moments and incomplete

moments of EGuNH distribution have been deduced using the Eq (16).

Proposition 1.

f ðxÞ ¼
X1

m¼0

Pmcðx;y;s;aÞ ; ð26Þ

where

cðx;y;s;aÞ ¼ amð1þ xÞa� 1e1� ð1þxÞa ½1 � e1� ð1þxÞa �
m

. Recalling the result defined in Eq (15) as

FðxÞ ¼
X1

m¼1

Pmð1 � e1� ð1þxÞaÞ
m
;
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A straightforward differentiation of the above result yields density by

f ðxÞ ¼
X1

m¼1

pmcðx;y;s;aÞ ; ð27Þ

Fig 1. Plots of EGuNH density for a variety of parameter combinations.

https://doi.org/10.1371/journal.pone.0267142.g001

Fig 2. Plots of EGuNH density for a variety of parameter combinations.

https://doi.org/10.1371/journal.pone.0267142.g002
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Fig 3. Plots of EGuNH density for a variety of parameter combinations.

https://doi.org/10.1371/journal.pone.0267142.g003

Fig 4. Plots of EGuNH density for a variety of parameter combinations.

https://doi.org/10.1371/journal.pone.0267142.g004
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Fig 5. Plots of EGuNH hazard rate for a variety of parameter combinations.

https://doi.org/10.1371/journal.pone.0267142.g005

Fig 6. Plots of EGuNH hazard rate for a variety of parameter combinations.

https://doi.org/10.1371/journal.pone.0267142.g006
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Fig 8. Plots of EGuNH hazard rate for a variety of parameter combinations.

https://doi.org/10.1371/journal.pone.0267142.g008

Fig 7. Plots of EGuNH hazard rate for a variety of parameter combinations.

https://doi.org/10.1371/journal.pone.0267142.g007
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The result in (27) is the linear expansion of NH densities. Hence, we shall derive several core

properties of EGuNH using the major result of Eq 27.

Proposition 2.

Let W be a av with density ψ(x;m, α). Then, several properties of W can follow from those

of X. The sth ordinary moment of X can be written as

m0s ¼
X1

m¼2

Xm� 1

p¼0

mPmð� 1Þ
sþpþ1e pþ1

m � 1

p

� �

I ðs; 0; pþ 1Þ ; ð28Þ

wherePm ¼ ð� 1Þ
mþ2P1

i;j¼1

P1

k¼0

ð� 1Þiþj ji G½m� i=sðkþ1Þ�

i! j! G½� i=sðkþ1Þ�

y

s

� �
Pkð� i=sÞ and

Iðs; 0; pÞ ¼
Xs

l¼0

ð� 1Þ
s� l s

l

� �
g

l
a
þ 1; pþ 1

� �

Utilizing the results derived in Eq (19), the sth moments are defined in (28).

Proposition 3.

The sth incomplete moment expression can be written as

msðWÞ ¼
X1

m¼2

Xm� 1

p¼0

mPmð� 1Þ
sþpþ1e pþ1

m � 1

p

� �

Z ðs; xÞ ; ð29Þ

where

Zðs; xÞ ¼
Xs

l¼0

ð� 1Þ
s� l s

l

� �
G

l
a
þ 1; pþ 1ð1þ xÞa

� �

:

Following the results defined in Eq (21), the sth incomplete moments are defined in (29). The

skewness g1 ¼ k3=k
3=2

2 and kurtosis g2 ¼ k4=k
2
2

of X can be calculated from the third and

fourth standardized cumulants. The classical skewness (Fig 9) and kurtosis plots (Fig 10) of the

Fig 9. Bowley skewness of EGuNH.

https://doi.org/10.1371/journal.pone.0267142.g009
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EGuNH distribution are displayed. Additionally, we provide the graphical illustration of

MacGvillary skewness (MGs), which is based on quantile approach, in Figs 11 and 12. These

plots reveal that the parameters θ and σ play a decisive role in modeling the skewness and kur-

tosis behaviors of X.

