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A B S T R A C T   

Headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) detected 206 and 186 samples of fresh 
and stored sorghums respectively with three major types in Baijiu industry. The fingerprints showed the dif-
ferences of volatile compounds among fresh sorghum types by qualitative analysis and artificial recognition. 
Organic waxy sorghums had more contents of nonanal and 2-ethyl-1-hexanol but fewer ketones. The contents of 
acetoin in non-glutinous sorghums and organic non-glutinous sorghums were high. On the other hand, genetic 
algorithm-partial least squares (GA-PLS) selected 19 and 32 characteristic volatile compounds in fresh and stored 
sorghums. After centering and auto scaling to unit variance, the classification models with three major types of 
organic waxy sorghum, non-glutinous sorghum and organic non-glutinous sorghum were established based on 
orthogonal partial least squares-discriminant analysis (OPLS-DA). The goodness-of-fit (R2Y) and the goodness-of- 
prediction in cross-validation (Q2) in the model of fresh sorghum types all exceeded 0.9, in stored were over 0.8, 
the correct classification rates of external prediction were 95 % and 100 %, which revealed good performance 
and prediction. On this basis, the correct classification rates reached 87 % in organic waxy sorghums adulterated 
over 10 % ratio. GC-IMS combined with chemometrics is applicable in practical production for rapid identifi-
cation of sorghum types and adulterations.   

1. Introduction 

Sorghum is the fifth largest grain in the world and the most widely 
used raw grain in the production of high-quality Baijiu (Wu et al., 2017). 
It has been the first choice for brewing down the ages because of high 
starch content, low fat and moderate protein. Different sorghum culti-
vars also affect the quality of Baijiu to a large extent. First, waxy sor-
ghum contained 90 % amylopectin with loose structure is superior to 
non-glutinous sorghum in Baijiu yield and quality due to strong water 
absorption, easy gelatinization and many enzyme sites (Zhou et al., 
2008). Secondly, different contents of protein, fat and tannin in raw 
grain affect the flavor of Baijiu. Organic waxy sorghum has become a 
superior raw grain for brewing because it owns organic identification 
besides the feature of waxy sorghum, it is a safer and healthier raw 
material without synthetic fertilizers, pesticides and so on. The most 
striking characteristics are crimson color and small particle, however 

they are sometimes hard to distinguish from others through visual sense 
owing to some uncontrollable factors. In particularly, it shows recog-
nizable color incompletely during harvest due to the differences in 
harvest time, storage period and maturity. This may cause adulteration 
phenomenon that will disturb the market and affect consumer trust in 
the quality of organic Baijiu products. In addition, sorghum stored in the 
warehouse also faces the same situation after harvest. Therefore, 
monitoring and detecting sorghum type and adulteration becomes a 
crucial problem for Baijiu enterprise to ensure quality and flavor. 

The studies of sorghum classification are mainly in two directions, 
detecting traditionally physical and chemical indexes such as starch and 
tannin content (Boudries et al., 2009; Okoh et al., 1982) are destructive 
and time-consuming, with the development of non-destructive tech-
nique, Fan et al. (2021) characterized the volatile compounds of six 
Australian sorghum cultivars by gas chromatography-ion mobility 
spectrometry (GC-IMS) and showed the difference from gallery plot. The 
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emerging discrimination method based on spectroscopy and chemo-
metrics received satisfactory results. For sorghum discrimination, 
near-infrared spectroscopy (NIRS), machine vision and hyperspectral 
imaging (HSI) are greatly improving in practical application. Guindo 
et al. (2016) predicted pericarp thickness of sorghum by NIRS and 
partial least squares-discriminant analysis (PLS-DA). Ma et al. (2022) 
detected ten brewing-sorghum cultivars at single kernel sample level 
through machine vision system and the anti-aliased convolutional 
network. However, many sorghum cultivars have similar color and 
shape, visual recognition is limited to evaluate samples’ appearance 
feature. Hence Bai et al. (2020) and Huang et al. (2022) applied HSI that 
combined internal spectrum with image technology to discriminate 
sorghum cultivars and adulterations, the model established by deep 
forest and PLS-DA separately. These researches focused on sorghum 
cultivars and separated into several models that each of them classified 
into two or three cultivars, which were hardly feasible to practical 
application. In Baijiu industry there are hundreds of sorghum cultivars, 
whether sorghum is organic or waxy can vary widely in purchasing 
price. The price of organic waxy sorghum is the highest, followed by 
organic non-glutinous sorghum and non-glutinous sorghum. Multiple 
cultivars are mixed into batches and categorized as a major type in order 
to facilitate transport and deal, which causes great challenges in sor-
ghum classification and quality monitoring, such as cultivars with the 
feature of non-glutinous are categorized as a type of non-glutinous 
sorghum. Sorghum major types are classified based on similar prince 
and chemical properties (mainly amylopectin in brewing sorghum) even 
they are genotype differences, the divergences of cultivars in same type 
may affect classification between groups. The differences of several 
sorghum cultivars in previous studies were great limited to practical 
application. Therefore, it is very important to develop non-destructive 
and accurate method based on the actual situation of mixed sorghum 
cultivars. 

GC-IMS formed a trend in characterizing volatile compounds of 
sorghum due to good separation ability and high sensitivity. It separates 
trace gases through the gas phase part, then characterizes chemical ionic 
substances according to the difference in the mobility rates of gas phase 
ions in the electric field (Shvartsburg, 2017). GC-IMS advances in high 
sensitivity, low detection limit, no sample pre-treatment and visualiza-
tion of data. It’s very suitable for classification owing to the samples’ 
difference can be seen intuitively by the gallery plot after analysis. At 
present, GC-IMS has played a crucial role in the optimization of storage 
conditions and origin tracing of agricultural products, meat and so on 
(Martín-Gómez et al., 2022; Nie et al., 2022; Xiao et al., 2022). However, 
the researches of sorghum by GC-IMS mainly stayed at characterizing 
volatile compounds of cooked sorghum (Fan et al., 2021). In this paper, 
GC-IMS technology and chemometrics as a new combination to explore 
sorghum discrimination in types and adulterations. Orthogonal partial 
least squares-discriminant analysis (OPLS-DA) is a classification method 
in multivariate data analysis, which is an improvement of PLS-DA. The 
variations in X are adjusted by predictive and orthogonal components to 
reduce dimension. Therefore OPLS-DA can well solve samples with 
larger within-group divergence (Bylesjo et al., 2006). The method also 
has a considerable prospect on adulteration discrimination (Petrakis 
et al., 2015). This method is suitable for the classification of sorghum 
types which may have large within-group divergence. Furthermore, in 
order to reduce the invalid information and improve the model perfor-
mance, we need to screen the characteristic volatile compounds 
affecting sorghum types, so the study introduced genetic 
algorithm-partial least squares (GA-PLS) which is a classic variable se-
lection algorithm. The optimal number of variables is selected by plot-
ting variables with the correlation coefficient R2, the variables with 
better objective function value are retained (Hasegawa and Funatsu, 
1998; Lin et al., 2012). 

