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Abstract

Myotube apoptosis occurs normally during muscle development and aging but it can lead to destruction of skeletal muscle in
neuromuscular diseases. Therefore, understanding how myotube apoptosis is regulated is important for developing novel
strategies for treatment of muscle loss. We investigated the regulation of apoptosis in skeletal muscle and report a striking
increase in resistance to apoptosis following differentiation. We find mitotic C2C12 cells (myoblast-like cells) are sensitive to
cytosolic cytochrome c microinjection. However, differentiated C2C12 cells (myotube-like cells) and primary myotubes are
markedly resistant. This resistance is due to endogenous X-linked inhibitor of apoptotic protein (XIAP). Importantly, the
selective difference in the ability of XIAP to block myotube but not myoblast apoptosis is not due to a change in XIAP but
rather a decrease in Apaf-1 expression. This decrease in Apaf-1 links XIAP to caspase activation and death. Our findings suggest
that in order for myotubes to die, they may degrade XIAP, functionally inactivate XIAP or upregulate Apaf-1. Importantly, we
identify a role for endogenous Smac in overcoming XIAP to allow myotube death. However, in postmitotic cardiomyocytes,
where XIAP also restricts apoptosis, endogenous Smac was not capable of overcoming XIAP to cause death. These results
show that as skeletal muscle differentiate, they become resistant to apoptosis because of the ability of XIAP to regulate
caspase activation. The increased restriction of apoptosis in myotubes is presumably important to ensure the long term
survival of these postmitotic cells as they play a vital role in the physiology of organisms.
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Introduction

Skeletal muscle is a highly specialized tissue that is unique in its

structure and development. Individual myotubes that comprise

skeletal muscle are derived from mitotic myoblasts which under

the right environmental cues begin to express myogenic markers,

exit the cell cycle and fuse to form long multinucleated myotubes

[1]. While the molecular details of this differentiation process are

well understood, very little is known about whether fundamental

biological processes such as apoptosis are altered during this

process of differentiation. Understanding this phenomenon is

important because, following the developmental period, muscle

loss can have deleterious effects. For example, conditions such as

muscular dystrophies, neurogenic muscular atrophy and mito-

chondrial myopathies result in skeletal muscle death involving

apoptosis [2].

Apoptosis is a genetically regulated, evolutionarily conserved

form of cell death. It is characterized by the activation of caspase

proteases that cleave numerous substrates within the cell to cause

the demise of the cell [3]. In the intrinsic pathway of apoptosis which

can be activated by various stressors such as growth factor

withdrawal, ER stress and DNA damage, signaling pathways

converge upon the proapoptotic proteins Bax and Bak. This causes

their activation and translocation to the mitochondria where they

release cytochrome c from the intermembrane space. Once free in

the cytosol, cytochrome c binds to the adapter protein Apaf-1. This

binding induces a conformational change in Apaf-1 in such a way

that Apaf-1 oligomerizes as well as binds to procaspase 9 to form the

apoptosome complex. Once on the apoptosome, caspase 9 becomes

active and cleaves procaspase 3 into its active form. Active caspase 3

is known as the executioner caspase because it cleaves various

proteins ultimately leading to the death of the cell [4,5].

Recent reports indicate that mitotic myoblasts utilize an

alternative mechanism of activating caspases [6]. Activation of

caspases 9 in these cells occurs independently of Apaf-1 but still

requires release of endogenous Smac from the mitochondria [7,8].

Smac is a mitochondrial intermembrane space protein which acts

as an inhibitor of an antiapoptotic family of proteins known as the

Inhibitor of Apoptotic Proteins (IAPs) [9,10]. IAPs regulate

apoptosis by binding to and inhibiting caspases [11]. Despite our

knowledge of the structure and function of Smac, a critical role for

endogenous Smac in regulating apoptosis has not been discovered

in other primary cells. Importantly, what happens to this pathway

upon differentiation of myoblasts into myotubes is unknown.

Skeletal muscles are known to become more resistant to apoptosis

upon differentiation [12]. However, as most of the studies

examining skeletal muscle apoptosis have focused on whole tissue,

the mechanism for this increased resistance has not been clearly

identified at the cellular level.

In this study, we investigated how isolated myotubes regulate

their caspase activation following differentiation. We report that

myotubes exhibit an increase in their resistance to apoptosis

relative to their mitotic precursor cells. While mitotic C2C12 cells

(mC2C12) die with the introduction of cytochrome c into their
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cytosol, differentiated C2C12 (dC12C12) cells and primary

myotubes do not. This increased resistance is due to endogenous

XIAP. We show that endogenous XIAP is able to selectively block

caspase activation in myotubes not because its levels are increased

in myotubes but rather because the level of Apaf-1 is dramatically

decreased. Importantly, our studies identify endogenous Smac as

having a vital role in overcoming this XIAP inhibition in myotubes

but not cardiomyocytes.

Results

Myotubes develop resistance to cytochrome c-induced
apoptosis upon differentiation

To determine whether cytochrome c-mediated caspase activa-

tion becomes more restricted with skeletal muscle differentiation,

we microinjected cytochrome c in C2C12 cells and myotubes.

Myoblast-like C2C12 (mC2C12) cells were very sensitive to bovine

cytochrome c with almost a complete loss of injected cells within

one hour (Fig. 1a, b). Yeast cytochrome c serves as an ideal control

because unlike mammalian cytochrome c, it is not capable of

binding to Apaf-1, and therefore, cannot activate the apoptosome

[13]. As anticipated, mC2C12 cells injected with yeast cytochrome

c did not die, indicating that microinjection alone was not killing

these cells (Fig. 1a, b). In striking contrast to the mC2C12 cells,

C2C12 cells that had been differentiated for nine days (dC2C12)

did not undergo death when injected with bovine or yeast

cytochrome c (Fig. 1a, b). To examine primary cells, we isolated

murine myoblasts. While the small size of primary myoblasts made

them technically difficult to microinject, we were able to

differentiate them in culture for 14 days into myotubes and inject

these myotubes. Just as seen with the dC2C12 cells, primary

myotubes were markedly resistant to bovine cytochrome c (Fig. 1a).