Fig 10. Moors kurtosis of EGuNH.

https://doi.org/10.1371/journal.pone.0267142.g010

Fig 11. MacGillivray skewness of EGuNH for a variety of parameter combinations.

https://doi.org/10.1371/journal.pone.0267142.g011
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MacGillivray [35] proposed another method to evaluate the skewness measure based on the

qf and is defined as

MGs ¼
r1ðu; y;s; aÞ

r2ðu; y;s; aÞ
¼
Qð1 � uÞ þ QðuÞ � 2Qð1=2Þ

Qð1 � uÞ � QðuÞ
;

where u�(0, 1), Q(.) is the qf defined in (32).

The MG skewness plots are very sensitive for extremely small values of parameter θ and σ
which certainly signifies longer tails of EGuNH. Likewise, plots of the Lorenz (Fig 13) and

Bonferroni (Fig 14) curves of EGuNH distribution for some random values are displayed.

These plots reveal how the distribution parameters affect inequality measures which can be

used to establish some orderings, an essential feature for applied statisticians. Some descriptive

statistics related to EGuNH are presented in Tables 2 and 3, respectively.

3.3 Acturial measures EGuNH: Value at risk

The theory of finance is based upon risk evaluation. Investors are particularly interested to

invest in entities in which there is minimum risk (specified with high degree of confidence) of

losing money. In finance, value at risk (VaR) is the most extensively used metric for assessing

liability. It is also known as quantile risk measure or quantile premium principle of the distri-

bution of aggregate losses. It is characterised by a level of assurance “q” (usually at 95% and

99%). To a layman, VaR answers a simple question that “What is the worst case scenario that

can happen in a particular investment?”

Fig 12. MacGillivray skewness of EGuNH for a variety of parameter combinations.

https://doi.org/10.1371/journal.pone.0267142.g012
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Fig 14. Plots of the Bonferroni curves of EGuNH distribution.

https://doi.org/10.1371/journal.pone.0267142.g014

Fig 13. Plots of the Lorenz curves of EGuNH distribution.

https://doi.org/10.1371/journal.pone.0267142.g013
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If X has pdf (25), then VaR is the qth quantile of its cdf (24), defined as

VaRqðxÞ ¼ ½1 � log ð1 � e� f� log ð1� q1=yÞg� sÞ�
1=a
� 1 ð30Þ

3.4 Acturial measures EGuNH: Expected shortfall

Despite of the popularity of VaR measures, there are many shortcomings (see [36]). To counter

inherent problems in VaR, Artzner et al. [37, 38] proposed the use of expected shortfall (ES).

Expected shortfall quantifies the average loss in states beyond the VaR level. ES has a number

of aliases such as “conditional VaR”, “mean excess loss” or “tail VaR”. We define the ES as fol-

lows

ESqðxÞ ¼ E½XjX � VaRqðxÞ�

ESqðxÞ ¼
1

q

Z q

0

½1 � log ð1 � e� f� log ð1� q1=yÞg� sÞ�
1=a
� 1

� �
dx:

ð31Þ

For a combination of various parameter values, plots of VaRs (Fig 15) and ESs (Fig 16) are dis-

played respectively.

Table 2. Descriptive measures of EGuNH for some parameter values.

Parameter values Descriptives

(θ, σ, α) Q1 Q2 Q3 B M

(2.1, 0.1, 1.5) 0.275 0.294 0.311 −0.060 1.248

(2.1, 0.29, 1.5) 0.255 0.310 0.361 −0.041 1.231

(85.5, 0.979, 0.85) 1.990 2.182 2.395 0.053 1.241

(6.5, 0.33, 1.35) 0.39 0.436 0.482 −0.003 1.234

(1.5, 1.9, 2.15) 0.012 0.189 0.451 0.192 0.866

(0.91, 2.1, 1.5) 0 0.048 0.497 0.805 1.314

(1.7, 9.1, 1.5) 0 0.604 2.536 0.524 0.757

(0.7, 5.1, 1.3) 0 1.394 1.996 0.667 1.757

(1.7, 0.1, 0.85) 0 0.314 2.267 0.609 0.888

https://doi.org/10.1371/journal.pone.0267142.t002

Table 3. Moments and moment ratios of EGuNH for some parameter combinations.