This paper took three major sorghum types in common (according to 
practical harvest and process) instead of cultivars to detect and screen 
characteristic volatile compounds with GC-IMS and GA-PLS. Then we 

established classification models with OPLS-DA for fresh and stored 
sorghum types and adulterations. which would ensure better quality 
supervision of high-quality sorghum and meet the practical application 
in Baijiu industry. 

2. Material and methods 

2.1. Materials 

Three sorghum types were supplied from Luzhou Red Sorghum 
Modern Agriculture Development Co., Ltd (Luzhou, China) during 2022. 
Organic waxy sorghums (Luzhou, China), non-glutinous sorghums 
(Inner Mongolia and Northeast, China), organic non-glutinous sorghums 
(organic region in Northeast, China). Fresh sorghums harvested in 2022 
and detected within a week, stored sorghum samples were stored in the 
warehouse under specific conditions for 4–6 months. The samples were 
collected at random from representative sorghum growing areas to 
simulate the actual sorghum collection situation. 

2.2. HS-GC-IMS analysis 

The detection conditions slightly changed in sample mass and tem-
perature of injection needle referred to Fan’s (Fan et al., 2021) method. 
The volatile compounds were carried out through HS-GC-IMS (Fla-
vourSpec®, Gesellschaft für Analytische Sensorsysteme mbH, Dort-
mund, Germany) which equipped with an automatic headspace sampler 
(CTC Analytics AG, Zwingen, Switzerland). The samples in triplicates of 
different sorghum were weighed and placed 2.0 g in 20 mL headspace 
bottles (kept in the same environment during the period) and sealed 
with magnetic headspace caps for determining HS-GC-IMS volatile 
compounds. Column type: MXT-5 (15 m × 0.53 mm, 1.0 μm). The 
samples were incubated for 15 min at the incubator speed of 500 r/min 
and the incubator temperature of 60 ◦C. After that, injection needle 
heated to 80 ◦C automatically sucked 500 μL headspace gas and injected 
it into the injection port (75 ◦C). The samples were injected into the 
chromatographic column with 60 ◦C constantly through nitrogen (purity 
greater than 99.999 %). The resulting ions were taken to a migration 
tube (98 mm in length) with a constant temperature of 45 ◦C, and the 
drift gas was set at 150 mL/min. Each spectrum was scanned an average 
of 12 times. The programed flow rate was: initial 2 mL/min for 2 min, 
increased uniformly to 15 mL/min at 10 min, then reached to 100 
mL/min at 20 min, and rose to 150 mL/min at 25 min. The analysis time 
was 25 min. 20 μL of n-ketones C4–C9 (Shandong Hanon Scientific In-
strument Co., Ltd, China) standard solution was injected as an external 
parameter to calculate the volatile compound retention index. 

Adulterated samples: the proportions of 2.5 %, 5.0 %, 7.5 %, 10.0 %, 
20.0 %, 30.0 %, 40.0 % and 50.0 % were adulterated respectively, 
including organic waxy sorghum adulterated with non-glutinous sor-
ghum, organic waxy sorghum adulterated with organic non-glutinous 
sorghum, organic non-glutinous sorghum adulterated with non- 
glutinous sorghum. 

2.3. Multivariate analysis in sorghum types 

GA-PLS is the program performing the variable selection for non- 
spectral data. Although gallery plot could directly show the differ-
ences of compounds among samples, the uniformity of volatile com-
pounds changed due to high sensitivity and low detection limit. 
Screening characteristic volatile compounds manually is challenged. 
Visual fatigue, personnel differences and limited display will affect the 
selection of characteristic volatile compounds, making it unable to 
characterize sample information fully and draw clear conclusions. GA- 
PLS calculated the quantitative results of all labeled signal peak areas 
by algorithm then screened the characteristic volatile compounds. The 
data set must be a X+1 matrix, in which each line is a sample, the col-
umns 1:X are the X variables and the last column is the Y variable. 
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Sorting samples in the matrix according to the Y variable. This did 100 
runs with random permutations of the Y variable. The fitness function 
returned from these experiments is correlation coefficient R2 in cross 
validation. 

The data set was constructed with variables selected by GA-PLS. 
Sorghums were sorted in advance and the classification models of 
organic waxy sorghum, non-glutinous sorghum and organic non- 
glutinous sorghum were established through OPLS-DA after centering 
and auto scaling to unit variance in data. The validation of the models 
was carried out by seven-fold cross-validation (CV) in autofitting and 
permutation tests for each class. External blind samples were also used 

to validate the performance of models. 

2.4. Statistical analysis 

The data analysis software Laboratory Analytical Viewer (LAV, G.A. 
S., Dortmund, Germany) and three visual analysis plug-ins provided by 
GC-IMS detected volatile compounds. The characteristic volatile com-
pounds of samples could be manually screened and analyzed from 
different angles. They were qualitatively determined by comparing the 
retention index and drift time of reference in the GC-IMS spectrum li-
brary, and quantitatively determined by peak area. Choosing variables 

Fig. 1. Diagram of volatile compounds in fresh organic waxy sorghum.  
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through GA-PLS in the toolbox of MATLAB 2014a software (The Math-
works Inc., Natick, Massachusetts, USA) and constructing model with 
OPLS-DA by the SIMCA 14.1 software (Umetrics, Umeå, Sweden). 
Kruskal-Wallis test of non-parametric approach was further used to 
compare the significance of differences in volatile compounds among 
the sorghum types. 