Together, this data indicated that while mC2C12 cells were

sensitive to cytochrome c induced apoptosis, postmitotic dC2C12

cells and primary myotubes developed resistance.

During differentiation, myoblasts exit the cell cycle and fuse to

form myotubes [1]. To determine at what point myotubes gained

resistance to cytosolic cytochrome c, we injected dC2C12 cells and

primary myotubes at different days of differentiation. Following six

days of differentiation, C2C12 cells still remained sensitive to

cytosolic cytochrome c injections, showing complete apoptosis one

hour after injection. By seven days of differentiation they had

developed some resistance and by nine days, almost all cells

survived cytochrome c injection (Fig. 1c). Likewise, differentiating

primary myotubes also showed a gradual resistance to cytochrome

c. Four days into the differentiation process only 30 % survived

one hour post cytochrome c injection. However, by 11 days this

survival increased to about 60 % and almost complete protection

was seen by 14 days (Fig. 1d). Injecting yeast cytochrome c did not

induce death at any stage of differentiation. These data suggest

that as myotubes differentiate they gradually develop resistance to

cytochrome c and lose their ability to undergo apoptosis in

response to cytochrome c.

Myotube resistance to cytochrome c can be overcome
with the exogenous addition of the IAP inhibitor Smac or
genetic deletion of XIAP

Resistance to cytochrome c has been seen in primary neurons

and cardiomyocytes where it has been linked to the function of

endogenous XIAP [14–16]. To determine if IAPs also play a role

in myotube resistance to cytochrome c, we injected both dC2C12

cells and primary myotubes with the IAP inhibitor Smac. When

cytochrome c and Smac were coinjected into dC2C12 cells or

primary myotubes, it resulted in rapid and complete death (Fig. 2).

Control injections with cytochrome c or Smac alone did not

induce significant death in these cells. To ensure that it was the

IAP inhibiting function of Smac that was responsible for this

action, we also injected cytochrome c into dC2C12 cells with a

mutant form of Smac (MVPI-Smac) carrying a single point

mutation that does not allow it to bind and inhibit IAPs [9]. In

contrast to wildtype Smac (AVPI-Smac), coinjection of cyto-

chrome c and mutant MVPI-Smac did not result in cell death

(Fig. 2a).

These Smac injection experiments suggested that IAPs were in

fact responsible for inhibiting cytochrome c-induced death in

myotubes. Since XIAP has been shown to be the most effective

IAP at inhibiting apoptosis [11], we tested whether endogenous

XIAP was responsible for restricting myotube apoptosis. Myoblasts

were isolated from wildtype and XIAP-deficient mice and

differentiated in culture for 14 days prior to injection with

cytochrome c. In contrast to wildtype myotubes, XIAP-deficient

myotubes were strikingly sensitive to cytochrome c and underwent

apoptosis by two hours following injection (Fig. 2b). XIAP-

deficient myotubes injected with yeast cytochrome c, as a control,

did not die. Taken together, these data suggest that myotubes are

unable to undergo apoptosis in response to cytochrome c due to

the strict control of caspase activation by endogenous XIAP.

Endogenous XIAP effectively restricts cytochrome c-
induced death in myotubes due to reduced Apaf-1 levels

XIAP is a ubiquitously expressed protein [17]. To determine why

postmitotic myotubes have selectively developed this XIAP brake in

apoptosis, we looked at the level of XIAP in these mitotic and

postmitotic cells. We found XIAP levels to be the same in mC2C12

versus dC2C12 and primary myoblasts versus primary myotubes

(Fig. 3a, b). However, we found that Apaf-1 levels were decreased in

both dC2C12 cells and primary myotubes relative to their mitotic

precursors (Fig. 3a, b). Examination of the mRNA levels also showed

a decrease in Apaf-1 in primary myotubes relative to myoblasts

(Fig. 3c). These results lead us to examine whether Apaf-1 was

limiting for caspase activation in myotubes. To test this, we injected

plasmids for Apaf-1 and GFP in dC2C12 cells. Twenty four hours

following injections, GFP expressing cells were injected with cytosolic

cytochrome c. Expression of Apaf-1 alone in dC2C12 cells did not

induce death and the cells remained resistant to control injection of

yeast cytochrome c. In contrast, injection of bovine cytochrome c was

able to induce death in the Apaf-1 overexpressing dC2C12 cells.

Cells injected with vector and GFP showed significantly less death

with bovine cytochrome c (Fig. 3d). Thus, expressing Apaf-1 was

sufficient to allow cytochrome c-mediated death in myotubes.

Together, these results suggest that the decreased levels of Apaf-1

in myotubes results in limited caspase activation, thus allowing

endogenous XIAP to effectively protect against cytochrome c-

mediated death. Consistent with this model, our results show that

increasing Apaf-1 levels overcame this XIAP inhibition and

rendered the myotubes sensitive to cytochrome c injections.

Endogenous Smac can overcome XIAP inhibition in
myotubes but not in cardiomyocytes

Despite this increase in resistance to apoptosis, myotubes

undergo apoptosis during development [12] and in response to

pathological stimuli [2]. Our experiments suggest that in order for

myotubes to undergo apoptosis, they would not only have to

release cytochrome c but also overcome the function of XIAP in

order to become competent to die. This could occur by decreasing

XIAP levels (Fig. 2b), upregulating Apaf-1 (Fig. 3d) or by

functional inactivation of XIAP (Fig. 2). There are several known

XIAP and Myotube Apoptosis
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potential IAP inhibitors in cells, two of which, HtrA2 and Smac,

are localized to the mitochondria. As structural studies have cast

doubts on the IAP inhibitory activity of HtrA2 [18], we focused on

Smac. Our data show that excess exogenous Smac is able to

permit cytochrome c-mediated apoptosis in myotubes (Fig. 2), but

whether the release of endogenous Smac is capable of doing so was

unknown.