Parameter values Moments and moments ratio

(θ, σ, α) E(x) E(x2) E(x3) E(x4) V(x) σ(x) CV CS CK
(0.83, 2.1, 1.5) 0.225 0.233 0.241 0.299 0.141 0.401 1.322 1.589 4.253

(0.91, 2.1, 1.5) 0.295 0.263 0.291 0.365 0.176 0.420 1.422 1.680 4.944

(1.7, 9.1, 1.5) 1.343 4.258 15.684 63.478 2.456 1.567 1.167 1.680 4.944

(2.1, 0.1, 1.5) 0.292 0.086 0.026 0.008 0.001 0.027 0.094 2.505 6.661

(2.1, 0.29, 1.5) 0.306 0.100 0.034 0.012 0.006 0.078 0.254 -0.285 2.957

(1.5, 1.9, 2.15) 0.597 0.767 1.219 2.205 0.410 0.640 1.072 88.455 47.815

(6.5, 0.33, 1.35) 0.436 0.194 0.089 0.041 0.005 0.068 0.157 -0.044 3.206

(85.5, 0.979, 0.85) 2.163 4.764 10.965 24.462 0.088 0.297 0.137 0.437 3.289

https://doi.org/10.1371/journal.pone.0267142.t003
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Fig 15. Plots of the VaR of EGuNH distribution for some random parameter values.

https://doi.org/10.1371/journal.pone.0267142.g015

Fig 16. Plots of the ES of EGuNH distribution for some random parameter values.

https://doi.org/10.1371/journal.pone.0267142.g016
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3.5 Parameter estimation of EGuNH

The log-likelihood function I for the vector of parameters Θ = (θ, σ, α)> for the model defined

in (25) is given by

n log ðaÞ þ n log ðyÞ � n log ðsÞ þ ðy � 1Þ
Xn

i¼1

log 1 � ef� log ð1� e1� ðxiþ1Þa Þg� 1=s
h i

�
Xn

i¼1

½� log f1 � e1� ðxiþ1Þag�
� 1=s
�
ðsþ 1Þ

s

Xn

i¼1

log � log f1 � e1� ðxiþ1Þag
� �

þ
Xn

i¼1

½1 � ðxi þ 1Þ
a
� þ ða � 1Þ

Xn

i¼1

log ðxi þ 1Þ ;

The components of the score vector U(Θ) are

Uy ¼
n
y
þ
Xn

i¼1

log 1 � ef� log f1� e1� ðxiþ1Þa gg� 1=s
h i

;

Us ¼
sþ 1

s

� �
Xn

i¼1

log � log f1 � e1� ðxiþ1Þag
� �

� s� 1
Xn

i¼1

log � log 1 � e1� ðxiþ1Þa
� �� �

�
n
s

þs� 2
Xn

i¼1

log ½� log f1 � e1� ðxiþ1Þag�½� log f1 � e1� ðxiþ1Þag�
� 1=s

þðy � 1Þ
Xn

i¼1

� log ½� log f1 � e1� ðxiþ1Þag�ef� log ð1� e1� ðxiþ1Þa Þg� 1=s

�½� log f1 � e1� ðxiþ1Þag�
� 1=s

s2½1 � ef� log ð1� e1� ðxiþ1Þa Þg� 1=s

�;

Ua ¼
n
a
þ
Xn

i¼1

ðxi þ 1Þ
a
� log xi þ 1ð Þ½ � �

sþ 1

s

� �
Xn

i¼1

e1� ðxiþ1Þaðxi þ 1Þ
alog ðxi þ 1Þ

½1 � e1� ðxiþ1Þa � log ½1 � e1� ðxiþ1Þa �

þ
Xn

i¼1

log xi þ 1ð Þ �
Xn

i¼1

e1� ðxiþ1Þaðxi þ 1Þ
alog xi þ 1ð Þ½� log f1 � e1� ðxiþ1Þag�

� 1
s� 1

s½1 � e1� ðxiþ1Þa �

þðy � 1Þ
Xn

i¼1

ðxi þ 1Þ
a
� log xi þ 1ð Þ½ �½� log f1 � e1� ðxiþ1Þag�

� 1
s� 1

�exp ½f� log ð1 � e1� ðxiþ1ÞaÞg
� 1=s
� ðxi þ 1Þ

a
þ 1�

�fs½1 � e1� ðxiþ1Þa �½1 � eð� log f1� e1� ðxiþ1Þa gÞ� 1=s

�g :

The MLE Ŷ of Θ can also be obtained by solving the nonlinear equations Uθ = 0, Uσ = 0 and

Uα = 0. Because these equations cannot be solved analytically, the estimates can be calculated

numerically using statistical software.

