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Osteoarthritis of the 
Temporomandibular Joint can be 
diagnosed earlier using biomarkers 
and machine learning
Jonas Bianchi1,2 ✉, Antônio Carlos de Oliveira Ruellas1, João Roberto Gonçalves2, 
Beatriz Paniagua3, Juan Carlos Prieto4, Martin Styner4, Tengfei Li5, Hongtu Zhu5, 
James Sugai6, William Giannobile6, Erika Benavides6, Fabiana Soki6, Marilia Yatabe1, 
Lawrence Ashman7, David Walker8, Reza Soroushmehr9, Kayvan Najarian9 & 
Lucia Helena Soares Cevidanes1

After chronic low back pain, Temporomandibular Joint (TMJ) disorders are the second most common 
musculoskeletal condition affecting 5 to 12% of the population, with an annual health cost estimated 
at $4 billion. Chronic disability in TMJ osteoarthritis (OA) increases with aging, and the main goal is to 
diagnosis before morphological degeneration occurs. Here, we address this challenge using advanced 
data science to capture, process and analyze 52 clinical, biological and high-resolution CBCT (radiomics) 
markers from TMJ OA patients and controls. We tested the diagnostic performance of four machine 
learning models: Logistic Regression, Random Forest, LightGBM, XGBoost. Headaches, Range of mouth 
opening without pain, Energy, Haralick Correlation, Entropy and interactions of TGF-β1 in Saliva and 
Headaches, VE-cadherin in Serum and Angiogenin in Saliva, VE-cadherin in Saliva and Headaches, PA1 
in Saliva and Headaches, PA1 in Saliva and Range of mouth opening without pain; Gender and Muscle 
Soreness; Short Run Low Grey Level Emphasis and Headaches, Inverse Difference Moment and Trabecular 
Separation accurately diagnose early stages of this clinical condition. Our results show the XGBoost + 
LightGBM model with these features and interactions achieves the accuracy of 0.823, AUC 0.870, and 
F1-score 0.823 to diagnose the TMJ OA status. Thus, we expect to boost future studies into osteoarthritis 
patient-specific therapeutic interventions, and thereby improve the health of articular joints.

Osteoarthritis (OA) affects millions of people worldwide, causing them many years with pain and disability1. 
Trends in the global burden of the disease from 1990 to 2016 show that OA is the second most rapidly rising con-
dition associated with disability, with a 46 percent increase in years lived with disability, just behind diabetes at 52 
percent2. With the aging population and higher rates of obesity, this burden is expected to rise. The rapid increase 
in the prevalence of OA will lead to a growing impact and major challenges for health care and public health sys-
tems. OA can occur in different joints in the musculoskeletal system, such as the knee, hips, back, hand, and tem-
poromandibular joint (TMJ), having a multifactorial etiology that includes: excessive mechanical stress, hormonal 
changes, genetics, aging and others3–5. The TMJ is a unique model to study early bone changes in OA, as the articu-
lar bone surface is covered only by a thin layer of fibrocartilage in the TMJ condyle. Osteoarthritis of the TMJ (TMJ 
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OA) is a multi-system disease, involving numerous pathophysiological processes, and requiring comprehensive 
assessments to characterize progressive cartilage degradation, subchondral bone remodeling, and chronic pain4,6–8.

Studies using in vivo OA disease models now benefit from high-resolution cone-beam tomography imag-
ing (HR-CBCT)9. HR-CBCT scans allow diagnosis of the bone environment with sub-millimeter resolution 
comparable to micro-CT, but with a much lower radiation dose10, and have been widely used by clinicians and 
researchers11–14. As treatments to reverse the chronic damage of TMJ OA are unavailable, early diagnosis may 
provide the best opportunity to prevent extensive and permanent joint damage. However, current diagnosis is 
based on pre-existent clinical/imaging signs and symptoms markers using standard protocols recommended for 
Diagnostic Criteria for Temporomandibular Disorders (DC/TMD), meaning to diagnose TMJ OA degradation 
of the joint must have already occurred15,16. The DC/TMD criteria are based on pre-existent condylar damage, 
such as subcortical cysts, surface erosions, osteophytes, or generalized sclerosis that are present mainly in the later 
stages of the disease. Towards an early diagnosis that is predictive of disease status, animal studies indicate that the 
bone microarchitecture6,8,17,18 is an important factor in the OA pathogenesis initiation, preceding articular carti-
lage changes17,19, and should be investigated in human studies. There is an estimated increase in OA prevalence 
over the next decades, which reflects in more data acquisition, demanding advances in computational machine 
learning and data management20–22. For this reason, there is a need for precise data mining algorithms, data cap-
ture, standardization, management and processing from multiple centers to provide personalized treatment and 
diagnosis15,20,22–25. For disease diagnosis, machine learning approaches have been applied in the medical field26–29. 
Most of the studies have pointed out algorithms and multi-source biomarkers to predict the disease status, such 
as XGBoost30, LightGBM31, deep learning algorithms32, random forest algorithms27, etc. The models have been 
tested with different features, including radiographic and magnetic resonance (MRI) data33,34, proteomics28, and 
clinical information27 for creating patient-specific prediction models23. However, most studies addressed the OA 
involvement in the knee. For the temporomandibular joint, we found two studies that were done by our group 
evaluating only the morphological changes in mandibular condyles35,36. In addition, most of the literature is 
focused on multi-center database, or late stages of OA (chronic stages) assessed using routine exams. Here, we 
addressed surrogate biomarkers such as the radiomics, which can be useful to explore the subchondral bone 
organization and maybe play a pivotal role in a true early diagnosis of the TMJ OA.

We propose novel standardized data representation/processing, statistical learning, and interactive visualiza-
tion to fully explore biomarker interactions to disease and health. Our data-driven approaches integrate infor-
mation patterns to provide new insights into the complex etiology of TMJ OA37. Data management includes 
standardized imaging38, clinical15 and biomolecular39 acquisition, and control of patient information from 
multiple data sources, with standardized demographic for matching OA patients and healthy controls. We have 
evaluated fifty-two variables to determine the most relevant integrative feature pools using machine-learning 
algorithms to detect TMJ OA status (Fig. 1). We hypothesize that by combining standardized patient features 
from multiple sources using statistical machine-learning approaches, we can accurately diagnose TMJ OA status.