To examine the importance of endogenous Smac in inhibiting

XIAP and permitting apoptosis, we took advantage of the

proapoptotic Bcl-2 family member tBid in order to release

Figure 1. Myotubes develop gradual resistance to cytosolic cytochrome c-induced apoptosis. (A) mC2C12 cells, dC2C12 cells
differentiated for 9 days and primary myotubes differentiated for 14 days, were injected with either yeast or bovine cytochrome c and rhodamine
dextran. (B) Photographs of mC2C12 and dC2C12 cells one hour following injection with yeast or bovine cytochrome c and rhodamine dextran.
Arrows point to injected cells. Scale bars represent 50 mm. (C) C2C12 cells differentiated for 6, 7 or 9 days (dd = days differentiated) were injected with
either yeast or bovine cytochrome c and rhodamine dextran. (D) Primary myotubes differentiated for 4, 11 or 14 days were injected with either yeast
or bovine cytochrome c and rhodamine dextran. Cell survival was assessed by morphology at the indicated times following injection. Data are the
mean6SEM of n$3 separate experiments per time point.
doi:10.1371/journal.pone.0005097.g001

XIAP and Myotube Apoptosis
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endogenous cytochrome c, Smac and other factors from the

mitochondria (Fig. S1)[19]. Plasmids for tBid and GFP were

injected into dC2C12 cells and primary myotubes and survival was

assessed 24 hours later. Unlike cytochrome c injection, tBid

expression induced potent death in these cells. This death was

apoptotic as it was blocked with the pancaspase inhibitor Q-VD-

OPH (Fig. 4a, b). These data suggest that tBid is able to release

cytochrome c and presumably other mitochondrial factor(s) to

permit a caspase-mediated apoptotic death in myotubes.

To directly determine if endogenous Smac was responsible for

overcoming the function of XIAP in this tBid-mediated death, we

isolated myoblasts from Smac-deficient mice. Once differentiated,

we injected tBid and GFP into these myotubes. Unlike wildtype

myotubes, Smac-deficient myotubes were completely resistant to

tBid induced death (Fig. 4c). These results identify an important

role for endogenous Smac in myotubes and imply that if adequate

quantities of Smac were released from the mitochondria, this

would be sufficient to overcome the XIAP brake and allow

cytochrome c to induce myotube apoptosis.

We have previously reported that cardiomyocytes, like neurons

and myotubes, utilize the XIAP brake to inhibit cytochrome c-

induced apoptosis [16]. To determine if endogenous Smac is able

to inhibit XIAP and permit apoptosis in cardiomyocytes, isolated

neonatal rat cardiomyocytes were transfected with the tBid-GFP

plasmid and GFP or GFP alone. Six hours after transfection the

number of cells expressing active caspase 3 was determined by

immunohistochemistry. While 70 % of tBid transfected cardio-

myocytes showed active caspase 3 staining, this was seen in only 15

% of the GFP alone transfected cardiomyocytes (Fig. 5a).

Photographs in Fig. 5b show that tBid transfected cardiomyocytes

become rounded and died, whereas those in the presence of the

pan caspase inhibitor z-VAD-fmk survived. Together, these data

suggest that the release of cytochrome c and other mitochondrial

proteins by tBid, was sufficient to cause caspase activation and

apoptotic death in cardiomyocytes.

Next we determined if endogenous Smac was responsible for

allowing tBid to induce death in cardiomyocytes, as seen in

myotubes. Wildtype and Smac-deficient neonatal mouse cardio-

myocytes were infected with a tBid-GFP adenovirus. Infected cells

were examined by time-lapse microscopy over a 12 hour period.

As expected, tBid-GFP infected wildtype cardiomyocytes showed

only 20 % survival, and this death was blocked with the caspase

inhibitor z-VAD-fmk. Surprisingly, and in contrast to mytotubes,

Smac-deficient cardiomyocytes also showed only 23 % survival

when infected with tBid-GFP adenovirus. The death of the Smac-

deficient cardiomyocytes was apoptotic as it was completely

blocked by the addition of z-VAD-fmk (Fig. 5c). Western analysis

indicated that myotubes and cardiomyocytes expressed similar

levels of endogenous Smac despite the fact that myotubes could

utilize Smac to overcome XIAP whereas cardiomyocytes could not

(Fig. 5d). Levels of Smac were lower in sympathetic neurons

(Fig. 5d) which, like cardiomyocytes, do not appear to require

endogenous Smac to overcome XIAP [14,20].

Together, these data suggest that unlike myotubes, endogenous

Smac was not required for mitochondria-mediated death in

cardiomyocytes. In addition it suggests that there is likely to be an

additional mitochondrial factor in cardiomyocytes that is released

to allow XIAP to be overcome.

Discussion

Together, the data presented in this study identify that

postmitotic myotubes have increased suppression of their apoptot-

ic pathway relative to their mitotic precursors. Differentiated

C2C12 cells and primary myotubes were both resistant to cytosolic

cytochrome c due to the activity of endogenous XIAP (Fig. 1, 2).

However, myotubes inhibited caspase activation not by increasing

XIAP levels but rather by decreasing Apaf-1 (Fig. 3a, b, c).

Importantly, overexpressing Apaf-1 alone in dC2C12 cells, was

sufficient to allow cytosolic cytochrome c injection to kill dC2C12

Figure 2. Resistance to cytosolic cytochrome c is mediated by endogenous XIAP. (A) dC2C12 cells were injected with rhodamine dextran
and either bovine cytochrome c, wildtype AVPI-Smac, mutant MVPI-Smac or AVPI-Smac and cytochrome c together. (B) Primary wildtype (wt)
myotubes were injected with rhodamine dextran and bovine cytochrome c or AVPI-Smac and bovine cytochrome c. XIAP-deficient (XIAP-/-)
myotubes were injected with rhodamine dextran and either bovine or yeast cytochrome c. Cell survival was assessed by morphology at the indicated
times following injection. Data are the mean6SEM of n$3 separate experiments per time point.
doi:10.1371/journal.pone.0005097.g002

XIAP and Myotube Apoptosis
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cells (Fig. 3d). Therefore, an Apaf-1 reduction is sufficient to set up

this differential resistance between mitotic precursors and

myotubes. It is noteworthy to mention that a previous study

found that human skeletal muscle cytosol completely lacks Apaf-1

and therefore is refractory to cytochrome c-mediated caspase

activation [21]. This difference could be attributed to the different

model systems or the age of the skeletal muscle used, suggesting

that skeletal muscle continue to reduce Apaf-1 expression with age.