3.6 Simulation study of EGuNH distribution

The qf of the EGuNH distribution has an explicit form as follows

QðuÞ ¼ ½1 � log ð1 � e� f� log ð1� u1=yÞg� sÞ�
1=a
� 1: ð32Þ

Here, we use Monte Carlo simulations to demonstrate the performance and correctness of

maximum likelihood estimations of the EGuNH parameters by inverting Eq (24) to generate a

sample data from the model. The simulation study is perform for sample sizes n = 50, 100, 200,

500, and parameter combinations: I: θ = 0.2, σ = 0.75 and α = 0.5, II: θ = 2.2, σ = 0.45 and α =
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0.5, III: θ = 3.4, σ = 0.75 and α = 1.5 and IV: θ = 3.4, σ = 1.35 and α = 1.5. This study is carried

out for N = 2000 times, each with given n and computed the average estimates (AEs) as well as

their average biases (Bias), mean squared errors (MSEs) and coverage probabilities (CPs) of

the MLEs.

BiasðŷÞ ¼
XN

i¼1

ŷi
N
� y ;

MSEðŷÞ ¼
XN

i¼1

ðŷi � yÞ
2

N

CPsðŷÞ ¼
XN

i¼1

½fŷi � ð1:95996� SEŷi Þg; fŷi þ ð1:95996� SEŷi Þg�
N

The AEs, Bias, MSEs and CPs for the parameters θ, σ and α are given in Tables (4)–(7). The

empirical findings suggests that the bias and MSEs decreases as sample size increases. Further,

the empirical CPs are quite close to the nominal level of 95%. As a result, MLEs and their

approximate findings can be used to evaluate and build approximated confidence intervals of

the EGuNH distribution parameters θ, σ and α.

Table 4. AEs, Biases, MSEs and CPs for combination-I.

n = 50 n = 100

AEs Bias MSEs CPs AEs Bias MSEs CPs

θ 0.279 0.081 0.447 0.99 0.274 0.074 0.436 0.98

σ 0.927 -1.661 0.691 1.00 0.895 -1.651 0.683 0.97

α 0.925 -0.241 0.494 0.98 0.817 -0.203 0.441 0.92

n = 200 n = 500

AEs Bias MSEs CPs AEs Bias MSEs CPs

θ 0.272 0.072 0.429 0.96 0.272 0.051 0.297 0.94

σ 0.784 -1.350 0.669 0.95 0.757 -1.115 0.662 0.95

α 0.629 -0.220 0.359 0.95 0.548 -0.204 0.320 0.96

https://doi.org/10.1371/journal.pone.0267142.t004

Table 5. AEs, Biases, MSEs and CPs for combination-II.

n = 50 n = 100

AEs Bias MSEs CPs AEs Bias MSEs CPs

θ 2.307 -0.031 0.027 1.00 2.197 -0.023 0.012 0.92

σ 0.499 -0.021 0.011 0.91 0.495 -0.005 0.002 0.98

α 0.511 0.018 0.018 0.99 0.510 0.010 0.005 0.93

n = 200 n = 500

AEs Bias MSEs CPs AEs Bias MSEs CPs

AEs Bias MSEs CPs AEs Bias MSEs CPs

θ 2.196 -0.014 0.002 0.97 2.198 -0.011 0.001 0.95

σ 0.501 0.001 0.001 0.95 0.498 0.001 0.001 0.94

α 0.508 0.008 0.003 0.94 0.501 0.000 0.002 0.95

https://doi.org/10.1371/journal.pone.0267142.t005
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4 Applications of the EGuNH distribution

Statistical methods that fail to account for all of the uncertainties in the model are prone to

produce an overly optimistic assessment of future extremes, are frequently contradicted by

observed extreme events in a variety of scientific fields. The current literature regarding

extreme value theory is full of such models in which data sets are meteorology data such as

earthquakes, floods, rains, droughts, hurricanes etc. (see [15–32]). On the contrary, health haz-

ards is an area of extreme value theory which should be explored. Death, damage, or disease;

exacerbation of underlying medical disorders; and negative effects on mental health are some

of the health hazards of climate-related increases in exposure to extreme occurrences.