Results
Web-based platform to store and compute data analytics of clinical, radiomics and biomolecu-
lar markers.  Our Data Storage for Computation and Integration (DSCI)40 web-based system was used for 
data management with storage and integration of patient information from multiple sources. The DCSI com-
municates with 3D Slicer41 platform through the Data Base lnteractor42 plugin that allows the user to upload 

Figure 1.  The spectrum of Data Science to advance TMJ OA diagnosis includes Data capture and acquisition, Data 
processing with a web-based data management, Data Analytics involving in-depth statistical analysis, machine 
learning approaches, and Data communication to help the decision-making support in TMJ OA diagnosis.
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the clinical, imaging and biological markers. The data was exported in a.csv file and we show in Tables 1–3, the 
descriptive statistics for each variable and their respective nomenclature. As most of the variables did not show 
parametric distribution (after evaluation of the asymmetry, kurtosis and Shapiro-wilk test), the descriptive sta-
tistics display the median, mean, standard deviation and upper/lower limits for the 95% confidence interval. The 
following variables were measured only for the TMJ OA group since the control patients did not present facial 
and/or TMJ pain: years of pain onset (PainY), current facial pain (PainCur), last six months worst facial pain 
(PainWor) and last six months average facial pain (PainAve). The TMJ OA and control groups were age and sex 
matched. We can note that patients with OA present less range of mouth opening, for radiomics and biomolecular 
variables both present similar values and in Supplementary Fig. 1 we present the statistical differences between 
them. Finally, the MMP3 protein was not described for saliva, since the expression levels were not detected.

Radiomic features differentiate control subjects and TMJ OA patients.  We used a non-invasive 
protocol validated by our group to detect the initial morphological changes in the mandibular condyle trabecular 
bone based on radiomics information10. We extracted 20 imaging features (GLCM, GLRLM and bone morpho-
metry described in Table 2 12,38. These radiomic features were tested using the Mann-Whitney U test (Fig. 2B, 
Supplementary Fig. 1B and Supplementary Data 1) for group comparisons. From the 20 variables, 13 showed sta-
tistically significant differences between the disease and control groups. These findings suggest, and corroborate 
the literature, that the trabecular bone has an important role in the TMJ OA pathogenesis6,17,43.

Control and TMJ OA patients present similar expression levels of selected serum and saliva 
protein biomarkers.  We selected proteins that have previously been detected in the TMJ synovial fluid of 
OA patients39. We collected saliva and serum using less invasive procedures and promising screening diagnostic 
tools44 to evaluate the diagnostic performance of each protein and their interactions with radiomics and clin-
ical markers. To analyze each protein’s expression level, we used a customized human protein micro-array kit 
(RayBiotech, Norcross, GA) with duplicate samples for each patient, controlling the standard curve and limiting 
expression as can be seen in Supplementary Fig. 2. In both the saliva and serum samples, the levels of proteins 
did not differ, and large data distribution variability was observed, as described in Table 3. We show in Fig. 2A 
and Supplementary Data 2, the Mann-Whitney U-test results for comparison between the TMJ OA and control 
groups. Even though our results showed no differences between our groups, the next sections detail the contribu-
tion and diagnostic performance of those proteins to diagnose TMJ OA status

Clinical features differentiate control subjects and TMJ OA patients.  We present the Mann- 
Whitney U test in Supplementary Fig. 1c and Supplementary Data 3 for comparison of both groups for the follow-
ing clinical variables: RangeAssMax, MusSor, RangeWOpain, Headaches and RangeUnaMax, defined in Table 1. 
We chose these features because they were measured in both groups and are part of the “Diagnostic Criteria for 
Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of the International 
RDC/TMD Consortium Network and Orofacial Pain Special Interest Group”15. Our results show that only RangeAssMax 
and RangeUnaMax were not statistically significantly different between the TMJ OA and control groups. The clinical 
features that presented statistically significant differences were correlated with pain or limited by pain. For example, for 
the maximum opening without pain (RangeWOpain), patients were instructed to open their mouths until they start to 
feel pain within their TMJs. This approach reduces the amount of opening for the TMJ OA patients that often present 
pain during opening; however, when the patients were asked to open the mouth as much as they could even with pain 
(i.e., RangeUnaMAx) the values were not statistically significant between the groups. In Fig. 2C, we display only the 
variables that were included in our diagnostic models, described in the following sections.

Variables

Abbreviation

Control Group (n = 46) Female (39) Male (7) TMJ OA Group (n = 46) Female (39) Male (7)

Median Mean

95% CI

SD Median Mean

95% CI

SDClinical Variables Lower Upper Lower Upper

Age Age 38.50 39.83 35.89 43.76 13.26 38.00 37.65 33.99 41.32 12.34

Years of Pain Onset (years) PainY — — — — — 3.75 4.34 3.35 5.33 3.34

Facial Current Pain (years) PainCur — — — — — 3.00 3.07 2.47 3.66 2.00

Facial last 6 months Worst Pain (0 
to 10) PainWor — — — — — 7.00 6.89 6.06 7.73 2.81

Facial last 6 months Average Pain (0 
to 10) PainAve — — — — — 4.50 4.52 3.87 5.17 2.20

Last 6 Months Distressed by 
Headaches (0 to 10) Headaches 0.00 0.63 0.33 0.93 1.02 2.00 1.65 1.33 1.97 1.08

Last 6 Months Distressed by Muscle 
Soreness (0 to 10) MusSor 0.00 0.37 0.16 0.58 0.71 1.00 1.07 0.74 1.39 1.10

Vertical Range Unassisted Without 
Pain (mm) RangeWOpain 44.50 44.91 42.42 47.40 8.39 36.35 39.00 32.44 40.26 13.16

Vertical Range Unassisted Max (mm) RangeUnaMax 47.50 46.83 44.62 49.03 7.41 45.00 44.28 41.41 47.16 9.68

Vertical Range Assisted Max (mm) RangeAssMax 50.00 49.21 47.15 51.27 6.94 49.00 47.54 44.69 50.40 9.61

Table 1.  Descriptive and demographic values for each clinical variable. CI: Confidence Interval; SD: Standard 
Deviation.
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Diagnostic performance to predict TMJ OA status.  We had 55 features shown in Tables 1–3 plus gen-
der; however, 4 clinical features are expressed only in OA patients, and for this reason, were not included in 
the next analysis, resulting in a total of 52. In Fig. 3A, we show the values for the Area Under the curve (AUC), 
p-value, and q-value for 52 features. Figure 3B shows the AUC (upper), p-value (medium) and q-value (lower) for 
each category of variables (biological, clinical and radiomics). Most of the features with significant AUC values 
are clinical or radiomics; no biomolecular feature is detected with AUC > 0.65; nevertheless, it is shown that the 
interaction of biomolecular features can attain an AUC of 0.74 (Fig. 3C) and have a large contribution in predic-
tion of TMJ OA status(Figs. 3B and 4).