Based on these data, we propose that following cytochrome c

release from the mitochondria, the low levels of Apaf-1 present in

myotubes result in reduced apoptosome formation and caspase

activation. As a consequence, endogenous XIAP is sufficient to

effectively block this reduced level of caspase activation. However,

in mC2C12 cells, high levels of Apaf-1 result in robust apoptosome

formation, and thus, increased caspase activation that cannot be

successfully inhibited by endogenous XIAP. As a consequence,

these mitotic cells readily undergo apoptosis with cytosolic

cytochrome c while myotubes do not.

This increased resistance to apoptosis employed by myotubes is

strikingly similar to that found in other postmitotic cells,

specifically neurons and cardiomyocytes [14–16]. These findings

suggest that regardless of the function or phenotype of the cell,

postmitotic cells share the same features in restricting their ability

to undergo apoptosis. By requiring not only cytochrome c release

but also inhibition of XIAP function in order to activate caspases,

endogenous XIAP presumably serves as a safety brake to death.

For example, if the mitochondria accidentally release cytochrome

c, the presence of XIAP would block caspase activation and

Figure 3. Apaf-1 levels are decreased in myotubes. Restoring Apaf-1 is sufficient to allow cytochrome c-mediated death. (A) Levels of the
indicated apoptotic proteins were examined by Western blot of whole cell lysate from mC2C12 and dC2C12 cells. Tubulin serves as a loading control.
Densitometry of protein levels are normalized to loading control protein levels of the representative Western blot. (B) Levels of the indicated
apoptotic proteins were examined by Western blot of whole cell lysate from primary myoblasts and primary myotubes. Densitometry of protein
levels are normalized to loading control protein levels of the representative Western blot. (C) RT-PCR was carried out with primers for the indicated
mRNA using RNA from primary myoblasts and myotubes. GAPDH serves as a control. Densitometry of Apaf-1 mRNA levels are normalized to GAPDH
levels of the representative gel. (D) dC2C12 cells were injected with plasmids for either Apaf-1 (Apaf) or empty vector as well as GFP. 24 h following
injection, GPF positive cells were injected with rhodamine dextran and either yeast or bovine cytochrome c. Cell survival was assessed by morphology
at the indicated times following cytochrome c injection. Data are the mean6SEM of n$3 separate experiments per time point.
doi:10.1371/journal.pone.0005097.g003

XIAP and Myotube Apoptosis
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therefore prevent these cells from undergoing unwanted apoptosis.

Arguably, increased resistance to caspase activation would be

critical to these postmitotic cells because of their inability to

replicate and their limited regenerative potential. These postmi-

totic cells also serve vital functions that require their presence for

the lifetime of the organism. On the other hand, not having this

resistance to apoptosis in mitotic cells is beneficial to the organism

as mitotic cells can give rise to cancer. Indeed, the mechanisms by

which the apoptotic pathway is inactivated in many cancers are

similar to those seen in postmitotic cells. For example, several

melanomas restrict their Apaf-1 expression at the transcriptional

level in order to block apoptosis [22–24]. In addition, many

chemoresistant cancers have been found to utilize XIAP to

effectively block caspase activation [25].

The XIAP-deficient mice lack an overt developmental pheno-

type [26]. This is consistent with our finding that myotube

apoptosis is dependent on the removal of the endogenous XIAP

brake as well as the release of cytochrome c. Neither event alone is

capable of activating caspases. However, the XIAP-deficient

myotubes are predicted to be more vulnerable if exposed to toxic

stimuli or injury that causes mitochondrial damage and cyto-

chrome c release, because they lack the postcytochrome c brake.

Figure 4. tBid causes caspase inhibitable death in myotubes that requires endogenous Smac. (A) dC2C12 were injected with plasmids for
tBid or empty vector as well as GFP in the presence or absence of Q-VD-OPH (QVD). GFP expressing cells were counted 8 h and 24 h following
injection. Percent survival was expressed as the percent of cells at 8 h that remained alive at 24 h following injection. Cell survival was assessed by
morphology. Asterisk indicates that the actual survival was 0 %. (B) Photographs of dC2C12 cells eight hours following injection with tBid and GFP in
the presence or absence of Q-VD-OPH (QVD). Arrows point to injected cells. Scale bars represent 50 mm. (C) Wild type (wt) and Smac-deficient
(Smac-/-) primary myotubes were injected as described and assessment of survival was the same as in (A). Asterisk indicates that the actual survival
was 0 %. Data are the mean6SEM of n$3 separate experiments per time point.
doi:10.1371/journal.pone.0005097.g004

XIAP and Myotube Apoptosis
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Despite the ability of myotubes to restrict apoptosis, there are

certainly circumstances in which myotubes activate caspases and

die. Caspase-mediated death has been observed during develop-

ment [12]. The role of apoptosis in pathological conditions is more

controversial. For example, several studies examining human

spinal muscular atrophy found that muscle fibers experience

apoptotic DNA fragmentation and the upregulation of apoptosis

associated factors [27–29]. On the other hand, a study utilizing

time-lapse microscopy to examine denervated and unloaded

muscle did not reveal any nuclei loss in muscle fibers, suggesting

apoptosis is not responsible for the loss of muscle mass experienced

during muscle atrophy [30]. Caspase-mediated death is thought to

be involved to some extent in additional pathological conditions

including muscular dystrophies and mitochondrial myopathies [2].