3. Results and discussion 

3.1. Volatile compounds fingerprint of sorghum types 

The volatile compounds of different sorghum types were detected by 
HS-GC-IMS. The result shows a three-dimensional false-color diagram of 
drift time-retention time-ionic strength (Fig. 1). The X-axis is the relative 
drift time of ions, and the Y-axis is the retention time of gas chroma-
tography. The red vertical line is the reactive ion peak (RIP), which is the 
signal peak of water in the air ionized by radiation from the ionizing 
source tritium, and is often used as a reference signal to indicate the total 
number of all ionizable ions (Aliaño-González et al., 2019). The drift 
time and location of RIP were normalized for each spectrum of volatile 
compounds. Volatile compounds generated on the right side of RIP were 
different spots of circle, ellipse and water drop, which are related to the 
nature and concentration of the substance itself. Most of the signals 
distributed in drift time of 1.0-2.0 ms and retention time of 100-950 s. 
Most of the volatile compounds were small and medium molecules. 
Different colors represent different signal intensity of the substance, the 
brighter and redder spots, the greater substance concentration and vice 
versa (Li et al., 2019; Zhang et al., 2020). In addition, the ability of 
robbing hydronium ions in RIP is different due to substance concen-
tration. Monomer will appear only while the substance concentration is 
small, and dimer, even trimer, multimer appears with the increasing 
concentration. The occurrence of several polymers is also determined by 
properties. 

HS-GC-IMS analyzed volatile compounds of 206 and 186 samples 
respectively in fresh and stored sorghum with three types. LAV analysis 
software was used to label volatile compounds as much as possible. 72 
and 63 signal peaks were labeled separately in projects after eliminating 
interference and stray peaks. Then gallery plots were established with 
selected 15 samples at random (Fig. 2), where each column represents 
signal peaks of the same volatile compounds in different samples, each 
row represents all the signal peaks selected from a sample. As shown 
slight differences in signal peaks appeared within sorghum types. It 
should be noted that signal peaks of non-glutinous sorghums were 
inconsistent partially because it was the most common type contained 
many cultivars, the other two types of sorghum were relatively fewer but 
large yield. Within-class differences may affect classification because 
samples of mixed cultivars could not guarantee the consistency in the 
same type. 51 and 44 volatile compounds (including monomers and 
dimers of the same compounds) were identified respectively (Table 1 
and Table 2) from marked signal peaks by comparing the NIST retention 
index database with the IMS drift time database, others were unidenti-
fied but different in contents. The aldehydes were the most in fresh 
sorghum types up to 14 kinds, followed by alcohols, ketones, esters, 
aromatics and heterocyclic compound. After storage, the number of al-
cohols and ketones increased but aldehydes had almost halved. The 
color depth of the signal peaks showed obvious differences in varieties 
and concentrations of volatile compounds of three fresh sorghum types 
(Fig. 2A). Kruskal-Wallis test verified significance (p < 0.001) further in 
comparing volatile compounds of sorghum types when the variance is 
not homogeneous. The volatile compounds of organic waxy sorghums 
were mainly aldehydes that showed generally fruity, sweet and astrin-
gent. And the contents of nonanal, 2-ethyl-1-hexanol were higher than 
other types (region a). The concentrations and varieties of volatile 
compounds of non-glutinous sorghums were relatively the highest, and 
more compounds appeared such as ketones and alcohols. The di-
vergences of volatile compounds between non-glutinous sorghums and 

organic non-glutinous sorghums were inapparent but we could distin-
guish them from octanal, heptanal, nonanal, hexanal, benzaldehyde 
(region c). Aldehydes have a strong scent with a low threshold value. 
Lower fatty aldehydes have a pungent odor, which increases with the 
length of carbon chain and reaches the maximum at C8–C12. These al-
dehydes may be the original characteristic volatile compounds of sor-
ghums which was consistent with the description of previous research 
(Fan et al., 2021). And the most significant compound which distin-
guished them from organic waxy sorghum was acetoin (region b). Due to 
the differences of volatile compounds in fresh sorghums and stored 
sorghums, we compared them by common compounds (Table 3). The 
concentrations of alcohols in volatile compounds of sorghum types 
increased after storage (Fig. 2B), especially n-hexanol, pentan-1-ol, 
3-methylbutan-1-ol. The formation of alcohol may be related to the 
automatic oxidation of macromolecular substances such as oils and fats 
in raw grain (Zhang et al., 2009). The kinds and concentrations of vol-
atile compounds in organic waxy sorghum increased obviously, while 
the concentrations of their own characteristic compounds decreased 
such as nonanal, benzaldehyde, acetoin. There are few studies on vol-
atile compounds for raw sorghum detected by GC-IMS, Fan et al. (2021) 
concluded that the volatile compounds in six sorghum cultivars did not 
show significant difference but their corresponding signal intensity has 
difference. However, obvious differences in volatile compounds of fresh 
sorghum types in our study shows that they could be classified in terms 
of volatile compounds and corresponding signal intensity. There would 
be some uncertainty to distinguish characteristic volatile compounds of 
sorghum types by color difference merely, which needed to be further 
explored by chemometrics modeling. 

3.2. Characteristic volatile compounds selection 

Variable selection is a very important step in multivariate analysis. 
The chromatogram of GC-IMS can label volatile compounds with no 
upper limits. If all labeled compounds are modeled as variables, not only 
a huge amount of data will be generated, but they are profitless to 
maintain the model. Getting rid of variables that contain exclusive in-
formation contributes to simpler models and better predictive effects. 
We selected characteristic volatile compounds with GA-PLS to reduce 
variables marked by GC-IMS. Fig. 3A shows the variable with the 
greatest contribution after 100 runs was Area 49 (No. 42), which was 
selected 41 times. Among the stored sorghum types, nonanal (No. 4) 
contributed the most with 71 times of selection (Fig. 3B). Correlation 
coefficient R2 (Formula 1) and root mean square error in cross validation 
(RMSECV, Formula 2) are the main value for choosing variables. The 
optimal number of variables were 65 and 55 in fresh and stored sorghum 
types corresponding to the minimum RMSECV. However, the number of 
variables in optimum may still be too more to build and maintain the 
OPLS-DA model. We chose the fewer variables near the optimal value of 
R2 and RMSECV as alternative results (Table 4) in order to reduce the 
variables as much as possible and simplify the subsequent modeling on 
the basis of achieving the same effect. OPLS-DA modeled separately with 
variables and selected the final number of characteristic volatile com-
pounds according to the stable evaluation parameters and prediction 
comprehensively on the premise of fewer variables. 