Contributions assessment of top features and interactions.  Top features were filtered with 
{AUC > 0.7} calculated from the training subjects and then fed into an XGBoost30/LightGBM31 model to make 
diagnostic predictions. More details can be found in the Method section. We demonstrate (Fig. 4) the contri-
butions of the top (>80% contribution in sum) features selected from the 52 features with mutual interactions, 
according to feature importance of XGBoost (Fig. 4A) and LightGBM (Fig. 4B) prediction models, using10 times 
5-fold cross-validation,. We find that 13 features using the XGBoost model have a mean contribution larger than 
80%, while for LightGBM a subset including 7 features contributes >80% information.

Diagnosis of TMJ OA status based on the top features and interactions.  After the selection of the 
best features and interactions (Fig. 4), Fig. 5A displays the boxplots for comparison between OA and control groups. 
Figure 5B is showing the ROC curves of diagnostic sensitivity and specificity for individual features with top mean 
importance and the mean prediction of XGBoost, LightGBM and their ensemble method IN the 10-times 5-fold CV. 
The accuracy, precision, recall, AUC and F1-score of five described methods (F P,1 1), (F P,2 1), (F P,2 2), (F P,2 3), 
(F P,2 2), ( +F P P,2 2 3) and (F P,2 4) (see method section) are shown in Table 4 using 10 times’ 5-fold 
cross-validation. Even though the main effect of biomolecular features is low, their interaction effects with clinical 
and radiomics features are important in diagnosis. For the 10 times’ 5-fold CV, the XGBoost + LightGBM with the 
interaction features achieves the best average accuracy of 0.823, AUC 0.870, and F1-score 0.823.

Cross-validation to control for overfitting.  In order to select risk factors from the high-dimensional 
52 features plus 1326 interactions, the control of overfitting is necessary. To take advantage of a larger training 
sample size to fulfill this aim, we use the 10 times’ 5-fold cross-validation and give evaluation and comparison 
using the average performance of different approaches on validation subjects. Each time in the 10 times’ 5-fold 
CV, we select hyperparameters, i.e., the iteration steps, by further splitting the training subjects for 10-fold (or 
5-fold) cross-validation.

Variables

Abbreviation

Control Group (n = 46) Female (39) Male (7) TMJ OA Group (n = 46) Female (39) Male (7)

Median Mean

95% CI

SD Median Mean

95% CI

SDRadiomics Variables Lower Upper Lower Upper

Energy Energy 0.30 0.31 0.28 0.33 0.07 0.25 0.25 0.23 0.27 0.07

Entropy Entropy 2.29 2.30 2.20 2.40 0.33 2.56 2.62 2.49 2.75 0.42

Inverse Difference Moment InvDifMom 0.91 0.90 0.90 0.91 0.02 0.89 0.89 0.89 0.90 0.02

Inertia Inertia 0.19 0.19 0.19 0.20 0.03 0.21 0.21 0.20 0.22 0.03

Haralick Correlation HarCor 317.48 375.56 303.63 447.49 242.23 410.36 603.40 467.71 739.10 456.94

Short Run Emphasis ShortRE 0.33 0.34 0.35 0.34 0.03 0.35 0.35 0.34 0.36 0.03

Long Run Emphasis LongRE 16.58 16.51 16.01 17.01 1.68 15.44 15.64 15.10 16.18 1.81

Grey Level Non Uniformity GreyLNU 2405.84 2374.26 2272.67 2475.84 342.08 2240.61 2249.65 2158.63 2340.67 306.50

Run Length Non Uniformity RunLNU 1239.23 1287.96 1209.65 1366.27 263.72 1443.88 1459.22 1367.19 1551.25 309.91

Low Grey Level Run Emphasis LowGLRE 0.06 0.06 0.06 0.06 0.01 0.06 0.06 0.05 0.06 0.01

High Grey Level Run Emphasis HighGLRE 19.10 19.98 18.76 21.19 4.09 21.05 22.47 20.95 23.98 5.11

Short Run Low Grey Level 
Emphasis ShortRLowGLE 0.02 0.02 0.02 0.02 0.00 0.02 0.02 0.02 0.02 0.00

Short Run High Grey Level 
Emphasis ShortRHighGLE 6.96 7.25 6.72 7.77 1.77 8.15 8.56 7.89 9.24 2.27

Long Run Low Grey Level 
Emphasis LongRLowGLE 1.05 1.05 0.98 1.11 0.23 0.95 0.95 0.87 1.03 0.28

Long Run High Grey Level 
Emphasis LongRHighGLE 299.09 303.82 283.69 323.95 67.80 309.96 317.43 298.88 335.97 62.45

Bone Volume (%) BV/TV 0.54 0.54 0.48 0.60 0.20 0.60 0.58 0.52 0.64 0.20

Trabecular Thickness (mm) Tb.Th 0.35 0.38 0.33 0.43 0.16 0.41 0.44 0.38 0.50 0.19

Trabecular Separation (mm) Tb.Sp 0.28 0.34 0.27 0.40 0.21 0.26 0.35 0.25 0.44 0.31

Trabecular Number (mm−1) Tb.N 1.47 1.44 1.38 1.51 0.23 1.45 1.36 1.28 1.44 0.28

Bone Surface to Bone Volume 
Ratio (mm−1) BS/BV 5.79 6.08 5.43 6.73 2.18 4.89 5.30 4.65 5.95 2.18

Table 2.  Descriptive values for each imaging variable. CI: Confidence Interval; SD: Standard Deviation.
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Discussion
We report here, the diagnostic performance of machine learning approaches to predict TMJ osteoarthritis status. 
Through data acquisition, management and processing, we achieve one of the main challenges of healthcare deliv-
ery, which is to integrate the patient data information from multiple sources for accurate diagnosis and meaning-
ful indicators of individual health45. To obtain patient-specific, precise diagnostic information, Data Science has 
become indispensable in medicine, with the integration of data capture, management/processing and in-depth 
analysis with rigorous and standardized protocols46,47.