Figure 5. tBid induced apoptosis in cardiomyocytes does not require endogenous Smac. (A) Rat cardiomyocytes were transfected with
tBid-GFP or GFP alone. The percentage of transfected cells expressing active caspase 3 was determined 6 hours after transfection by
immunohistochemistry. (B) Photographs of rat cardiomyocytes 6 hours after transfection with tBid-GFP in the presence or absence of the caspase
inhibitor z-VAD-fmk (zVAD). (C) Wild type (wt) or Smac-deficient (Smac-/-) cardiomyocytes were infected with a tBid-GFP adenovirus in the presence
or absence of z-VAD-fmk (zVAD). Cell survival was determined by morphology over a 12 hour period using time-lapse microscopy. (D) Protein levels
of Smac were examined by Western blot of whole cell lysates from Smac-deficient dermal fibroblasts (Smac-/- DF), myotubes, cardiomyocytes and
sympathetic neurons (neurons). Tubulin serves as a loading control. Densitometry of Smac protein levels are normalized to tubulin levels of the
representative blot.
doi:10.1371/journal.pone.0005097.g005

XIAP and Myotube Apoptosis
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Based on our findings, death stimuli that activate caspases in

myotubes would not only have to cause the release of cytochrome c

but also inhibit XIAP. Here we identified three ways in which this

could occur. First, as XIAP-deficient myotubes are completely

sensitive to cytosolic cytochrome c (Fig. 2b), a stimulus which is

able to degrade or cleave XIAP and release cytochrome c would be

able to sensitize myotubes to apoptosis. In fact, selective XIAP

degradation has been seen in neurons undergoing apoptosis in

response to nerve growth factor withdrawal [14]. Second, dC2C12

cells overexpressing Apaf-1 became sensitive to cytochrome c-

mediated death (Fig. 3d). Therefore, a death stimulus which

increases Apaf-1 expression would also be able to overcome XIAP

inhibition. Supporting this idea, it has been shown that skeletal

muscle undergoing caspase activation due to metabolic deficien-

cies with ATP depletion and oxidative stress show an increase in

Apaf-1 levels [31]. Third, XIAP could also be functionally

inhibited in response to a death stimulus. This could occur

through several different mechanisms including an inactivating

posttranslational modification of XIAP or via an endogenous

inhibitor of XIAP. Here we show that releasing endogenous Smac

from the mitochondria is indeed sufficient to overcome XIAP and

allow cytochrome c to activate caspases in myotubes (Fig. 4c).

While the role of Smac as an IAP inhibitor has been extensively

characterized in vitro [9,10], the role of endogenous Smac has

remained elusive since most cells do not need to inhibit XIAP to

die [26,32]. While neurons and cardiomyocytes engage the XIAP

brake just like myotubes, one striking contrast between these

postmitotic cells is that neurons and cardiomyocytes do not appear

to utilize endogenous Smac to overcome XIAP (Fig. 5) [14,20].

The levels of endogenous Smac are much lower in sympathetic

neurons compared to myotubes (Fig. 5d). Therefore, it is possible

that neurons do not contain enough Smac protein to fully inhibit

XIAP. However, cardiomyocytes and myotubes have comparable

levels of Smac (Fig. 5d), suggesting that the reason endogenous

Smac is not effective in cardiomyocytes is not due to a lack of

protein altogether. Interestingly, other than myotubes, the only

cell type in which a role for endogenous Smac has been identified

is their precursor, myoblasts [8]. This raises the intriguing

possibility that endogenous Smac may play a vital role in this

particular myogenic cell lineage but not in other cell types.

It is intriguing that Smac-deficient cardiomyocytes are still able

to undergo tBid-induced death. This could be due to the release of

an additional mitochondrial factor in cardiomyocytes. Known

mitochondrial factors include AIF and HtrA2. AIF can be released

from the mitochondrial and cause death but AIF-induced death is

caspase independent [33] and therefore would not be blocked by

the addition of z-VAD-fmk. Structural data have cast doubt on the

IAP inhibitor function of HtrA2 [18], making it an unlikely

candidate as well. This raises the possibility that cardiomyocytes

contain an additional potentially novel mitochondrial factor that

can overcome XIAP when released.

The potential significance of the XIAP brake in myotubes can

be seen in mitochondrial encephalomyopathies, a group of

heterogeneous disorders due to mutations in either mitochondrial

DNA or nuclear genes. These mutations lead to mitochondrial

abnormalities which ultimately result in a decrease in ATP

synthesis and increased oxidative stress. Due to the heterogeneous

nature of these deficiencies even within the same patient, some

fibers appear healthy, some appear to suspend apoptosis and

others seem to die with active caspase 3 immunoreactivity

[31,34,35]. Many fibers from mitochondrial encephaolmypotha-

ties show clear Bax upregulation and cytochrome c release.

However, the number of fibers that show TUNEL staining is

much lower [31], suggesting that in these fibers cytochrome c is

released but cannot undergo caspase-mediated death. Our data

would predict that in these fibers, it is XIAP that is able to prevent

apoptosis despite the mitochondrial release of cytochrome c. A

potential role of endogenous Smac can be seen in vivo as well, in

patients with neurogenic muscular atrophy. In this condition,

where patients experience apoptotic muscle fiber loss, there is an

upregulation of multiple IAPs, including XIAP, but also Smac

which appears to become released into the sarcoplasm [36]. Our

findings would suggest that this release of Smac would be able to

overcome XIAP and allow the affected muscle fibers to die.

Materials and Methods

Reagents
All reagents were purchased from Sigma-Aldrich or Fisher

scientific, unless otherwise stated. Q-VD-OPH was purchased

from MP Biomedicals. Protease inhibitor cocktail was purchased

from Roche. XIAP-deficient mice were obtained from Dr. Craig

B. Thompson (University of Pennsylvania) and Smac-deficient

mice were obtained from Dr. Tak W. Mak (University of

Toronto). Our procedure for genotyping these mice has been

described previously [14,20]. All the work involving animals was

conducted using protocols approved by the Institutional Animal

Care and Use Committee at UNC Chapel Hill and carried out

under the regulations provided by the institutional body.

C2C12 cell line and primary myoblast cultures
C2C12 cell line was maintained in DMEM containing 20 %

FBS, 200 U/ml penicillin and 200 mg/ml streptomycin. When

C2C12 cultures reached 70–90 % confluency they were

differentiated by changing the media to differentiation medium

consisting of DMEM supplemented with 2 % horse serum, 200 U/

ml penicillin and 200 mg/ml streptomycin.