Formula 1. A squared predictive correlation coefficient in cross 
validation. 

R2 =

(

1 −
∑

i
(yi − ŷi)

2 /
∑

i
(yi − y)2

)

× 100 %  

yi is the experimental value of sample i, ŷi is the predicted value of 
sample i, y is the average of sample. 

Formula 2. Root mean square error in cross validation. 
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Fig. 2. Gallery plots of volatile compounds in fresh (A) and stored (B) sorghum types. 5 triplicated samples of each type with organic waxy sorghum, non-glutinous 
sorghum and organic non-glutinous sorghum from top to bottom. 
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RMSECV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

n is the number of samples in the training set, yi is the experimental 
value of the sample i, ŷi is the predicted value of the model except the 
sample i (Hasegawa et al., 1997; Lin et al., 2012). 

3.3. Classification models in sorghum types 

The classification models of fresh and stored sorghum types were 
established through OPLS-DA under different variables selected by GA- 
PLS, and we optimized the model effects by adjusting predictive and 
orthogonal components after auto-fitting. The classification results 
provided the predicted Y value for the dummy variables (0 or 1) in each 

class used to direct the projection. Membership of a class depends upon 
matching the value of the dummy variable, so a value close to one in-
dicates fitted membership. The discrimination value of 0.5 is often used 
as a practical threshold in order to classify whether the sample belongs 
to one class. The models were evaluated by the variance in X explained 
by the model (R2X), the goodness-of-fit (R2Y), and the goodness-of- 
prediction in cross-validation (Q2) (Rivera-Pérez et al., 2022). R2Y and 
Q2 values more than 0.5 demonstrate accepted model fitting, further 
close to 1 indicate the excellent performance (Rubert et al., 2016; Triba 
et al., 2015). Components is a comprehensive variable, which is used for 
variable reduction and data visualization (Gu et al., 2020). Usually, the 
top several components can reflect most of the information of the 
original variables and reduce information redundancy. Taking fewer 
variables as a prerequisite, the optimal models with 19 and 32 volatile 

Table 1 
The identified volatile compounds in three fresh sorghum types.  

Count Compound CAS Formula RIa Rtb/s Dtc/ms 

1 Nonanal Md C124196 C9H18O 1104.8 719.043 1.48902 
2 Nonanal De C124196 C9H18O 1103.9 717.218 1.94008 
3 Octanal M C124130 C8H16O 1001.5 502.367 1.42076 
4 Heptanal M C111717 C7H14O 894.5 340.785 1.34527 
5 Heptanal D C111717 C7H14O 894 340.098 1.68605 
6 Benzaldehyde C100527 C7H6O 963.6 443.17 1.15241 
7 Decanal C112312 C10H20O 1213.7 947.529 1.55047 
8 (E)-2-Nonenal C18829566 C9H16O 1159.8 834.272 1.4166 
9 4-Methylbenzaldehyde C104870 C8H8O 1080.2 667.395 1.1938 
10 (E)-2-Octenal M C2548870 C8H14O 1058.5 621.908 1.33413 
11 2-Ethyl-1-hexanol M C104767 C8H18O 1036.8 576.421 1.41344 
12 Oct-1-en-3-ol C3391864 C8H16O 984 473.407 1.17217 
13 (E)-Hept-2-enal M C18829555 C7H12O 950 423.038 1.25625 
14 2-Heptenal, (E)- D C18829555 C7H12O 949.1 421.679 1.65755 
15 Pentan-1-ol M C71410 C5H12O 761.5 224.621 1.25453 
16 3-Methylbutanal D C590863 C5H10O 642.1 153.482 1.39491 
17 3-Methylbutanal M C590863 C5H10O 644.3 154.412 1.18545 
18 2-Pentanone M C107879 C5H10O 691.1 174.885 1.12201 
19 2-Methylpropanal D C78842 C4H8O 588.2 130.682 1.29078 
20 2-Methylpropanal M C78842 C4H8O 593.7 133.009 1.09927 
21 (E)-2-Octenal D C2548870 C8H14O 1059.2 623.404 1.81582 
22 n-Hexanol M C111273 C6H14O 874.1 321.212 1.32745 
23 2-Butanone D C78933 C4H8O 581.9 128.02 1.24495 
24 Benzaldehyde D C100527 C7H6O 968.1 449.808 1.47426 
25 2-Ethyl-1-hexanol D C104767 C8H18O 1035.2 573.103 1.80546 
26 3-Methylbutan-1-ol M C123513 C5H12O 738.6 208.464 1.237 
27 Hexanal D C66251 C6H12O 793 248.53 1.55783 
28 Hexanal M C66251 C6H12O 793.1 248.622 1.26083 
29 Pentanal M C110623 C5H10O 691.6 175.268 1.19335 
30 Pentanal D C110623 C5H10O 693 176.214 1.41937 
31 2-Pentanone D C107879 C5H10O 681.8 170.266 1.37128 
32 Ethyl hexanoate M C123660 C8H16O2 998 494.951 1.34487 
33 Ethyl hexanoate D C123660 C8H16O2 998.6 496.197 1.81596 
34 2-Heptanone M C110430 C7H14O 892.9 338.516 1.26224 
35 2-Heptanone D C110430 C7H14O 891.5 336.743 1.63214 
36 Pentan-1-ol D C71410 C5H12O 761.7 224.755 1.51961 
37 2-Methyl-1-propanol D C78831 C4H10O 628.2 147.588 1.37151 
38 2,3-Butanediol C513859 C4H10O2 785.4 241.745 1.36669 
39 Hex-2-enal D C505577 C6H10O 846.6 296.524 1.51347 
40 Hex-2-enal M C505577 C6H10O 849.2 298.853 1.18059 
41 (E)-2-Pentenal M C1576870 C5H8O 747.5 214.712 1.1071 
42 (E)-2-Pentenal D C1576870 C5H8O 748 215.122 1.36357 
43 3-Methylbutan-1-ol D C123513 C5H12O 739.7 209.238 1.48215 
44 Butyl propanoate M C590012 C7H14O2 906.1 358.035 1.28614 
45 Butyl propanoate D C590012 C7H14O2 903.6 354.298 1.71485 
46 2,3-Butanedione C431038 C4H6O2 583 128.483 1.18425 
47 2-Methyl-2-propenal C78853 C4H6O 572.1 123.867 1.21478 
48 2-Pentyl furan C3777693 C9H14O 993.4 487.29 1.25474 
49 n-Hexanol D C111273 C6H14O 875.1 322.127 1.64109 
50 Acetoin M C513860 C4H8O2 720.2 195.448 1.06729 
51 Acetoin D C513860 C4H8O2 728.4 201.243 1.33258  