Variables

Abbreviation

Control Group (n = 46) Female (39) Male (7) TMJ OA Group (n = 46) Female (39) Male (7)

Median Mean

95% CI

SD Median Mean

95% CI

SD
Biomolecular Variables 
(pg/ml) Lower Upper Lower Upper

Angiogenin Serum ANG_Ser 1467.10 1454.86 1389.09 1520.62 221.46 1459.05 1457.15 1368.65 1545.65 298.02

BDNF Serum BDNF_Ser 280.25 719.56 378.08 1061.04 1149.92 286.35 1121.62 544.88 1698.35 1942.12

CXCL16 Serum CXCL16_Ser 3726.70 3741.37 3550.00 3932.73 644.40 3827.50 3988.57 3687.27 4289.87 1014.61

ENA-78 Serum ENA-78_Ser 348.70 664.23 453.24 875.21 710.48 276.40 593.05 394.98 791.11 666.97

MMP3 Serum MMP3_Ser 2358.25 2373.10 2073.33 2672.87 1009.45 2305.20 2367.03 2091.83 2642.24 926.72

MMP7 Serum MMP7_Ser 496.55 527.66 444.90 610.42 278.69 453.75 554.15 419.32 688.98 454.02

OPG Serum OPG_Ser 2539.15 3010.92 2165.32 3856.52 2847.49 2428.10 3116.79 2415.06 3818.51 2363.01

PAI-1 Serum PAI-1_Ser 6505.60 7930.35 6486.74 9373.96 4861.24 6693.65 7237.11 5904.80 8569.41 4486.42

TGF-β1 Serum TGF-β1_Ser 91.20 140.68 98.90 182.47 140.70 99.15 177.84 103.81 251.87 249.29

TIMP-1 Serum TIMP-1_Ser 7382.15 7280.32 7020.93 7539.71 873.47 7351.65 7382.74 7099.45 7666.03 953.95

TRANCE Serum TRANCE_Ser 2078.70 2200.67 1885.39 2515.95 1061.69 2507.15 2560.51 2231.90 2889.12 1106.56

VE-cadherin Serum VE-cad_Ser 6259.20 6527.08 5140.64 7913.53 4668.73 5308.05 6154.80 4988.12 7321.48 3928.70

VEGF Serum VEGF_Ser 93.90 115.32 76.18 154.46 131.80 87.30 117.40 85.32 149.47 108.01

Angiogenin Saliva ANG_Sal 721.85 720.83 652.98 788.69 228.48 754.05 758.02 702.29 813.74 187.65

BDNF Saliva BDNF_ Sal 5.20 7.60 5.13 10.08 8.34 3.95 8.32 4.03 12.62 14.47

CXCL16 Saliva CXCL16_Sal 109.40 183.94 121.59 246.29 209.95 100.60 207.09 130.24 283.95 258.80

ENA-78 Saliva ENA-78_Sal 2424.60 2218.02 1925.14 2510.90 986.25 2482.60 2410.40 2087.41 2733.39 1087.63

MMP7 Saliva MMP7_Sal 3290.90 3615.28 2949.23 4281.33 2242.87 3594.20 3666.79 3040.77 4292.82 2108.08

OPG Saliva OPG_Sal 555.75 855.69 560.07 1151.32 995.49 732.30 1329.53 754.68 1904.38 1935.77

PAI-1 Saliva PAI-1_Sal 24.40 85.02 45.07 124.96 134.51 40.40 93.14 32.77 153.52 203.32

TGF-β1 Saliva TGF-β1_Sal 40.70 64.66 41.86 87.46 76.78 54.45 69.20 46.64 91.76 75.97

TIMP-1 Saliva TIMP-1_Sal 4070.90 3963.81 3663.14 4264.48 1012.49 3889.80 3880.69 3664.71 4096.67 727.30

TRANCE Saliva TRANCE_Sal 627.60 794.52 533.49 1055.56 879.02 698.75 1041.55 622.45 1460.64 1411.27

VE-cadherin Saliva VE-cad_Sal 643.10 1008.24 657.65 1358.84 1180.60 666.70 1313.82 585.33 2042.30 2453.11

VEGF Saliva VEGF_Sal 1181.35 1342.62 1125.23 1560.02 732.07 1441.65 1419.39 1281.99 1556.79 462.68

Table 3.  Descriptive values for each biomolecular variable. CI: Confidence Interval; SD: Standard Deviation.

Figure 2.  Mann-Whitney U test comparison between the TMJ OA and control groups showing the variables 
included in our diagnosis prediction models; (A) Biomolecular features; (B) Radiomics features; (C) Clinical features.
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In the carefully controlled data acquisition methods of our study, all subjects had the same imaging acquisition 
protocol, all clinical assessments were performed by the same pain specialist, and a single investigator collected 
the clinical, biological and imaging data. This study database was composed initially of 107 subjects, and 15 sub-
jects were excluded due to incomplete or inadequate quality of data. As part of the data management and process-
ing, we extracted radiomics information from each subject’s HR-CBCT scan (Fig. 6) to obtain information that 
is hidden to the clinicians’ naked eyes48. Our result in Supplementary Fig. 1 shows that most radiomics features 
were able to differentiate between control and TMJ OA patients. Advanced statistical learning approaches, shown 
in Fig. 4, demonstrate among the radiomics features, that Entropy, Energy, HarCor, are included in our most 
accurate prediction models and corroborate our previous findings that found correlations between these fea-
tures and the bone status38, where a decreased energy was associated with bone sclerosis/loss, and the increased 
values for HarCor and Entropy was correlated to bone sclerosis/loss. For the knee OA diagnosis, Brahim et al.26, 
(2019) using imaging features, evaluated the performance of machine learning algorithms to detect the disease, 
with x-rays radiographic from the public dataset Osteoarthritis Initiative (OAI). Their results showed an OA 
detection with 82.98% of accuracy using Random Forest and Naive Bayes classifiers. Even though the results were 
good, a standardization of the images was necessary to classify the images from multi-centers correctly. Here, we 
addressed this challenge, using a rigorous protocol for the imaging markers; however, our sample size (n = 46 per 
group) in comparison with Brahim et al.26 (n = 516 per group) was not enough to get a good accuracy only using 
the radiomics, where we found an AUC of 0.70 approximately (Energy, Entropy, Haralick Correlation, Inverse 
Difference Moment and Trabecular Separation). For this reason, we also included clinical features and biomo-
lecular information that improved our diagnostic model performance. Also, we have found in the literature only 