Satellite cell derived primary myoblasts were isolated from

lower hindlimb muscle from mice ranging in age from two to four

weeks old as described previously [37]. The primary cultures were

maintained on collagen-coated dishes in Ham’s F10 supplemented

with 20 % FBS, 2.5 ng/ml bFGF, 200 U/ml penicillin, 200 mg/ml

streptomycin, and 0.002 % Fungizone. The medium was changed

every other day and cultures were differentiated with the addition

of differentiation media when they reached 60–70 % confluency.

All experiments were performed using primary cultures that had

undergone between four and twelve passages. Experiments were

performed on dC2C12 cells following 9 days of differentiation and

on primary myotubes following 14 days of differentiation unless

otherwise indicated.

Primary cardiomyocyte cultures
Primary cardiomyocyte cultures were isolated from postnatal

day 0–1 mice or rats using the Worthington neonatal cardiomy-

ocyte isolation system (Worthington Biochemical Corp.) following

the manufacturer’s instructions. A 2 hour preplating step was

included to reduce the number of fibroblasts in the cultures. Cells

were then plated on laminin-coated MatTek 35 mm glass bottom

dishes for time-lapse imaging or laminin-coated 35 mm dishes for

transfection. Cells were grown in MEM with Earle’s salt

supplemented with 2 mM glutamine, 10 % horse serum, 5 %

FBS, 100 U/ml penicillin, and 100 mg/ml streptomycin.

Experiments were performed on rat cardiomyocytes 5 days after

plating and mouse cardiomyocytes 2 days after plating. Rat

cardiomyocytes were transfected with the indicated plasmid DNA

using Lipofectamine 2000 (Invitrogen) following the manufactur-

er’s instructions.
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Primary Smac-/- dermal fibroblast cultures
Primary dermal fibroblasts were isolated from postnatal day 0

(P0) Smac-deficient mice. The dorsal skin was removed, minced

and rinsed in ice cold PBS. Tissue was then treated with 1 mg/ml

collagenase, followed by digestion with 2.5 mg/ml trypsin for 1

hour each at 37uC. Tissue was then passaged through a 25 gauge

needle until a single cell suspension was obtained. Cells were

plated in DMEM with 10 % FBS, 100 mg/ml penicillin, and 100

mg/ml streptomycin.

Primary sympathetic neuron cultures
Primary sympathetic neurons were isolated as described

previously [38]. Briefly, superior cervical ganglia were dissected

from P0 mice and treated with 1 mg/ml collagenase, followed by

2.5 mg/ml trypsin for 30 minutes each at 37uC. Cells were then

dissociated by passaging through a fire-polished pipet and plated

on collagen-coated dishes in MEM with Earle’s salts supplemented

with 50 ng/mL NGF, 10 % FBS, 2 mM glutamine, 100 mg/mL

penicillin, 100 mg/mL streptomycin, 20 mM flourodeoxyuridine,

20 mM uridine, and 3.3 mg/ml aphidicolin. Experiments were

performed on sympathetic neurons 5 days after plating.

tBid-GFP Adenovirus production and use
As mouse cardiomyocytes are difficult to transfect, we generated

an adenovirus expressing tBid-GFP. The recombinant virus Ad-

tBid-GFP generated is responsive to TetR regulation and can be

amplified in 293TREx cells without cytotoxicity. The MluI-XbaI

fragment of pcDNA4/TO (Invitrogen) containing the CMV

promoter with TetO was ligated into the MluI-NheI-digested

pShuttle2 (BD Bioscience) to create pShuttle2/TO. tBid-GFP was

PCR amplified with DraI-XbaI ends from a plasmid from Dr.

Douglas R. Green (St. Jude Children’s Research Hospital) and

cloned into pShuttle2/TO. Subsequent steps in generating the

recombinant virus were according to manufacturer’s instructions of

BD Bioscience Adeno-X Expression System. The purification

procedures and titer determination have been described [39]. In

brief, Ad-tBid-GFP virus was purified by CsCl density gradient

centrifugation. Viral titer was determined by an indirect immuno-

fluorescent assay specific for the viral 72-kDa E2 gene product and

defined as focus forming units (ffu) per ml. Neonatal cardiomyocytes

were treated with Ad-tBid-GFP with multiplicity of infection (MOI)

of 200 ffu per cell in a total volume of 100 ml for 3 hours before

flooding the dishes with additional media to begin live imaging.

Microinjection
Cells were plated on 35 mm dishes and microinjected with needles

pulled on a Flaming-Brown horizontal micropipette puller (Sutter

Instruments) using a Narashigi micromanipulator mounted on a

Leica inverted florescent microscope. Between 25 and 100 cells were

injected in each experiment. The microinjection buffer contained

100 mM KCl and 10 mM KPi, pH 7.4. For injections involving

plasmid DNA, cells were injected and allowed 24 hours to express

plasmid DNA prior to experimentation. DNA microinjections

contained 50 ng/ml enhanced GFP (Clontech) and 200 ng/ml of

the indicated plasmid. Cytochrome c microinjectons contained 5

mg/ml rhodamine dextran to mark injected cells and 25 ug/ul

cytochrome c. Where indicated, 1 mg/ml recombinant Smac protein

was injected along with 25 ug/uL cytochrome c. Following injections,

viable cells were identified as rhodamine positive and intact. Data

shown are mean6SEM of three independent experiments.

Quantitation of cell survival
Cell survival after any treatment was assessed by counting

clearly identifiable cells with intact morphology, whereas dead cells

atrophied and degenerated. Surviving cells in the culture were

counted and expressed as a percent of the number of cells in the 0

hour condition. This method of assessing survival correlates well

with other cell survival assays such as trypan blue exclusion and

staining with calcein AM [14].

Western blots
Western blots were performed as previously described [14].

Primary antibodies were as follows: anti-Apaf-1 (Alexis), anti-

XIAP (MBL), anti-Smac (R&D Systems) anti-alpha tubulin

(Sigma). Mouse/rabbit/goat/rat HRP conjugated secondary

antibodies were purchased form Pierce Chemical Co. Western

blots were developed using the ECL-Plus detection system

(Amersham Biosciences). Densitometry was performed using

ImageJ software (NIH) and normalized to loading control protein

levels of the representative Western blot.

