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The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes

coronavirus disease 2019 (COVID-19) through excessive end organ inflammation.

Despite improved understanding of the pathophysiology, management, and the great

efforts worldwide to produce effective drugs, death rates of COVID-19 patients remain

unacceptably high, and effective treatment is unfortunately lacking. Pharmacological

strategies aimed at modulating inflammation in COVID-19 are being evaluated worldwide.

Several drug therapies targeting this excessive inflammation, such as tocilizumab, an

interleukin (IL)-6 inhibitor, corticosteroids, programmed cell death protein (PD)-1/PD-L1

checkpoint inhibition, cytokine-adsorption devices, and intravenous immunoglobulin

have been identified as potentially useful and reliable approaches to counteract the

cytokine storm. However, little attention is currently paid for non-drug therapeutic

strategies targeting inflammatory and immunological processes that may be useful for

reducing COVID-19-induced complications and improving patient outcome. Vagus nerve

stimulation attenuates inflammation both in experimental models and preliminary data

in human. Modulating the activity of cholinergic anti-inflammatory pathways (CAPs)

described by the group of KJ Tracey has indeed become an important target of

therapeutic research strategies for inflammatory diseases and sepsis. Non-invasive

transcutaneous vagal nerve stimulation (t-VNS), as a non-pharmacological adjuvant, may

help reduce the burden of COVID-19 and deserve to be investigated. VNS as an adjunct

therapy in COVID-19 patients should be investigated in clinical trials. Two clinical trials

on this topic are currently underway (NCT04382391 and NCT04368156). The results of

these trials will be informative, but additional larger studies are needed.

Keywords: COVID-19, cytokine storm, inflammation, non-drug therapy, vagus nerve stimulation, neuromodulation,

outcome

INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) faced currently worldwide includes in its pathophysiology
an excessive inflammatory phase called “cytokine storm” that is closely linked to its high mortality
(1, 2). During sepsis, the host response to a pathogen is mediated by the interaction between
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pathogen-associated molecular pattern and their receptors
located on innate immune cells (3). This interaction leads to
activation of the innate immune cell, release of inflammatory
cytokines, and recruitment of further cells of the immune
system (4). When this immune response is exaggerated, excessive
inflammation may lead to end tissue damage. All major organs
may be affected during sepsis including altered hypothalamic–
pituitary–adrenal and altered cardiovascular responses (5, 6).
Disruption of the hypothalamic–pituitary–adrenal axis may
translate in patients with sepsis into cardiovascular and organ
dysfunction and an increase in the risk of death (5, 6). Impaired
heart rate variability and high concentrations of circulating
catecholamines and impaired sympathetic modulation are
common findings of septic and septic shock patients, reflecting
dysfunction of the medullary autonomic centers (7) and
suggesting that central autonomic regulatory impairment
contributes to circulatory failure (8–10). Clinical patterns
concordant with these hypotheses have been documented in
COVID-19 patients and support the hypothesis of a potential
contribution of a dysfunction in autonomic tone to the cytokine
release syndrome and related multiorgan damage in COVID-
19 (11–17).

Specific treatment for COVID-19 is unfortunately
lacking (18, 19). However, given the high mortality rate
and economic damage to date, great efforts are being made
worldwide to produce successful drugs (20). Particularly,
pharmacological strategies that restore inflammatory
control or inhibit cytokine release are being evaluated
(21–23). Several drug therapies targeting this excessive
inflammation, such as tocilizumab, an interleukin (IL)-6
inhibitor, corticosteroids, programmed cell death protein
(PD)-1/PD-L1 checkpoint inhibition, cytokine-adsorption
devices, and intravenous immunoglobulin have been
identified as potentially useful and reliable approaches
to counteract cytokine storm in COVID-19 patients
(1, 2, 18, 24–32). Little attention is currently paid for non-
drug therapeutic strategies targeting inflammatory and
immunological processes that may be useful for reducing
COVID-19-induced complications and improving patient
outcome (33–35).

VAGUS NERVE STIMULATION A

POTENTIAL ADJUNCT THERAPY IN

COVID-19

Modulating the activity of cholinergic anti-inflammatory
pathways (CAPs) described by the group of KJ Tracey (36–44)
has indeed become an important target of therapeutic research
strategies for inflammatory diseases and sepsis (37, 38, 45–47). In
fact, the CAP pathways innervate the spleen through the efferent
vagus nerve and the splenic nerve relay and act on macrophages
by transforming adrenergic stimulation into a cholinergic signal
by the T cells of the spleen, which plays an anti-inflammatory
effect (48).

About 80% of the vagus nerve is composed of afferent
sensory fibers carrying information from the periphery to