Figure 3.  (A,C) General association analysis of risk factors. The outer circle shows the AUC, middle circle 
shows the p-values, and the inner circle shows the q-values for each single feature. (A,C) for 52 features, and 
39 interactions, respectively. (B,D) for 52 features and 1326 interactions, respectively. (B,D) The upper graphic 
shows the AUC, the middle graph shows the p-values, and the lower category shows the q-values for each 
category of features.
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two papers showing the application of machine learning approaches in the temporomandibular joint osteoarthri-
tis diagnosis, and both were focused on developing a model only for bone surface classification35,36.

All clinical data were obtained using the DC/TMD15 criteria. We have chosen features measured in both 
groups, as described in Fig. 3, where headaches had the highest AUC among all the features. This marker is 
highly correlated to temporomandibular disorders in the literature49, and now our study shows its improved diag-
nostic performance to predict OA status in conjunction with other features and machine learning approaches. 
Interestingly, the interaction of headaches with TGF-β1_Sal together was one of the top features with >80% 
mean contribution to information gain in our statistical learning models. A possible clinical explanation is that 
patients with headaches had increased levels of this protein, as previous studies have indicated the expression and 
correlation of this cytokine with mandibular bone degradation in TMJ OA patients50–53. Other clinical markers 
included in our disease model were: RangeWOpain and its interaction with PAI-1_Sal. As TMJ OA patients 
present with pain in their TMJs, the decreased amount of mouth opening without pain was an important disease 
sign with an AUC of 0.70; and its interaction with PAI-1_Sal was an exciting finding, as this feature was increased 
in the OA patients (Fig. 4). PAI-1 is a serine protease inhibitor of tissue plasminogen activator and prevents the 

Figure 4.  Top features with mean contribution (according to feature importance) greater than 80% for 10 times 
5-fold CV. (A) Top 13 features in the XGBoost prediction model for 10 times 5-fold CV; (B) Top 7 features the 
LightGBM prediction model for 10 times 5-fold CV.

Figure 5.  Top features to diagnose disease status. (A) Boxplots of normalized features; (B) ROC curves of 
diagnostic sensitivity and specificity for individual features with top mean importance and the mean prediction 
of XGBoost, LightGBM and their ensemble method IN the 10-times 5-fold CV.
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formation of plasmin; in OA, PAI-1 has a role in the cascade of enzymatic activities, compromising repair and 
increasing the cartilage degradation19,54. A recent study by our group showed that PAI-1 is correlated with areas 
of flattening in the lateral surface of mandibular condyles with OA39, corroborating the results of this study. For 
the demographic’s aspect, Gender and its interaction with MusSor was another significant feature included in our 
statistical prediction models. However, as TMJ OA prevalence is higher in women55, a limitation of this study is 
the unequal number of male and female subjects; out of the 46 subjects in each group (sample size n = 92), 39 
were females and only 7 males. The role of MusSor in this interaction may be due to differences in pain sensitivity 
in women and men56, and to the central sensitization caused by painful osteoarthritis as patients with temporo-
mandibular disorders also presented higher prevalence of muscle-related symptoms57. In our study, the variables 
and/or interactions of: PAI-1_Sal*Headaches (AUC: 0.697), RangeWOpain (AUC: 0.7), Headaches (AUC: 0.778), 
TGF-β1_Sal*Headaches (AUC: 0.707), Gender*MusSor (AUC: 0.716), VE-cad_Sal*Headaches (AUC: 0.698), 
Headaches*ShortRLowGLE (AUC: 0.692)), PAI-1_Sal*RangeWOpain (AUC: 0.701) were the clinical features 
presenting >80% mean contribution to information gain, included in LightGBM and/or XGBoost prediction 
models. A study from 201358 that also investigated clinical markers (age, sex, weight, height), and genes (FAS844, 
FAS670, FASL377, FASL124) with support vector machines and probabilistic neural networks found a high clas-
sification performance, showing an AUC of approximately 0.95. This study indicates that our findings may be 
improved with the addition of genetics information. However, besides the challenges involving genetic studies, 
here, we used relatively simple approaches to assess our features, that could be applied to the clinical practice.

For the biomolecular markers, no differences between OA and control subjects (Supplementary Fig. 2A) were 
found; however, our prediction models show that the interaction between VE-cad_Ser*ANG_Sal (AUC: 0.74), 
PAI-1_Sal*Headaches, TGF-β1_Sal*Headaches (AUC: 0.707), VE-cad_Sal*Headaches (AUC: 0.698), PAI-1_
Sal*RangeWOpain (AUC: 0.701), TGF-β1_Sal*Headaches and PAI-1_Sal*RangeWOpain (AUC: 0.701) are top fea-
tures with mean>80% contribution to the information gain in the XGBoost and LightGBM predictive models. As 
markers of inflammation, VE-cad, ANG, TGF-β1 and PAI-1 have been previously shown39 to be expressed in the TMJ 
synovial fluid and plasma and to be correlated with the condylar morphology in OA patients. It should be highlighted 

(η,W,C,S) Accuracy Precision.OA Precision.Control

(F P,1 1) — 0.737 (0.025) 0.760 (0.032) 0.718 (0.023)

(F P,2 1) — 0.763 (0.050) 0.770 (0.060) 0.762 (0.053)

(F P,2 2) (0.001,2,0.7,0.5) 0.793 (0.032) 0.793 (0.028) 0.797 (0.046)

(F P,2 2) (0.001,1,0.7,0.5) 0.804 (0.022) 0.804 (0.020) 0.808 (0.038)