a The retention index calculated using n-ketones C4–C9 as external standard in MXT-5 column. 
b The retention time in MXT-5 column. 
c The drift time relatively to RIP. 
d M represents monomer. 
e D represents dimer. 
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compounds (Table 6) in fresh and stored sorghum types were chosen 
under comprehensive consideration in evaluation parameters and pre-
dictions (Table 4). For choosing excellent model, a larger R2Y is a 
necessary condition but insufficient. In fresh sorghum types, model with 
65 compounds revealed similar or poorer predictive performance 
compared with the model of 19 compounds even with a larger R2Y. In 
the fresh sorghum model with 19 compounds, the evaluation values 
(R2X = 0.922, R2Y = 0.913, Q2 = 0.902) all exceeded 0.9, which 
explained excellent performance by all extracted components. Further-
more, the values (R2X = 0.873, R2Y = 0.856, Q2 = 0.843) over 0.8 in the 
stored sorghum model proved good effect even the small divergence 
between types. We accessed whether models were overfitting through 
permutation tests. The intercept of Q2 regression line in cross-validation 
less than zero indicated the models were fitting (Abreu et al., 2019) and 
the model validations were effective. Fewer variables were used to 
achieve similar or better discrimination effect than others in both 
models. In particularly, fewer variables were applied in the model of 
fresh sorghum due to the larger differences of volatile compounds be-
tween types. Fig. 4 are the OPLS-DA score plots of the fresh and stored 
sorghum, which shows the relative positions between samples. The score 

plots draw the tolerance ellipse which is defined as the 95 % critical limit 
based on Hotelling’s T2 (Huang et al., 2018). The sorghum types were 
classed separately into three clusters and the overall classification 
appearance was well. The samples of non-glutinous sorghum presented a 
decent shape of aggregation among types even though they contained 
the largest number of cultivars compared with others. Especially for 
fresh samples, their diverse concentrations of characteristic volatile 
compounds leaded to large divergences within the class. OPLS-DA well 
eliminated substances unrelated to classification and revealed the dif-
ferences indeed. The relatively small divergences of non-glutinous and 
organic non-glutinous sorghums also leaded to a small part of adhesions 
between samples. For the stored sorghums (Fig. 4B), the distributions of 
samples in each type were slightly dispersed due to the varieties and 
concentrations of volatile compounds were more similar, but a clear 
distinction made them distinguish from each other. These results were 
agreed with the manual recognition through gallery plots. The concen-
trations of characteristic volatile compounds of three fresh sorghum 
types were high, they could be identified well by fingerprint and 
modeled with the fewer compounds, especially the high-quality organic 
waxy sorghum. After storage, the volatile compounds of sorghum types 

Table 2 
The identified volatile compounds in three stored sorghum types.  

Count Compound CAS Formula RIa Rtb/s Dtc/ms 

1 Nonanal Md C124196 C9H18O 1100.1 719.467 1.4756 
2 Nonanal De C124196 C9H18O 1099.1 717.439 1.93775 
3 Ethyl hexanoate C123660 C8H16O2 998.2 498.173 1.34146 
4 Benzaldehyde C100527 C7H6O 966 449.581 1.15173 
5 n-Hexanol D C111273 C6H14O 870.8 321.214 1.64171 
6 n-Hexanol M C111273 C6H14O 871.3 321.645 1.32511 
7 3-Octanone M C106683 C8H16O 982 473.13 1.30685 
8 1-Octen-3-ol C3391864 C8H16O 993.6 490.111 1.1543 
9 Heptanal D C111717 C7H14O 894.2 343.992 1.6834 
10 Pentan-1-ol M C71410 C5H12O 769 229.654 1.25491 
11 Pentan-1-ol D C71410 C5H12O 766 227.444 1.51814 
12 3-Methylbutan-1-ol M C123513 C5H12O 737.6 206.858 1.24055 
13 3-Methylbutan-1-ol D C123513 C5H12O 737.2 206.581 1.48463 
14 2-Methylpropanol M C78831 C4H10O 640.2 151.709 1.17293 
15 2-Methyl-1-propanol D C78831 C4H10O 629 147.175 1.36607 
16 2-Butanone D C78933 C4H8O 584.6 129.194 1.24158 
17 2-Butanone M C78933 C4H8O 584.8 129.282 1.06204 
18 4-Methylbenzaldehyde C104870 C8H8O 1075 665.068 1.18809 
19 n-Hexanol C111273 C6H14O 872.7 322.888 1.98646 
20 2-Methylpropanal D C78842 C4H8O 589.7 131.282 1.28729 
21 2-Methylpropanal M C78842 C4H8O 597.8 134.556 1.09662 
22 2-Heptanone M C110430 C7H14O 883.2 332.686 1.26108 
23 Cyclohexanone M C108941 C6H10O 895.1 345.372 1.14986 
24 Hex-2-enal D C505577 C6H10O 838.3 290.962 1.51264 
25 2-Hexenal M C505577 C6H10O 841.3 293.703 1.18056 
26 3-Octanone C106683 C8H16O 981.7 472.605 1.71434 
27 Ethyl hexanoate D C123660 C8H16O2 1000.3 502.619 1.79245 
28 Octanal C124130 C8H16O 1000.9 503.912 1.41343 
29 2,3-Butanediol C513859 C4H10O2 784.6 240.999 1.36741 
30 Acetoin D C513860 C4H8O2 725.3 197.919 1.33014 
31 2-Pentanone D C107879 C5H10O 684.3 169.563 1.36569 
32 2-Pentanone M C107879 C5H10O 685 169.837 1.12095 
33 3-Methyl-2-butanol C598754 C5H12O 701.8 180.862 1.44114 
34 3-Methylbutanal C590863 C5H10O 650.4 155.84 1.39692 
35 Methyl isobutyl ketone C108101 C6H12O 737.7 206.956 1.16622 
36 2-Pentyl furan C3777693 C9H14O 986.7 480.038 1.25177 
37 (E)-2-Octenal C2548870 C8H14O 1058.2 628.466 1.33129 
38 2-Ethyl-1-hexanol C104767 C8H18O 1036.6 581.617 1.41462 
39 n-Butyl lactate C34451199 C7H14O3 1027 560.681 1.26397 
40 2-Heptenal, (E)- M C18829555 C7H12O 947.4 422.194 1.66242 
41 2-Heptenal, (E)- D C18829555 C7H12O 949.2 424.817 1.25662 
42 2-Ethyl-1-hexanol C104767 C8H18O 1036.4 581.165 1.79607 
43 Cyclohexanone D C108941 C6H10O 892.5 341.504 1.45296 
44 (Z)-3-Nonen-1-ol C10340235 C9H18O 1155.5 839.981 1.41414  