In this section, we provide some applications of the EGuNH model on three real life phe-

nomenons, two of which related to health hazards in extreme value theory. We estimate the

unknown parameters of the distributions by the principal of maximum likelihood. We com-

pute the log-likelihood function evaluated at the MLEs (� ‘̂) using the method of a limited-

memory quasi-Newton code for bound-constrained maximization (L-BFGS-B). In order to

select the best probability model, a variety of criteria for evaluating information (ICs) can be

considered. We considered the following well-known ICs: the maximized log-likelihood (� ‘̂),

Akaike Information criterion (AIC), Anderson-Darling (A?), Cramér-von Mises (W?) and

Kolmogorov-Smirnov measures (D?; P-value (p?)), where lower values of all these statistics

except higher p? values of K-S, indicate good fits. The required computations are carried out

using the R script AdequacyModel which is freely accessible from http://cran.r-project.org/

web/packages/AdequacyModel/AdequacyModel.pdf.

Table 6. AEs, Biases, MSEs and CPs for combination-IV.

n = 50 n = 100

AEs Bias MSEs CPs AEs Bias MSEs CPs

θ 3.507 -0.201 0.027 0.98 3.405 -0.123 0.019 0.93

σ 0.769 0.021 0.015 0.97 0.761 0.010 0.013 0.99

α 2.541 0.058 0.023 0.90 2.130 0.030 0.018 0.97

n = 200 n = 500

AEs Bias MSEs CPs AEs Bias MSEs CPs

AEs Bias MSEs CPs AEs Bias MSEs CPs

θ 3.405 -0.014 0.010 0.96 3.401 -0.011 0.007 0.96

σ 0.755 0.005 0.006 0.94 0.753 0.003 0.004 0.95

α 1.615 0.015 0.004 0.96 1.511 0.011 0.002 0.94

https://doi.org/10.1371/journal.pone.0267142.t006

Table 7. AEs, Biases, MSEs and CPs for combination-IV.

n = 50 n = 100

AEs Bias MSEs CPs AEs Bias MSEs CPs

θ 3.877 -0.281 0.097 0.97 3.595 -0.223 0.019 0.92

σ 0.889 0.021 0.025 1.00 0.827 0.010 0.020 0.94

α 2.541 0.058 0.033 0.97 2.230 0.030 0.028 0.99

n = 200 n = 500

AEs Bias MSEs CPs AEs Bias MSEs CPs

θ 3.495 -0.019 0.010 0.96 3.410 -0.013 0.009 0.95

σ 0.765 0.005 0.016 0.97 0.751 0.003 0.008 0.96

α 1.915 0.015 0.014 0.95 1.507 0.011 0.010 0.95

https://doi.org/10.1371/journal.pone.0267142.t007
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The fits of the EGuNH distribution is compared with other competitive models which are

given in Table 8. The parameters are all positive real numbers of these densities.

4.1 Meteorology data

Meteorological phenomena are weather events that most individuals are affected by, due to

changes in extreme weather and climatic events, such as earthquakes, heat waves, floods, hurri-

canes, droughts etc. The present data is taken from [44], denoted by D1, gives the time in days

between successive serious earthquakes world-wide. An earthquake is included if its magni-

tude was at least 7.5 on the Richter scale, or if over 1000 people were killed. There were 63

earthquakes recorded altogether, and so 62 recorded waiting times. The data are: 840, 157,

145, 44, 33, 121, 150, 280, 434, 736, 584, 887, 263, 1901, 695, 294, 562, 721,40, 1336, 335, 1354,

454,139, 780, 203, 436, 30, 246, 1617, 638, 937, 735,76, 710, 36, 667,384, 129, 46, 402, 194, 40,

556, 99, 9, 209, 599, 38, 365, 92, 82, 220, 759, 304, 83, 319, 375, 832, 460, 567, 328.

4.2 Cancer data

According to [45], extreme events have the potential to disrupt the delivery of cancer care. For

example, some deadly carcinogens may be released into communities as a result of hurricanes

and wild fires; industry shutdowns may result in a shortage of life-saving medical equipment

in hospitals, causing shortages in cancer facilities across the country; and infrastructure col-

lapse may limit access to patients undergoing cancer therapies. The following two data,

denoted by cancer 1 (D2) and cancer 2 (D3) are related to cancer patients.