(F P,2 2) (0.01, 2, 0.7,0.5) 0.807 (0.034) 0.804 (0.029) 0.812 (0.046)

(F P,2 2) (0.01, 1, 0.7,0.5) 0.813 (0.023) 0.811 (0.022) 0.817 (0.032)

(F P,2 2) (0.01,1,0.5,0.5) 0.814 (0.025) 0.807 (0.026) 0.822 (0.028)

(F P,2 3) (0.01,1,0.7,0.5) 0.802 (0.039) 0796 (0.035]) 0.811 (0.054)

(F P,2 3) (0.001,1,0.7,0.5) 0.800 (0.034) 0.795 (0.033) 0.807 (0.043)

(F P,2 3) (0.01,2,0.7,0.5) 0.805 (0.044) 0.800 (0.039) 0.814 (0.058)

(F P,2 3) (0.01,2,0.7,0.7) 0.805 (0.044) 0.800 (0.039) 0.814 (0.058)

(F P,2 4) — 0.795 (0.035) 0.790 (0.036) 0.802 (0.042)

( +F P P,2 2 3) (0.01,1,0.5,0.5)+ (0.01,2,0.7,0.5) 0.823 (0.029) 0.815 (0.033) 0.833 (0.035)

(η,W,C,S) Recall.OA Recall.
Control AUC Mean.F1.Score

(F P,1 1) — 0.693 (0.030) 0.780 (0.038) 0.805 (0.026) 0.736 (0.025)

(F P,2 1) — 0.757 (0.072) 0.770 (0.080) 0.838 (0.024) 0.762 (0.051)

(F P,2 2) (0.001,2,0.7,0.5) 0.796 (0.061) 0.791 (0.036) 0.858 (0.025) 0.793 (0.032)

(F P,2 2) (0.001,1,0.7,0.5) 0.807 (0.053) 0.802 (0.030) 0.861 (0.033) 0.804 (0.022)

(F P,2 2) (0.01, 2, 0.7,0.5) 0.811 (0.060) 0.802 (0.347) 0.868 (0.031) 0.806 (0.034)

(F P,2 2) (0.01, 1, 0.7,0.5) 0.817 (0.040) 0.809 (0.027) 0.875 (0.038) 0.813 (0.023)

(F P,2 2) (0.01,1,0.5,0.5) 0.826 (0.031) 0.802 (0.030) 0.870 (0.029) 0.814 (0.025)

(F P,2 3) (0.01,1,0.7,0.5) 0.813 (0.063) 0.791 (0.040) 0.859 (0.035) 0.802 (0.039)

(F P,2 3) (0.001,1,0.7,0.5) 0.809 (0.050) 0.791 (0.039) 0.864 (0.029) 0.800 (0.034)

(F P,2 3) (0.01,2,0.7,0.5) 0.815 (0.068) 0.796 (0.044) 0.861 (0.035) 0.805 (0.044)

(F P,2 3) (0.01,2,0.7,0.7) 0.815 (0.068) 0.796 (0.044) 0.861 (0.035) 0.805 (0.044)

(F P,2 4) — 0.804 (0.048) 0.785 (0.044) 0.795 (0.035) 0.794 (0.035)

( +F P P,2 2 3) (0.01,1,0.5,0.5)+
(0.01,2,0.7,0.5) 0.837 (0.044) 0.809 (0.043) 0.870 (0.033) 0.823 (0.029)

Table 4.  Accuracy, precision, recall, AUROC and F1-score for the methods tested with different 
hyperparameters evaluated by 10 times 5-fold Cross Validation (mean and standard deviation of the 10 times’ 
division).
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that in the present study, those markers were obtained from saliva and blood samples utilizing less invasive procedures 
for the patient, and circulating levels of pro-inflammatory proteins have been shown to contribute to the pathophysi-
ology of disorders of the TMJ59. In addition, saliva has been described as a promising, accurate and non-invasive tool 
for a reliable diagnosis44. A study from Kellesarian et al.60, showed the cytokines profile in the synovial fluid of patients 
with TMJ disorders, and the most proteins that we used in our study were listed in their systematic review. For the knees 
OA, Hear et al.28, (2014) also evaluated the performance of machine learning algorithms using artificial neural network 
(TreeBagger decision tree) and cytokines from serum as features to classify patients with TMJ OA, rheumatoid arthritis 
and normal. Interestingly, the authors found only 12 statistically significant differences in the cytokines from the 38 
studied, and the patients were classified based on late symptoms. The CNN showed the high performance to classify the 
patients (sensitivity and specify higher than 90%), and the author suggests that a combination of the cytokines is more 
critical for the classification than the individual levels, going towards to the findings of our present study.

In a diagnostic perspective, Ahmed et al.61 aimed to assess the early stages of knee OA. They used random forest, 
stepwise generalized linear model, generalized linear models with elastic net as classifiers and proteins from plasma, 
synovial fluid and serum as features, using leave one out cross-validation and k-fold cross-validation to test the mod-
el’s performance. The subjects were classified as early OA, control, early arthritis rheumatoid, and non-rheumatoid 
arthritis (other inflammatory arthritis). As results, the highest F1 score was for eOA diagnosis (0.78) and the lowest 
for non-RA (0.36) with GLMNET algorithm. In our study, we had a similar sample size and goal (detection of OA 
in an early stage), and we found a slightly better F1 score, close to 0.83. A recent study, in 201727, evaluated machine 
learning approaches for the identification of new biomarkers for knee osteoarthritis diagnosis. The baseline number 
of variables for each participant consisted of 186 features, including questionnaires (demographics, anamneses, pain, 
nutrition, etc.), radiography, magnetic resonance scores, physical/clinical examinations, biomarkers from serum, 
and urine, etc. The algorithm used was RGIFE (random forest algorithm), and for testing the model, they selected 
10-fold cross-validation. The authors found five good prediction models, including different subsets of features in 
each. The overall discrimination of knee OA among the patients was considered good with good (AUC between 0.80 
and 0.90). Each prediction model presented multi-source biomarkers such as clinical information, imaging-based 
information, pain, food questionnaires, and molecular markers. These results suggest that the disease has a com-
plexity etiology, corroborating with our findings and confirming that there is a need to investigate the association of 
clinical, imaging, and proteins to better categorized this complex disease.

