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Rapid and accurate prediction of interaction force is an effective way to

enhance the compliant control performance. However, whether individual

muscles or a combination of muscles is more suitable for interaction force

prediction under different contraction tasks is of great importance in the

compliant control of the wearable assisted robot. In this article, a novel

algorithm that is based on sEMG and KPCA-DRSN is proposed to explore

the relationship between interaction force prediction and sEMG signals.

Furthermore, the contribution of each muscle to the interaction force is

assessed based on the predicted results. First of all, the experimental

platform for obtaining the sEMG is described. Then, the raw sEMG signal of

different muscles is collected from the upper arm during different contractions.

Meanwhile, the output force is collected by the force sensor. The Kernel

Principal Component Analysis (KPCA) method is adopted to remove the

invalid components of the raw sEMG signal. After that, the processed

sequence is fed into the Deep Residual Shrinkage Network (DRSN) to predict

the interaction force. Finally, based on the prediction results, the contribution of

each sEMG signal from different muscles to the interaction force is evaluated by

the mean impact value (MIV) indicator. The experimental results demonstrate

that ourmethods can automatically extract the valid features of sEMG signal and

provided fast and efficient prediction. In addition, the single muscle with the

largest MIV index could predict the interaction force faster and more accurately

than the muscle combination in different contraction tasks. The finding of our

research provides a solid evidence base for the compliant control of the

wearable robot.

KEYWORDS

surface electromyography, kernel principal component analysis, deep residual
shrinkage network, mean impact value, interaction force prediction

OPEN ACCESS

EDITED BY

Ramana Vinjamuri,
University of Maryland, United States

REVIEWED BY

Yongbo Peng,
Tongji University, China
Xiaofeng Liu,
Hohai University, China

*CORRESPONDENCE

Huibin Cao,
hbcao@iim.ac.cn
Zebin Li,
robotzebinli@foxmail.com

SPECIALTY SECTION

This article was submitted to Bionics
and Biomimetics,
a section of the journal
Frontiers in Bioengineering and
Biotechnology

RECEIVED 17 June 2022
ACCEPTED 15 August 2022
PUBLISHED 07 September 2022

CITATION

Lu W, Gao L, Cao H, Li Z and Wang D
(2022), A comparison of contributions
of individual muscle and combination
muscles to interaction force prediction
using KPCA-DRSN model.
Front. Bioeng. Biotechnol. 10:970859.
doi: 10.3389/fbioe.2022.970859

COPYRIGHT

© 2022 Lu, Gao, Cao, Li and Wang. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 07 September 2022
DOI 10.3389/fbioe.2022.970859

https://www.frontiersin.org/articles/10.3389/fbioe.2022.970859/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.970859/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.970859/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.970859/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.970859/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.970859&domain=pdf&date_stamp=2022-09-07
mailto:hbcao@iim.ac.cn
mailto:robotzebinli@foxmail.com
https://doi.org/10.3389/fbioe.2022.970859
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.970859


1 Introduction

In recent years, with the rapid development of robot

technology, wearable exoskeleton robots have been favored in

many fields, including medical treatment, military, disaster relief,

sports, etc (Thanigaivel et al., 2019). Especially in the biomedical

field, wearable exoskeleton robot plays an important role in

helping the elderly and the disabled. Among them, the control

scheme of a robot plays a crucial role in restoring human motor

function. However, due to the high flexibility of the human arm,

it is difficult to establish its biomechanical model accurately,

especially involving interactive torque and force tasks (Guo et al.,

2020). Therefore, timely and accurate prediction of the human-

computer interaction force has become an important approach to

improving compliance control performance (Lu et al., 2021).

sEMG signal is a kind of non-invasive bioelectrical signal

which is easy to collect. It is a kind of nonlinear and non-

stationary one-dimensional time-series signal generated by the

biological current generated when the human surface muscles

contract. The amplitude of sEMG is positively correlated with the

activation degree of the measured muscles. sEMG signal has

attracted attention in the biomedical field due to its advantages of

high safety, low cost, and easy operation characteristics. It is

worth noting that sEMG signal is generated 30–150 ms ahead of

human movement, so it determines that sEMG signal is very

suitable for the task of interaction force prediction. Therefore,

sEMG signals are more suitable than other signals for interaction

force prediction task. Many researchers have also done a lot of

studies based on sEMG signals. For example, Zhu and Wang

(2020) established a detection method that combined harvester

driver fatigue based on ECG and sEMG signals to explore the

occurrence and variation of driver fatigue. Wen et al. (2020)

realized high-precision grasping force control for deformable

objects based on sEMG signal. Ma et al. (2020) collected multi-

channel sEMG signals of the forearm and constructed a

prediction model with a gene expression programming

algorithm (GEP) and BP neural network to predict hand

grasping force. Su et al. (2020) realized ankle torque

prediction based on surface EMG and angular velocity signal.