Quantitative RT-PCR analysis
Our method of quantitative RT-PCR analysis is a modification

of a previously published protocol [40], where we substituted the

radioactivity-based detection method with a fluorescence-based

detection technique. Briefly, RNA was isolated from cells with

DNAeasy kit (Qiagen) using the manufacturer’s protocol. Equal

amounts of the RNA isolated at specific times after the specified

treatment was converted into cDNA with SuperScript II Reverse

Transcriptase (Invitrogen). One microliter of cDNA was the

template in a PCR using the following primer pairs:

APAF-1: Forward 59 GAG GCA CAA TGG ATG CAA AGG

39; Reverse 59 GGC TGC TCG TTG ATA TTG AGT GG 39

GAPDH: Forward 59 CCA TGG AGA AGG CTG GGG 39;

Reverse 59 CAA AGT TGT CAT GGA TGA CC 39

Preliminary experiments validated that the RT-PCR technique

was linear with respect to the amount of input RNA used for RT

and with respect to the amount of cDNA used for PCR in these

experiments. No product was amplified when water was used as

input for a PCR reaction. Results were repeated in at least three

independent RNA preparations. Levels were quantified using

SYBR Green I Nucleic Acid Gel Stain (Molecular Probes Inc.,

Eugene, OR) and scanning blots on a Typhoon scanner

(Amersham Biosciences). Densitometry was performed using

ImageJ software (NIH) and normalized to GAPDH levels of the

representative gel.

Image acquisition and processing
Images were acquired by a Hamamatsu ORCA-ER digital B/

W CCD camera mounted on a Leica inverted fluorescence

microscope (DMIRE 2). The image acquisition software was

Metamorph version 5.0 (Universal Imaging Corporation). Images

were scaled down and cropped in Adobe Photoshop to prepare the

final figures.

Live-imaging of cardiomyocytes
Cardiomyocytes were imaged by a Zeiss Pascal confocal

microscope in a live incubation chamber. Eight random regions

in the dish were selected to be repeatedly imaged every 6 minutes

for up to 12 hours. The survival of GFP-expressing neonatal

cardiomyocytes was assessed by cell morphology using the Zeiss

LSM image browser.

Immunohistochemical analysis
Immunohistochemical analysis was performed using the same

method as previously described [41]. Primary antibodies were as

follows: anti-cytochrome c (BD Biosciences) and anti-GFP (Upstate
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Biotechnology Inc.). Secondary antibodies used were: anti-mouse

CY3-conjugated (Jackson Immunoresearch Laboratories Inc.) and

anti-chicken Alexa488-conjugated (Molecular Probes Inc.).

Supporting Information

Figure S1 tBid induces the release of cytochrome c from

mitochondria in differentiated C2C12 (dC2C12) cells. dC2C12

cells were injected with plasmids for tBid or empty vector, as well

as GFP, in the presence of the caspase inhibitor Q-VD-OPH (to

prevent cell death). 24 h after the injections, cells were

immunostained with an antibody to cytochrome c. Arrows point

to the injected cells. Control GFP alone expressing cells show

cytochrome c staining (upper panel) which is lost upon its release

from the mitochondria in tBid expressing cells (lower panel).

Found at: doi:10.1371/journal.pone.0005097.s001 (2.39 MB TIF)

Acknowledgments

We thank the members of the Deshmukh lab for critical review of this

manuscript. We thank Mark A. Gillsepie and Dr. Michael Rudnicki for

their help and expertise with the skeletal muscle dissection. We thank Dr.

Tak W. Mak for kindly providing us with the Smac-deficient mice. We

thank Drs. Jill Weimer and Yukako Yokota in the laboratory of Dr. Eva

Anton for their technical assistance with the time-lapse microscopy. We

also thank Malia Potts for initiating the experiments with tBid in

cardiomyocytes.

Author Contributions

Conceived and designed the experiments: MIS YYH MD. Performed the

experiments: MIS YYH. Analyzed the data: MIS YYH MD. Contributed

reagents/materials/analysis tools: MIS YYH. Wrote the paper: MIS YYH

MD.

References

1. Walsh K, Perlman H (1997) Cell cycle exit upon myogenic differentiation. Curr

Opin Genet Dev 7: 597–602.

2. Tews DS (2002) Apoptosis and muscle fibre loss in neuromuscular disorders.
Neuromuscul Disord 12: 613–622.

3. Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase
activity, specificity, activation and inhibition. Biochem J 384: 201–232.

4. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407: 770–776.
5. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:

2922–2933.

6. Ho AT, Zacksenhaus E (2004) Splitting the apoptosome. Cell Cycle 3: 446–448.
7. Ho AT, Li QH, Hakem R, Mak TW, Zacksenhaus E (2004) Coupling of

caspase-9 to Apaf1 in response to loss of pRb or cytotoxic drugs is cell-type-
specific. EMBO J 23: 460–472.

8. Ho AT, Li QH, Okada H, Mak TW, Zacksenhaus E (2007) XIAP activity

dictates Apaf-1 dependency for caspase 9 activation. Mol Cell Biol 27:
5673–5685.

9. Chai J, Du C, Wu JW, Kyin S, Wang X, et al. (2000) Structural and biochemical
basis of apoptotic activation by Smac/DIABLO. Nature 406: 855–862.

10. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that
promotes cytochrome c-dependent caspase activation by eliminating IAP

inhibition. Cell 102: 33–42.

11. Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis
proteins: why XIAP is the black sheep of the family. EMBO Rep 7: 988–994.

12. Sandri M, Carraro U (1999) Apoptosis of skeletal muscles during development
and disease. Int J Biochem & Cell Biol 31: 1373–1390.

13. Ellerby HM, Martin SJ, Ellerby LM, Naiem SS, Rabizadeh S, et al. (1997)

Establishment of a cell-free system of neuronal apoptosis - comparison of
premitochondrial, mitochondrial, and postmitochondrial phases. J Neurosci 17:

6165–6178.
14. Potts PR, Singh S, Knezek M, Thompson CB, Deshmukh M (2003) Critical

function of endogenous XIAP in regulating caspase activation during
sympathetic neuronal apoptosis. J Cell Biol 163: 789–799.