Nowadays, the complex, high-dimensional, and biomedical data from multiple sources benefit from data sci-
ence, computational advances, and machine learning approaches to improve knowledge in terms of diagnosis, 
disease classification, clustering data, and disease progression prediction32,62–64. For osteoarthritis, studies using 
mathematical algorithms for diagnosis and personalized treatment decisions are increasing65. We have previously 
shown the diagnostic performance to predict the disease status based on the condylar surface morphology and 
deep learning approaches35,40, and now we show an integrative approach based on clinical, imaging radiomics 
and biomolecular patient-specific data. A limitation of this study is that the cross-sectional study design does 
not allow assessment of the disease progression and how different disease stages affect the proposed biomarkers. 
Other studies that assessed early stages of the knee OA using machine learning approaches33, used subjective radi-
ologic interpretation of 2D x-rays, rather than the high-resolution 3D images included in the present study. Here, 
with the use of the radiomics, clinical, and protein information, our predictive model with XGBoost + LightGBM 
and 1378 features/interactions showed an accuracy of 0.823, AUC 0.870, and F1-score 0.823 to determine disease 
status. Future studies using the proposed machine learning models and longitudinal data will provide better 
information on the feature’s behavior and disease progression.

In conclusion, our in-depth statistical learning analysis was based on the integration and interactions of 52 
features. We screened the diagnostic performance of each feature (Figs. 3–5) and built our machine learning 
models based on the most relevant features. Our final prediction model had an accuracy of 0.823 (SD: 0.029) 
to predict TMJ OA status using LightGBM + XGBoost with 1378 features interactions. Importantly, we show a 
comprehensive integration of new tools, data acquisition, management, and approaches to improve articular joint 
health and predict patient-specific TMJ OA status.

Methods
We followed the “Strengthening the Reporting of Observational studies in Epidemiology” (STROBE) guidelines 
for observational studies66. All experiments were performed in accordance with the guidelines and regulations 
approved by the Institutional Review Board approval (HUM00105204 and HUM00113199) from the University 
of Michigan and the informed consent was obtained from all participants.

Figure 6.  Image volume of interested selection to extract radiomics and bone morphometry features.
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Study design, setting and participants.  After the Institutional Review Board approval (HUM00105204 
and HUM00113199) from the University of Michigan, we enrolled patients and subjects from January 2016 to 
December 2018 that composed our TMJ OA and Control groups, respectively. This cross-sectional study sample 
was composed of 92 patients, 46 TMJ OA and 46 age and sex-matched control subjects who were selected based 
on rigorous inclusion criteria. The general health conditions of the participants included: age between 21–70 years 
old, no history of cancer, no history of jaw joint trauma, no previous surgery in the TMJ or recent jaw joint injec-
tions, absence of systemic diseases; no current pregnancy and no congenital bone or cartilage disease. All patients 
were examined by a single temporomandibular disorders specialist at the Hospital of the University of Michigan 
(Medicine Oral Surgery Clinic) through the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD)15 
for TMJ osteoarthritis diagnosis. The patients were diagnosed as early stages of TMJ osteoarthritis when they pre-
sented: pain in at least one TMJ for less than 10 years, TMJ noise during movement or function in the last 30 days 
and crepitus detected during mandibular excursive movements. The Control group subjects were recruited by 
advertisement and evaluated for the absence of TMJ OA clinical and radiographic signs and symptoms. The diag-
nosis for the TMJ OA group and side of choice (left or right) was confirmed utilizing the radiographic criteria16, 
including initial stages of subchondral cyst, erosion, generalized sclerosis and/or osteophytes. For the matching 
control condyle, the side of choice was the one without any clinical or radiographic findings. The exclusion crite-
ria for the TMJ OA group were patients with middle to chronic TMJ OA diagnosis, evaluated when they present 
more than 10 years of TMJ pain diagnosis and/or severe stages of bone destruction, subchondral cyst, erosion and 
generalized sclerosis evaluated using the hr-CBCT by a radiologist.

Variables.  Our study was composed by 3 main sub-groups of variables, which were: biomolecular features 
(composed by proteins of serum and saliva), imaging features (composed by trabecular bone radiomics and mor-
phometry) and clinical features.

Biomolecular data.  We evaluated 14 proteins in serum and saliva associated with arthritis initiation 
and progression, such as nociception, inflammation, angiogenesis and bone resorption, which were: 6ckine, 
Angiogenin, BDNF, CXCL16, ENA-78, MMP-3, MMP-7, OPG, PAI-1, TGFb1, TIMP-1, TRANCE, VE-Cadherin 
and VEGF. However, the expression of 6ckine was not expressed in the serum and saliva samples in this study, and 
MMP-3 was not expressed in saliva. The raw data can be seen in the Supplementary Fig. 2. The reason to select 
those proteins, besides their participation in the TMJ OA inflammation process60, was due to our previous studies 
that detected these markers in the TMJ synovial fluid and saliva of OA patients, showing correlations with bone 
surface changes35,39.

Blood and saliva acquisition protocol.  The participants had 5 ml of venous blood collected by a trained 
nurse at the University of Michigan. The blood was centrifuged for 20 minutes at 1000 RPM to separate only the 
serum that was then aliquoted in 2 ml Eppendorf tubes and stored at −80C. For the saliva collection, the partic-
ipants received a 14 ml sterile test tube with a funnel inserted; they were instructed to tilt their head forward and 
drip the saliva off into the tube until 2 ml was collected. They were informed to not spit, talk, or swallow during 
this process67.

Custom micro-array.  Custom human quantibody protein microarrays obtained from RayBiotech, Inc. 
Norcross, GA, was used to quantitatively assess the saliva and serum samples for the 14 specific biomarkers. Each 
participant had duplicates run for the saliva and serum samples (detailed description provided by Jiang et al.68 and 
Huang et al.69). Supplementary Figures 2, 3 shows the raw values obtained for each participant and the standard 
curves for each protein.