Cancer data 1. The survival times, in weeks, of 33 patients who succumbed to Acute Mye-

logenous Leukemia are the subject of D2. This data was recently studied by the authors in [46]

The data are: 65, 156, 100, 134, 16, 108, 121, 4,39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22,

3, 4, 2, 8, 4, 3, 30, 4,43.

Cancer data 2. D3 signifies the number of patients suffering from blood cancer. The Saudi

Cancer Registry (SCR) provides such information, covering the time period from 1994 to the

present day. The data is extracted from a report [47] which concerns an overview of cancer

incidence statistics for Saudi Arabia in 2012. The data are: 1277, 1290, 1357, 1369, 1408, 1455,

1478, 1549, 115, 181, 255, 418, 441, 461, 516, 739, 743, 789, 807, 865, 924, 983, 1024, 1062,

1063, 1165, 1191, 1222, 1222, 1251, 1578, 1578, 1599, 1603, 1605, 1696, 1735, 1799, 1815, 1852.

The descriptive statistics for each of the three data sets are given in Table 9.

Table 9. The descriptive statistics related to D1, D2 and D3.

Data Sample Size Arithmetic Mean Standard Deviation Lowest Highest Skewness Kurtosis

1 62 437.21 399.93 9 1901 1.50 2.52

2 32 42.07 46.95 1 156 1.12 0.03

3 40 1137 481.60 115 1852 -0.49 -0.73

https://doi.org/10.1371/journal.pone.0267142.t009

Table 8. The comparative fitted models.

Distribution Author(s)

GaNH Cordiero et al., (2015) [31]

LxNH Ramirez et al., (2020) [39]

TLNH Yuwadee Sangsanit and Winai Bodhisuwan, (2016) [40]

ENH Lemonte et al., (2013) [41]

MONH Lemonte et al., (2016) [42]

NH Nadarajah and Haghighi, (2011) [43]

https://doi.org/10.1371/journal.pone.0267142.t008
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The empirical findings of all the three data are suggestive of the heavy tailed data. The TTT

plots Figs (17)–(19) for the data sets are given. In particular, the TTT plots show bathtub,

increasing and decreasing hrf, allowing us to fit EGuNH model on these data sets. The approxi-

mated hrf Figs (20)–(22) for each data point correlates to the TTT graphs. Table 10 summarizes

Fig 18. TTT plot for D2.

https://doi.org/10.1371/journal.pone.0267142.g018

Fig 17. TTT plot for D1.

https://doi.org/10.1371/journal.pone.0267142.g017
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the results of the MLEs and their related standard errors (in parentheses) of the model parame-

ters for the proposed model while the ICs are listed in Table 11 for the D1, D2 and D3, respec-

tively. It is customary to supplement the analytical result defined in Tables 9 and 10, by

displaying it graphically. Hence, the estimated pdfs Figs (23)–(25), PP–plots Figs (26)–(28),

Fig 19. TTT plot for D3.

https://doi.org/10.1371/journal.pone.0267142.g019

Fig 20. Estimated hrf for D1.

https://doi.org/10.1371/journal.pone.0267142.g020
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Fig 21. TTT plot for D2.

https://doi.org/10.1371/journal.pone.0267142.g021

Fig 22. Estimated hrf plots for D3.

https://doi.org/10.1371/journal.pone.0267142.g022
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Table 10. MLEs with their respective SEs (in parenthesis) for D1, D2 and D3.

Data 1 Data 2 Data 3

Distribution MLEs MLEs MLEs

EGuNH 3.655,11.787,0.275 0.071,0.031,0.076 22.753,20.069,0.469

(θ,σ,α) (2.217),(2.371),(0.073) (0.015),(0.003),(0.001) (5.093),(2.193),(0.011)

ENH 1.285,0.764,0.004 1.256,1.716,0.011 4.515,0.971,0.002

(θ,α,λ) (0.229),(0.117),(0.001) (0.178),(0.556),(0.005) (0.987),(0.066),(0.002)

GaNH 0.295,7.164,3.874 1.6,1.256,0.013 1.146,3.802,0.002

(θ,aα,λ) (1.018),(6.192),(2.987) (0.542),(0.174),(0.007) (0.094),(0.615),(0.518)