15. Wright KM, Linhoff MW, Potts PR, Deshmukh M (2004) Decreased

apoptosome activity with neuronal differentiation sets the threshold for strict
IAP regulation of apoptosis. J Cell Biol 167: 303–313.

16. Potts MB, Vaughn AE, McDonough H, Patterson C, Deshmukh M (2005)
Reduced Apaf-1 levels in cardiomyocytes engage strict regulation of apoptosis by

endogenous XIAP. J Cell Biol 171: 925–930.

17. Duckett CS, Nava VE, Gedrich RW, Clem RJ, Van Dongen JL, et al. (1996) A
conserved family of cellular genes related to the baculovirus iap gene and

encoding apoptosis inhibitors. EMBO J 15: 2685–2694.
18. Li W, Srinivasula SM, Chai J, Li P, Wu JW, et al. (2002) Structural insights into

the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat
Struct Biol 9: 436–441.

19. Van Loo G, Demol H, van Gurp M, Hoorelbeke B, Schotte P, et al. (2002) A

matrix-assisted laser desorption ionization post-source decay (MALDI-PSD)
analysis of proteins released from isolated liver mitochondria treated with

recombinant truncated Bid. Cell Death Differ 9: 301–308.
20. Vaughn AE, Deshmukh M (2007) Essential postmitochondrial function of p53

uncovered in DNA damage-induced apoptosis in neurons. Cell Death Differ 14:

973–981.
21. Burgess DH, Svensson M, Dandrea T, Gronlund K, Hammarquist F, et al.

(1999) Human skeletal muscle cytosols are refractory to cytochrome c-dependent
activation of type-II caspases and lack APAF-1. Cell Death Differ 6: 256–261.

22. Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, et al. (2001)

Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature
409: 207–211.

23. Fu WN, Bertoni F, Kelsey SM, McElwaine SM, Cotter FE, et al. (2003) Role of

DNA methylation in the suppression of Apaf-1 protein in human leukaemia.

Oncogene 22: 451–455.

24. Furukawa Y, Sutheesophon K, Wada T, Nishimura M, Saito Y, et al. (2005)

Methylation silencing of the Apaf-1 gene in acute leukemia. Mol Cancer Res 3:

325–334.

25. Beauparlant P, Shore GC (2003) Therapeutic activation of caspases in cancer: a

question of selectivity. Curr Opin Drug Discov Devel 6: 179–187.

26. Harlin H, Reffey SB, Duckett CS, Lindsten T, Thompson CB (2001)

Characterization of XIAP-deficient mice. Mol Cell Biol 21: 3604–3608.

27. Tews DS, Goebel HH (1997) Apoptosis-related proteins in skeletal muscle fibers

of spinal muscular atrophy. J Neuropathol Exp Neurol 56: 150–156.

28. Tews DS, Goebel HH (1996) DNA fragmentation and BCL-2 expression in

infantile spinal muscular atrophy. Neuromuscul Disord 6: 265–273.

29. Migheli A, Mongini T, Doriguzzi C, Chiado-Piat L, Piva R, et al. (1997) Muscle

apoptosis in humans occurs in normal and denervated muscle, but not in

myotonic dystrophy, dystrophinopathies or inflammatory disease. Neurogenetics

1: 81–87.

30. Bruusgaard JC, Gundersen K (2008) In vivo time-lapse microscopy reveals no

loss of murine myonuclei during weeks of muscle atrophy. J Clin Invest 118:

1450–1457.

31. Ikezoe K, Nakagawa M, Yan C, Kira J, Goto Y, et al. (2002) Apoptosis is

suspended in muscle of mitochondrial encephalomyopathies. Acta Neuropathol

103: 531–540.

32. Okada H, Suh WK, Jin J, Woo M, Du C, et al. (2002) Generation and

characterization of Smac/DIABLO-deficient mice. Mol Cell Biol 22:

3509–3517.

33. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, et al. (1999) Molecular

characterization of mitochondrial apoptosis-inducing factor. Nature 397:

441–446.

34. Mirabella M, Di Giovanni S, Silvestri G, Tonali P, Servidei S (2000) Apoptosis

in mitochondrial encephalomyopathies with mitochondrial DNA mutations: a

potential pathogenic mechanism. Brain 123 (Pt 1): 93–104.

35. Aure K, Fayet G, Leroy JP, Lacene E, Romero NB, et al. (2006) Apoptosis in

mitochondrial myopathies is linked to mitochondrial proliferation. Brain 129:

1249–1259.

36. Tews DS, Behrhof W, Schindler S (2008) SMAC-expression in denervated

human skeletal muscle as a potential inhibitor of coexpressed inhibitor-of-

apoptosis proteins. Appl Immunohistochem Mol Morphol 16: 66–70.

37. Megeney LA, Kablar B, Garrett K, Anderson JE, Rudnicki MA (1996) MyoD is

required for myogenic stem cell function in adult skeletal muscle. Genes Dev 10:

1173–1183.

38. Deshmukh M, Johnson EM Jr (1998) Evidence of a novel event during neuronal

death: development of competence-to-die in response to cytoplasmic cytochrome

c. Neuron 21: 695–705.

39. Cook JG, Park CH, Burke TW, Leone G, DeGregori J, et al. (2002) Analysis of

Cdc6 function in the assembly of mammalian prereplication complexes. Proc

Natl Acad Sci U S A 99: 1347–1352.

40. Estus S, Zaks WJ, Freeman RS, Gruda M, Bravo R, et al. (1994) Altered gene

expression in neurons during programmed cell death: identification of c-jun as

necessary for neuronal apoptosis. J Cell Biol 127: 1717–1727.

41. Deshmukh M, Kuida K, Johnson EM Jr (2000) Caspase inhibition extends the

commitment to neuronal death beyond cytochrome c release to the point of

mitochondrial depolarization. J Cell Biol 150: 131–143.

XIAP and Myotube Apoptosis

PLoS ONE | www.plosone.org 10 March 2009 | Volume 4 | Issue 3 | e5097