the brain (49). Within the central nervous system, the vagus
primarily projects to the nucleus of the solitary tract (NTS),
releasing excitatory neurotransmitters (glutamate and aspartate),
inhibitory neurotransmitter (gamma-aminobutyric acid), acetyl-
choline, norepinephrine, and neuropeptides implicated in signal
transduction (49). In turn, the NTS has widespread efferent
pathways to the parabrachial nucleus, reticular formation,
basal forebrain, amygdala, hippocampus, hypothalamus, dorsal
raphe, cerebellum, and spinal cord (50). NTS projections to
brainstem nuclei (locus coeruleus and dorsal raphe magnus)
modulate serotonin and norepinephrine release to the entire
brain (51). Through efferent and afferent fibers, the vagus nerve
plays a role in maintaining cardiovascular homeostasis and in
modulating inflammation (52). The autonomic nervous system
regulates the production of cytokines, through interactions
with the hypothalamic–pituitary–adrenal axis, leading to the
release of anti-inflammatory glucocorticoid hormones. Vagal
efferent fibers also release acetylcholine (Ach), which, by
interacting with α7-subunit-containing nicotinic receptors found
in tissue macrophages, and dendritic cells, inhibit the release of
proinflammatory cytokines such as tumor necrosis factor alpha
(TNFα), IL-1β, IL-6, and IL-18 (36, 53). Inflammatory reflex
signaling, which is enhanced by electrically stimulating the vagus
nerve, significantly reduces cytokine production and attenuates
disease severity in animal models of inflammatory diseases
and in experimental models of sepsis (36, 54–57). Electrical
stimulation of the vagus nerve attenuates inflammation in a
variety of pathological conditions with little side effects (36, 58,
59). Recently, Meneses and colleagues demonstrated that vagus
nerve stimulation attenuates the inflammatory response in the
central nervous system induced by peripheral lipopolysaccharide
challenge in rats (60). Kohoutova and colleagues recently
demonstrated that vagus nerve stimulation attenuates multiple
organ dysfunction in a porcine model of sepsis (61). These
findings suggest that VNS could be a promising adjunctive
therapy targeting inflammatory pathways in COVID-19 patients.
VNS might attenuate sepsis-related inflammatory processes
leading to endothelial activation, impaired microcirculation,
multiorgan failure, and death. VNS may also exhibit favorable
cardiovascular effects during sepsis, including antiarythmogen,
decreased myocardial oxygen consumption, and improved
diastole (62). Vagus nerve stimulation has a favorable safety
track record. Implanted VNS devices have been used for decades
to treat refractory partial-onset seizures and severe recurrent
refractory depression with confirmed safety and only mild
to moderate side effects that are predictable improve over
time (63–65). More recently, non-invasive transcutaneous vagus
nerve stimulation devices (t-VNS) have been developed and
commercialized (66). Evidence from preclinical models (61, 67)
as well as from several clinical reports (47, 68) is accumulating
(68–72). Boezaart and Botha reported a drastic reduction of
two COVID-19 patients treated with t-VNS (69). Non-invasive
VNS as adjunct therapy in COVID-19 patients might alleviate
organ dysfunction and improve patients’ outcome. Randomized
controlled studies assessing the effectiveness of non-invasive
vagus nerve stimulation as adjunct therapy to current best
medical practice for COVID-19 are needed (72). Two studies
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evaluating the efficacy of non-invasive VNS in COVID-19
patients are now on going using the gammaCore R© non-invasive
vagal nerve stimulation device. The gammaCore R© (electroCore,
Inc., Basking Ridge, NJ) is handheld and requires no surgery
or implants. The device is applied by healthcare providers
or patients to the skin at the neck over the vagus nerve to
deliver periodic doses of VNS non-invasively. Tariq Cheema and
colleagues are conducting a prospective, randomized, controlled
investigation designed to assess the reduction in respiratory
distress in a COVID-19 population: the SAVIORII study
NCT04382391. The primary objective is to reduce initiation of
mechanical ventilation in patients with COVID-19 compared to
the control group. Secondary objectives are to evaluate cytokine
trends/prevent cytokine storms, evaluate supplemental oxygen
requirements, decrease mortality of COVID-19 patients, and
delay the onset of mechanical ventilation. The second ongoing
clinical trial using the same device is conducted by Carlos
Tornero and colleagues NCT04368156: the SAVIOR study. The
SAVIOR study is a prospective, randomized, controlled study
assessing vagus nerve stimulation in COVID-19 respiratory
symptoms (72). The primary outcome measures were incidence
of changes in specific clinical events such as the proportion
of subjects requiring mechanical ventilation, days to onset
of mechanical ventilation, oxygen support requirements, O2

saturation, pain levels, PaO2/FiO2, coagulation, laboratory
measurements related to circulating cytokines and inflammation,
live discharge from the hospital, patient length of stay, mortality,
need for intensive care, shortness of breath, device-related
serious adverse events, and adverse events. The results of
these trials will be informative, but additional, larger, studies
are needed.

DISCUSSION

COVID-19 remains a major healthcare issue worldwide.
Excessive inflammation and its end organ consequences are key

elements in the pathogenesis of COVID-19-induced multiple
organ dysfunction (19, 26, 32). Specific treatment for COVID-
19 is unfortunately lacking. Several promising pharmacological
strategies aimed at modulating inflammation in COVID-19
are being evaluated worldwide. However, little attention is
currently paid for non-drug therapeutic strategies targeting
inflammatory and immunological processes, which may be
useful for reducing COVID-19-induced complications and
improving patient outcome (33–35). Vagal neurostimulation
has a wide field of therapeutic benefit for patients and should
be combined with the best current medical strategies (15, 17,
69, 70). Vagus nerve stimulation attenuates inflammation both
in experimental models and preliminary data in man. The
development non-invasive vagal nerve stimulation (t-VNS), a
non-pharmacological adjuvant, may help reduce the burden of
COVID-19 and deserve to be investigated. The aim of this paper
is to promote the emergence of original studies assessing non-
invasive VNS as an adjuvant treatment for the management
of COVID-19.
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