a The retention index calculated using n-ketones C4–C9 as external standard in MXT-5 column. 
b The retention time in MXT-5 column. 
c The drift time relatively to RIP. 
d M represents monomer. 
e D represents dimer. 
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trended to close due to oxidation and degradation. The model could 
distinguish sorghum types through digging out data information in 
depth to avoid the drawback in gallery plots. 

In addition to using validation set to evaluate model performance 
through R2Y and Q2, the study further evaluated classification effect of 
the types through external blind samples. 15 % of fresh and stored 
sorghums (32 and 27 respectively) were randomly selected as blind 
samples for independent testing which were not involved in the 
modeling. The classification list exhibited a column of predicted value 
for each sorghum type (Table 5). The value of decidable column 

concentrated on 0.8 to 1.1 (the threshold value 0.5 was the boundary 
line), while the other two columns were closed to 0 because they were 
completely unrelated types. The correct classification rates of blind 
samples in fresh and stored sorghum types were 95 % and 100 % with 95 
% confidence interval respectively, which proved an excellent pre-
dictivity of OPLS-DA models and the practicality of the classifiers. 

In addition, potential volatile compounds affecting sorghum types 
classification were selected according to the variable importance in 
projection (VIP) analysis, and VIP score≥1 was taken as the condition 
for screening (Table 6). For the classification of fresh sorghum types 

Table 3 
The results in peak areas of compounds in both fresh and stored sorghum types.  

Compound Peak area (fresh)/a.u. Peak area (stored)/a.u. 

OGd N ON OG N ON 

Nonanal Me 5656 ± 1028a 4012 ± 909b 2497 ± 564c 1397 ± 592b 1626 ± 374a 1222 ± 580b 

Nonanal D 2194 ± 1039a 1216 ± 542b 488 ± 143c 223 ± 124ab 232 ± 70a 194 ± 102b 

Octanal M 777 ± 112b 943 ± 283a 450 ± 43c 515 ± 94a 496 ± 72a 403 ± 89b 

Heptanal D 209 ± 56b 880 ± 647a 233 ± 77b 85 ± 34a 109 ± 59a 77 ± 21a 

Hex-2-enal D 187 ± 34c 600 ± 419a 309 ± 66b 47 ± 13c 100 ± 37a 59 ± 26b 

2-Heptenal, (E) - D 236 ± 65c 482 ± 188a 279 ± 63b 29 ± 11b 54 ± 35a 28±8b 

Benzaldehyde 520 ± 99c 1205 ± 433b 2278 ± 258a 192 ± 60b 281 ± 67a 265 ± 127a 

2,3-Butanediol 340 ± 45b 957 ± 355a 1057 ± 129a 256 ± 44c 357 ± 68a 313 ± 69b 

Acetoin D 1112 ± 106b 9529 ± 6432a 9358 ± 976a 323 ± 102c 1374 ± 556a 672 ± 219b 

4-Methylbenzaldehyde 951 ± 113a 820 ± 170b 801 ± 224b 440 ± 174a 520 ± 164a 506 ± 115a 

2-Methylpropanal M 331 ± 94c 571 ± 156a 448 ± 91b 160 ± 77a 143 ± 42a 124 ± 38a 

Ethyl hexanoate M 322 ± 52c 1741 ± 992a 895 ± 169b 242 ± 106a 210 ± 69a 223 ± 65a 

Ethyl hexanoate D 185 ± 17b 1048 ± 1056a 196 ± 18b 29 ± 10a 28±6a 26±4a 

2-Methyl-1-propanol D 237 ± 103b 940 ± 383a 1006 ± 77a 987 ± 500c 2354 ± 673a 1682 ± 660b 

n-Hexanol M 328 ± 117b 2069 ± 573a 1755 ± 437a 5053 ± 934a 4828 ± 1349a 4603 ± 1044a 

Pentan-1-ol M 759 ± 136b 1025 ± 365a 665 ± 79c 1698 ± 194a 1525 ± 224a 1554 ± 199a 

3-Methylbutan-1-ol M 606 ± 197b 1324 ± 326a 1195 ± 102a 1954 ± 418b 2248 ± 358a 2340 ± 364a 

3-Methylbutan-1-ol D 165 ± 43c 461 ± 267a 245 ± 44b 1257 ± 477b 1802 ± 729a 1518 ± 638ab 

2-Pentanone M 765 ± 177b 1101 ± 305a 783 ± 74b 1351 ± 180a 894 ± 238b 761 ± 262c 

2-Pentanone D 235 ± 44b 2396 ± 871a 2146 ± 477a 3741 ± 1529a 2040 ± 921b 1137 ± 764c 

2-Ethyl-1-hexanol M 633 ± 158a 510 ± 121b 467 ± 83b 576 ± 428b 1894 ± 991a 411 ± 78b 

2-Ethyl-1-hexanol D 122 ± 17a 127±9a 124±7a 70 ± 19b 161 ± 100a 62±3b 

Pentan-1-ol D 346 ± 59b 666 ± 348a 285 ± 47c 725 ± 163a 547 ± 139b 529 ± 331c 

2-Methylpropanal D 80 ± 17b 589 ± 286a 412 ± 40a 268 ± 85b 498 ± 196a 290 ± 76b 

2-Heptanone M 188 ± 28b 813 ± 392a 583 ± 171a 251 ± 46a 290 ± 67a 207 ± 39b 

2-Butanone D 139 ± 47b 694 ± 179a 723 ± 138a 357 ± 169c 784 ± 291a 474 ± 166b 

2-Pentyl furan 194 ± 24c 539 ± 138a 308 ± 20b 438 ± 163a 484 ± 160a 330 ± 181b 

abc: the data with different letters are significantly different (p < 0.001) in Kruskal-Wallis test and samples were performed in triplicates. 
d OG, N, ON represents organic waxy, non-glutinous and organic non-glutinous sorghum types respectively. 
e M and D represent monomer and dimer respectively. 