LxNH 8.918,0.080,18.577 1.470,3.660,0.006 13.499,0.111,0.456

(θ,α,λ) (3.211),(0.027),(58.410) (0.126),(0.930),(0.002) (3.672),(0.025),(0.643)

TLNH 1.499,0.600,0.003 1.374,1.5490.007 11.215,0.371,0.009

(θ,α,λ) (0.262),(0.084),(0.987) (0.173),(0.405),(0.003) (6.699),(0.072),(0.017)

MONH 5.162,0.886,0.003 3.067,0.962,0.038 42.021,0.827,0.005

(θ,α,λ) (0.559),(0.131),(0.001) (0.159),(0.560),(0.055) (2.127),(0.081),(0.311)

NH 1.054,0.212 2.616,0.006 0.067,158.079

(α,λ) (0.104),(0.298) (0.728),(0.012) (0.095),(89.711)

https://doi.org/10.1371/journal.pone.0267142.t010

Table 11. The statistics � ‘̂, AIC, BIC, A?, W?, D? and p? for D1, D2 and D3.

Distribution � ‘̂ AIC BIC A? W? D? p?

Data set 1

EGuNH 441.19 889.90 896.33 0.41 0.05 0.08 0.79

GaNH 444.78 895.56 901.94 1.05 0.17 0.11 0.54

LxNH 448.86 903.71 910.14 1.58 0.25 0.18 0.45

TLNH 442.73 891.24 897.67 0.61 0.09 0.10 0.68

ENH 442.67 890.98 897.74 0.46 0.07 0.09 0.77

MONH 441.90 890.14 897.01 0.34 0.05 0.09 0.78

NH 442.27 891.75 897.15 0.31 0.06 0.08 0.78

Data set 2

EGuNH 149.027 304.054 308.451 0.567 0.08 0.111 0.817

GaNH 150.203 306.406 310.803 0.588 0.09 0.122 0.729

LxNH 152.672 311.345 315.741 0.860 0.14 0.126 0.687

TLNH 150.104 306.205 310.602 0.565 0.08 0.127 0.681

ENH 150.101 306.202 310.599 0.581 0.08 0.126 0.692

MONH 150.036 306.071 310.468 0.593 0.09 0.143 0.534

NH 152.875 310.751 312.005 0.636 0.10 0.159 0.487

Data set 3

EGuNH 307.586 621.173 626.240 1.401 0.226 0.151 0.317

ENH 310.775 627.566 632.616 1.912 0.319 0.199 0.084

GaNH 308.249 622.499 627.566 1.494 0.243 0.155 0.284

LxNH 313.300 632.601 637.668 2.176 0.369 0.172 0.183

TLNH 316.845 639.691 644.757 2.868 0.500 0.184 0.131

MONH 307.698 622.019 627.107 1.626 0.235 0.161 0.289

NH 400.885 805.770 809.184 2.518 0.433 0.607 0.000

https://doi.org/10.1371/journal.pone.0267142.t011
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Fig 23. Estimated density for D1.

https://doi.org/10.1371/journal.pone.0267142.g023

Fig 24. Estimated plots of density for D2.

https://doi.org/10.1371/journal.pone.0267142.g024
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Fig 25. Estimated density plot for D3.

https://doi.org/10.1371/journal.pone.0267142.g025

Fig 26. PP plot for D1.

https://doi.org/10.1371/journal.pone.0267142.g026
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estimated cdfs Figs (29)–(31) and estimated sfs Figs (32)–(34) for the three data sets are given.

On the given data sets, the numerical values authenticates that the EGuNH model provides the

best fit as compared to the other models.

Fig 27. PP plot for D2.

https://doi.org/10.1371/journal.pone.0267142.g027

Fig 28. PP plot for D3.

https://doi.org/10.1371/journal.pone.0267142.g028
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Fig 29. Estimated cdf plot for D1.

https://doi.org/10.1371/journal.pone.0267142.g029

Fig 30. Estimated cdf plot for D2.

https://doi.org/10.1371/journal.pone.0267142.g030
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Fig 31. Estimated cdf plot for D3.

https://doi.org/10.1371/journal.pone.0267142.g031

Fig 32. Estimated sf plot for D1.

https://doi.org/10.1371/journal.pone.0267142.g032
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Fig 33. Estimated sf plot of density for D2.

https://doi.org/10.1371/journal.pone.0267142.g033

Fig 34. Estimated sf plot for D3.

https://doi.org/10.1371/journal.pone.0267142.g034
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The variance-covariance matrices of the MLEs of the EGuNH distribution for D1 is

1:38801706 0:837248478 6:020134

0:83724848 0:004203568 � 3:061557

6:02013423 � 3:061556821 5:029424

0

B
B
B
@

1

C
C
C
A

Table 12. Numerical measures of VaRs and ESs of EGuNH for D1, D2 and D3.