Clinical signs and symptoms acquisition protocol.  The same investigator collected and measured the 
clinical signs and symptoms of the participants based on the DC/TMD15 criteria. The variables measured and 
selected for further statistical analysis were: Age pain began in years - TMJ OA Group only, Current Facial Pain 
-TMJ OA Group only, Worst Facial Pain in last 6 months -TMJ OA Group only, Average Pain -TMJ OA Group only, 
Last 6 Months Distressed by Headaches, Last 6 Months Distressed by Muscle Soreness, Vertical Range Unassisted 
Without Pain (mm), Vertical Range Unassisted Maximum (mm), Vertical Range Assisted Maximum (mm).

Imaging data acquisition.  We acquired cone-beam computed tomography scans of each subject using the 
3D Accuitomo (J. Morita MFG. CORP Tokyo, Japan) machine at the University of Michigan, School of Dentistry. 
The protocol for the temporomandibular joint high-resolution CBCT was field of view 40 × 40 mm; 90 kVp, 5 
mAs, scanning time of 30.8 s and a voxel size of 0.08 mm3. The images were exported in DICOM (.dcm) using 
the manufacture software: i-Dixel (J. Morita MFG. CORP Tokyo, Japan) and optimization manufacture filter: 
G_103 + H_009. Finally, the images were coded and de-identified to avoid investigator bias in the statistical 
analysis.

Imaging trabecular texture-based features.  We previously described the optimal parameters to extract 
radiomics features from the HR-CBCT scans in our study conditions and we followed these parameters to extract 
the information from our imaging data, using the BoneTexture module38. The region analyzed was the internal 
condylar lateral region (Fig. 6) due to our pilot results that showed this region to be the most significantly differ-
ent between Control and TMJ OA patients. The textural information evaluated were: Energy, Entropy, Inverse 
Difference Moment, Inertia, Haralick Correlation, Short Run Emphasis, Long Run Emphasis, Grey Level Non 
Uniformity, Run Length Non Uniformity, Low Grey Level Run Emphasis, High Grey Level Run Emphasis, Short 
Run Low Grey Level Emphasis, Short Run High Grey Level Emphasis, Long Run Low Grey Level Emphasis, Long 
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Run High Grey Level Emphasis, Bone Volume, Trabecular Thickness, Trabecular Separation, Trabecular Number 
and Bone Surface to Bone Volume Ratio.

Exploratory tests.  We first did a traditional statistical analysis to explore our data and to test the hypothesis 
that there is no difference between our groups. Our data does not show normality distribution and for this reason, 
we chose non-parametrical tests for our analysis. The descriptive analysis, Mann-Whitney U test was done using 
the software GraphPad Prisma V 8.11 (GraphPad Software, Inc., San Diego, CA). For the descriptive analysis, 
we showed the median in addition to the mean, the 95% confidence intervals and the standard deviation. The 
Mann-Whitney U test was used to test our hypothesis and we used a two-tailed test with α of 5%.

Machine learning approaches.  We diagnose the OA/control disease status based on the 52 features 
including five clinical variables, 20 radiomics features, 25 biomolecular features (13 from serum and 12 from 
saliva) and two demographic variables (age and gender). First, we normalized all features to have zero mean 
and one standard deviation. Next, we calculated the AUROC (Area under the Receiver Operating Characteristic 
curve), p-value and q-value70 from a two-sample Mann-Whitney U test to evaluate the significance of each fea-
ture (Fig. 3). Afterward, we compared four different prediction methods, each of which follows the four steps: (I) 
Cross-validation to avoid overfitting (II) feature selection (III) risk prediction (IV) method evaluation. We used 
one-sided paired DeLong test71,72 to validate the significance of AUC comparison between different approaches.

Cross-validation (CV).  We applied the 10 times’ 5-fold CV by taking 4 folds as training and the remaining 
one-fold as validation with 10 times’ repetition. At each time, we normalized the original 52 features denoted as 
F1 based on the training subjects and then took the product between each pair of them to generate additional 
1326 interactions and denoted the set of 1378 features as F2. We performed the following two-step procedures by 
using only the training dataset and feature pools F1 and F2, respectively, where F1 represents the set of original 52 
features, and we took the product between each pair of F1 to generate an additional 1326 interactions and denoted 
the set of 1378 features as F2. Afterwards, we applied the 10 times’ 5-fold CV by taking 4 folds as training and the 
remaining one-fold as validation with 10 times’ repetition. This will further evaluate the sensitivity of the model.

Feature selection.  We calculate the AUC for each single feature in F2 and select top features according to {f 
∈ F1|AUC of f > 0.7} and {f ∈ F2|AUC of f > 0.7} for feature pools met F1 and F2, respectively.

Evaluation and risk prediction.  We trained the logistic regression model (method P1), Extreme Gradient 
Boosting (XGBoost; method P2)30, Light Gradient Boosting Machine (LightGBM; method P3)31, and Random 
Forest (method P4)73 model by using the extracted features from the last step for risk prediction of the validation 
subject. For both XGBoost and LightGBM models, we fix the depth D = 1, and tune the iteration steps by further 
splitting the training subjects into training and validation subjects for 10-fold cross validation, where AUC is 
chosen as the evaluation criterion. We evaluate the prediction performance of six pairs of feature set and methods 
(F P,1 1), (F P,2 1), (F P,2 2), (F P,2 3), (F P,2 4) and ( +F P P,2 2 3) by using the accuracy, precision, recall, 
AUROC and F1-score74 on the 10 times 5-fold validation subjects. We also compare the results with other differ-
ent hyperparameters. For example, we show in Table 4 the results for min_child_weight W∈{1,2}, colsample_
bytree C∈{0.5,0.7}, subsample S∈ {0.5,0.7} and the learning rate η∈{0.001,0.01}. Our results showed that the 
XGBoost and LightGBM model by averaging the prediction probability ( +F P P,2 2 3) has the best performance 
on the validation subjects in the 10 times 5-fold CV; here the combination of XGBoost and LightGBM is recom-
mended for its robustness in 10 times’ 5-fold CV.

Data availability
The data analyzed are available from the corresponding author on a reasonable request.

Code availability
Source code for the Computation and Integration web system (DSCI) is available at https://github.com/DCBIA-
OrthoLab/shiny-tooth, for the DataBase interactor 3D-slicer Plugin: https://github.com/DCBIA-OrthoLab/
DatabaseInteractorExtension and for the imaging markers extraction the code is available at https://github.com/
Kitware/BoneTextureExtension.
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