Fig. 3. Histogram of frequency of selections in fresh (A) and stored (B) sorghum types.  
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combined with the significance (p < 0.001) in Kruskal-Wallis test, the 
potential volatile compounds were benzaldehyde, (E)-hept-2-enal, ace-
toin, 2-methylpropanal. And for stored sorghum types, the volatile 
compounds were 3-methyl-2-butanol, 2-heptenal (E), n-butyl lactate, 2- 
ethyl-1-hexanol, methyl isobutyl ketone, 2-butanone, (E)-2-octenal 
which could not be selected through fingerprint. Different from the 
volatile compounds selected visually by fingerprint with pairwise 

comparison, the potential compounds were used to classify three sor-
ghums types and selected by algorithms with greater reliability. 

Many investigations confirmed that OPLS-DA has been widely 
studied and tested in rice, quinoa flour (Li et al., 2023; Yang et al., 
2022). However, few studies conduct on the identification of sorghum 
types. OPLS-DA can well solve samples with larger within-group diver-
gence and obtain delightful classification effect (Bylesjo et al., 2006). In 

Table 4 
Parameters and prediction results of OPLS-DA models in sorghum with different variables.  

Models The number of variables R2/ % a Componentsb R2X R2Y Q2 CCRc/ % CCR-Ad/ % CCR-Be/ % 

Fresh sorghum 65 99.00 3 + 6+0 0.867 0.965 0.96 100 76 93 
30 98.41 3 + 4+0 0.918 0.919 0.909 94 89 100 
19 97.96 3 + 4+0 0.922 0.913 0.902 95 87 100 
7 96.91 3 + 1+0 0.899 0.872 0.866 96 84 93 

Stored sorghum 55 83.71 3 + 8+0 0.828 0.891 0.875 99 -f – 
32 81.95 3 + 8+0 0.873 0.856 0.843 100 – – 
24 79.59 3 + 8+0 0.906 0.826 0.809 95 – –  

a The correlation coefficient parameter in GA-PLS. 
b Components of predicted, orthogonal X and orthogonal Y. 
c Correct classification rates of predictive samples. 
d Predictive adulterated samples of organic waxy sorghum adulterated with 10.0–50.0 % ratio of non-glutinous sorghum. 
e Predictive adulterated samples of organic waxy sorghum adulterated with 10.0–50.0 % ratio of organic non-glutinous sorghum. 
f No data due to the model is unsuitable for the discrimination of adulterated sorghum after storage. 

Fig. 4. Score plots of fresh (A) and stored (B) sorghum types based on OPLS-DA. Legend 1–3 represent samples of organic waxy sorghum, non-glutinous sorghum and 
organic non-glutinous sorghum. 

Table 5 
The average prediction results of the optimal OPLS-DA model in fresh sorghum samples.  

Count actual classa Pred-v (1)b Pred-v (2) Pred-v (3) Count actual class Pred-v (1) Pred-v (2) Pred-v (3) 

1 1 0.96 0.02 0.02 17 2 0.24 0.28 0.49 
2 1 1.04 0.01 − 0.05 18 2 − 0.06 0.90 0.16 
3 1 1.03 − 0.04 0.01 19 2 − 0.03 0.99 0.04 
4 1 1.05 0.09 − 0.14 20 2 0.30 0.50 0.19 
5 1 0.96 0.02 0.01 21 2 0.08 0.93 − 0.01 
6 1 0.93 0.08 − 0.01 22 2 0.07 0.91 0.02 
7 1 0.91 0.05 0.04 23 2 0.13 0.84 0.03 
8 1 0.96 0.01 0.03 24 3 0.08 0.11 0.80 
9 1 1.00 0.05 − 0.05 25 3 0.07 0.21 0.72 
10 1 0.98 − 0.08 0.10 26 3 − 0.03 0.05 0.98 
11 1 0.96 0.07 − 0.03 27 3 0.03 0.11 0.87 
12 1 0.97 0.01 0.01 28 3 0.07 0.10 0.83 
13 1 1.05 − 0.02 − 0.03 29 3 − 0.06 0.02 1.03 
14 1 1.03 0.00 − 0.03 30 3 0.00 0.13 0.88 
15 1 0.98 0.09 − 0.07 31 3 − 0.06 0.03 1.03 
16 2 − 0.06 1.12 − 0.06 32 3 − 0.01 0.16 0.86  

a Class 1–3 represents organic waxy sorghum, non-glutinous sorghum and organic non-glutinous sorghum respectively. 
b Pred-v (1–3) means the predicted value if the sample belongs to class 1, class 2, class 3 respectively. 
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previous study, accuracy of the anti-aliased convolutional network with 
machine vision obtained 89.15 % for ten cultivars (Ma et al., 2022). Bai 
et al. (2020) obtained 96 % accuracy of the model with HSI and PLS-DA. 
The study achieved the similar or even higher classification accuracy 
with fresh and stored sorghum in the application of algorithm. More 
importantly, we achieved the sorghum types’ classification and solved 
samples with larger within-cultivars divergence through OPLS-DA, 
which would be feasible in practical harvest to solve the situation of 
cultivars combination. More than 200 representative samples applied 
for model establishment verified the practicability and accuracy. There 
are hundreds of sorghum cultivars and many of them mix into a major 
type for practical production which causes research limitation on clas-
sification and practical application. In this study, combined with the 
situation of sorghum cultivars mixed into batches, three sorghum types 
in common that can cover most sorghum cultivars were applied for 
classification in the actual sorghum collection process of enterprises. 
They can directly obtain the sorghum type and adulteration of this batch 
without pre-treatment. The study confirmed that classification of sor-
ghum type is achievable through volatile compounds and OPLS-DA al-
gorithm, and the divergence within cultivars in same sorghum type can 
be reduced. 