LoS Data 1 Data 2 Data 3

VaRs ESs VaRs ESs VaRs ESs

0.55 327.4119 146.4568 37.86083 12.29339 1125.354 727.9202

0.60 373.4939 163.4189 45.77802 14.74769 1201.044 764.1592

0.65 425.7544 181.5435 54.61479 17.46849 1282.559 800.8571

0.70 486.2076 201.0896 64.41790 20.46624 1372.164 838.4086

0.75 557.9849 222.4155 75.25685 23.75171 1473.216 877.2859

0.80 646.3563 246.0443 87.25890 27.33904 1591.174 918.1102

0.85 761.2607 272.8042 100.69662 31.25081 1736.442 961.7964

0.90 925.2607 304.1764 116.24233 35.52842 1927.397 1009.9029

0.95 1210.5273 343.4825 136.04737 40.26890 2210.153 1065.6140

https://doi.org/10.1371/journal.pone.0267142.t012

Fig 35. Estimated VaRs for D1.

https://doi.org/10.1371/journal.pone.0267142.g035
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The variance-covariance matrices of the MLEs of the EGuNH distribution for D2 is

2:38801706 � 0:53724008 3:02013423

� 0:53724008 1:114203508 0:9611556827

3:02013423 0:911556827 11:55029424

0

B
B
B
@

1

C
C
C
A

The variance-covariance matrices of the MLEs of the EGuNH distribution for D3 is

0:38801706 � 0:037248478 9:020134

� 0:03724848 0:004203568 � 5:061557

9:02013423 � 5:061556821 15:029424

0

B
B
B
@

1

C
C
C
A

4.2.1 Numerical calculations of VaRs and ESs. We were able to further investigate

EGuNH’s application to these risk measures thanks to the results reported in Section 4. To

quantify the volatility associated with these measures, we take the values of MLEs of D1, D2

and D3., respectively, from Table 11. Higher risk measures indicate heavier tails, while lower

risk measures indicate a model with a much lighter tail tendency. It’s pertinent to mention that

the EGuNH model yielded significantly more impressive results than others, implying that the

model has a longer tail. The numerical findings of VaRs and ESs for data 1, data 2, and data 3

Fig 36. Estimated VaRs for D2.

https://doi.org/10.1371/journal.pone.0267142.g036
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Fig 38. Estimated ES for D1.

https://doi.org/10.1371/journal.pone.0267142.g038

Fig 37. Estimated VaRs for D3.

https://doi.org/10.1371/journal.pone.0267142.g037
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Fig 39. Estimated ES for D2.

https://doi.org/10.1371/journal.pone.0267142.g039

Fig 40. Estimated ES for D3.

https://doi.org/10.1371/journal.pone.0267142.g040
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of the proposed model at respective level of significance (LoS) are shown in Table 12. The sum-

marized output of these risk measures (VaRs in Figs 35–37 and ESs in Figs 38–40), graphically,

for the reader’s expedience.

5 Concluding remarks

We propose and study the EGuG model and obtain a wide range of mathematical and statisti-

cal modelling methods to characterisethe model’s structural and dynamic aspects including

properties such as quantile function, ordinary and incomplete moments, mean deviations,

bonferroni and lorenz curves, generating function and order statistics. The parameters of the

family are estimated by the method of maximum likelihood. An extended exponential distri-

bution is taken as baseline model to propose EGuNH distribution. Some simulations are per-

formed to check the asymptotic properties of the estimates. Three applications to real data set

are presented to illustrate the potentiality of the proposed models. For future research, the pro-

posed model can further be extended using compounding. We expect that the modification

may facilitate in estimating analytically tractable Bayesian estimates of the reliability function

under different priors.
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