3.4. Adulteration discrimination 

The classification models of sorghum types can also be used to 
identify sorghum adulteration based on the change of discrimination 
value. This paper focused on the adulteration of fresh organic waxy 
sorghum. As for the stored sorghums, the similar volatile compounds of 
different sorghum types were inapplicable to discriminate adulteration. 
We interpreted the discrimination value from another angle, for organic 
waxy sorghum, the predicted value less than 0.5 or over 1.5 could be 
judged as adulteration, and the rule was consistent with other types. The 
discrimination value decreased and gradually deviated from the stan-
dard value 1 with the increasing adulterated proportion, until the 
threshold of 0.5 was broken to reach the correct discrimination. When 
the adulterated proportion of non-glutinous sorghum and organic non- 
glutinous sorghum were 2.5 %–50.0 %, correct classification rates of 
organic waxy sorghum adulteration were just 64 % and 83 %, while the 
adulterated proportion increased to 10.0 %–50.0 %, the classification 
rates reached to 87 % and 100 % respectively (Table 4). The model 
discrimination effect was better when adulterated ratio was greater than 

10.0 %. The model discriminated inadequately in the case of the adul-
terated ratio less than 10.0 % because the characteristic volatile com-
pounds concentration of the adulterated sorghum types could not reach 
the degree of being distinguished. However, the discrimination in 
organic non-glutinous sorghum adulterated with non-glutinous sorghum 
basically failed due to the differences between volatile compounds of 
these two sorghum types were inapparent, which made it more difficult 
to identify adulteration in the form of adulteration. The discrimination 
value in the column of the adulterated sample was usually in the middle 
range, not too close to either 1 or 0, because only part of its properties 
belonged to this type. The discrimination value was applied to 
discriminate both sorghum types and adulterations, yet the value size 
and meaning were distinguishable. 

In a previous study Bai et al. (2020) achieved the identification ac-
curacy of 91 % for the adulterated sorghums through HSI, Ma et al. 
(2022) focused on several sorghum cultivars with one adulterated ratio 
and obtained the number of misclassified sorghum kernels through 
machine vision system. Our accuracy rate of adulteration discrimination 
is slightly lower but the samples were much more complicated. We 
designed three major types instead of simply several sorghum cultivars, 
that is, the samples’ difference in same sorghum type would be larger 
than the same cultivar. To sum up, the adulteration discrimination of 
sorghum types is effective and delightful. Moreover, there are few 
studies apply discrimination value to adulteration based on character-
istic volatile compounds. Considering possible adulterated situations 
from the perspective of price such as organic waxy sorghum (higher 
price) adulterated with non-glutinous sorghum (lower price), we 
designed adulteration discrimination to protect high-quality sorghum 
and guarantee Baijiu quality. In addition, the paper involves a wider 
range of adulterated ratios from 2.5 % to 50 %, which evaluated the 
actual possible adulterated situation more comprehensively. We could 
find the adulteration tendency from the degree of deviation that 
changed regularly with the adulterated ratio, which could be used as the 
preliminary basis for adulteration discrimination and further verifica-
tion. The intuitional discrimination value can be used for discrimination 
on both sorghum type and adulteration, which is very convenient and 
applicable to meet the practical application demands for Baijiu industry. 

4. Conclusions 

In this study, accurate classification of sorghum types and 

Table 6 
Volatile compounds and VIP scores in fresh and stored sorghum models.  

Count Compound VIPa score Count Compound VIP score Count Compound VIP score 

Fresh sorghum 
1 Benzaldehyde 1.41* 8 Area 49 0.98* 15 2-Methyl-2-propenal 0.90* 
2 (E)-Hept-2-enal M 1.21* 9 2-Butanone D 0.97* 16 Area 80 0.86* 
3 Acetoin M 1.14* 10 2-Methyl-1-propanol D 0.97* 17 2-Ethyl-1-hexanol M 0.85* 
4 Areab 71 1.07* 11 2-Pentanone D 0.97* 18 Area 82 0.81* 
5 Area 35 1.05* 12 Pentanal M 0.95* 19 Area 39 0.81* 
6 2-Methylpropanal M 1.04* 13 (E)-2-Pentenal D 0.92*    
7 3-Methylbutanal M 0.98* 14 3-Methylbutan-1-ol M 0.91*    
Stored sorghum 
1 3-Methyl-2-butanol 1.33* 12 Area 67 1.09* 23 Nonanal M 0.87* 
2 Area 76 1.30* 13 Area 65 1.08* 24 Pentan-1-ol D 0.86* 
3 2-Heptenal, (E)- M 1.28* 14 Area 66 1.03 25 n-Hexanol D 0.81 
4 n-Butyl lactate 1.28* 15 Area 77 1.00* 26 n-Hexanol M 0.77 
5 Area 16 1.26* 16 Area 69 0.94* 27 Nonanal D 0.76* 
6 2-Ethyl-1-hexanol D 1.19* 17 Heptanal D 0.92 28 Ethyl hexanoate M 0.73 
7 Methyl isobutyl ketone 1.19* 18 Area 64 0.91* 29 Ethyl hexanoate D 0.73 
8 2-Butanone D 1.15* 19 3-Methylbutan-1-ol D 0.87* 30 Area 70 0.70 
9 Area 39 1.14* 20 2-Methylpropanal M 0.87 31 Cyclohexanone D 0.69 
10 (E)-2-Octenal 1.13* 21 Area 34 0.87* 32 Cyclohexanone M 0.59* 
11 Area 4 1.10* 22 Area 3 0.87*    

*: represents significantly different (p < 0.001) in Kruskal-Wallis test and samples were performed in triplicates. 
a VIP represents variable importance in projection. 
b Area represents volatile compounds unidentified. 
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adulterations could be carried out according to the actual sorghum 
harvest mode, which solved the challenge of cultivars combination in 
practical harvest. 19 and 32 volatile compounds separately were chosen 
to build the optimal classification model by OPLS-DA and GA-PLS in 
fresh and stored sorghum types designed from harvest process, the 
correct classification rates of prediction all exceeded 95 %,in adultera-
tion of organic waxy sorghum reached 87 % with the ratio over 10 %, 
which proved excellent effect. The classification models are well appli-
cable and predictable, and they have a good prospect for sorghum types 
protection and production monitoring. The composition of volatile 
compounds of each type of sorghum would change with storage time 
and other external environment. Studying the variation of characteristic 
volatile compounds of different types with storage time can further 
improve the performance and application scope of the model. In addi-
tion, it is also important to classify imported sorghum types based on 
large yield. GC-IMS combined with chemometrics is a non-destructive, 
efficient and sensitive discriminant method for sorghum types and 
adulterations in practical application. 
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