Nazarpour and Abbasi (2021) used EMG signal and deep

regression neural network to estimate the kinematics of knee

and ankle joints during squatting training of different intensities.

Currently, researchers have done a lot of studies on force

estimation, which include muscle force and interaction force.

These methods are mainly divided into the dynamics-based

model and muscle information-based model (Chen et al.,

2020). Romero and Alonso (2016) improved the force

estimation model under different motion forms based on the

mechanical expression of the Hill model. Fadzli et al. (2019) used

the musculoskeletal model of the right arm of the human upper

limb and the developed auxiliary device to estimate the muscle

force of an individual. Buchanan et al. (2005) used a forward-

reverse dynamics model to estimate muscle force. Chen et al.

proposed a finger force prediction method based on sEMG signal

and combining the CNN network with the RNN network. The

result can effectively realize multi-DOF control of a single finger.

Martinez et al. (2020) constructed a grasping force estimation

model based on transient EMG by using high-density sEMG. A

linear regression function was established to predict grip

strength, and fast online sEMG control was realized. In

(Huang et al., 2017), the author collects surface sEMG signals

based on high-density electrode grids and uses a non-negative

matrix decomposition algorithm to process the original signals.

Although this method greatly improves the quality of the

prediction force and reduces the number of electrodes, it

limits the estimation of isometric contraction forces. Na et al.

(2017a) proposed a new method to estimate joint forces using

biomechanical muscle models and surface sEMG peaks. Youn

and Kim (2011) used an artificial neural network model to

estimate the relationship between MMG signals under

isometric muscle contraction and elbow flexion force. Hua

et al. (2021) constructed a set of upper arm pressure

estimation frameworks based on armband sEMG signal.

Studies have found that there is another controversial issue

for interaction force prediction: some researchers use the form of

combined muscles to achieve force prediction. For example,

Zhang et al. (2019) selected EMG signals of the biceps

brachialis and brachialis of the upper extremity as the

research object to estimate the magnitude of joint force. Oboe

et al. (2017) constructed an end weight assessment system by

collecting EMG signals from eight channels of the upper arm

with an armband device. Some researchers chose a single muscle

to achieve force estimation. For example, Beck et al. (2004) took a

single muscle of biceps brachii as the object to explore the

relationship between MMG signal and average power

frequency and torque during isometric and isometric

contraction activities. Na et al. (2017b) explored the terminal

contraction force under fatigue by collecting EMG signals from

the dorsal interosseous muscle of the hand. As is well known,

muscle contractions are usually performed by multiple skeletal

muscles working together. If only one muscle is taken as the

research object, it will lead to insufficient information acquisition

of movement. If combined muscles are selected for research, it

would lead to information redundancy and increased complexity

of the algorithm. Therefore, this paper will investigate whether a

single muscle or combination of muscles is more suitable for the

prediction task. The results can provide effective help for future

control algorithm research.

Deep learning algorithms are widely used in the biomedical

field, especially in force estimation and prediction. Luo et al.

(2019) proposed an RBFNN neural network approach to explore

the potential model between EMG signals and human arm forces.

Xu et al. (2020) further improved based on Luo and integrated

the Hill model with RBFNN neural network to perform accurate

estimation of torque estimation and motion intention

recognition. Lu et al. (2021) directly collected EMG signals of

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Lu et al. 10.3389/fbioe.2022.970859

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.970859


biceps brachii and input them into the Informer model to predict

the contraction force at the elbow end. Li et al. (2021) further

improved the contraction form based on the thinking of upper

limb contraction force and explored the estimation method of

lower limb extension force with the IGWO-SVR algorithm.

PCA is a linear dimension reduction method and KPCA is a

nonlinear dimension reduction method when dealing with high

dimensional time series signals. The purpose is to reduce the

dimension of the signal while minimizing the loss of information.

At present, they have been successfully applied in many fields

such as machinery, environment, and medicine. The summary is

as follows: Peng et al. (2020) combined the KPCA method with

the Gaussian Process Regression (GPR) method for the reliability

of high-dimensional structures. Alvarez et al. realized climate

assessment of different regions of the world based on remote

sensing information and nonlinear PCA (CE Fernández and

Alfonso-Morales, 2022). It is worth noting that in the applied

research in the biomedical field, Wakeling and Rozitis (2004)

further explored the relationship between sEMG frequency and

motor unit type based on the PCA method. Zou et al. (2020)

completed EEG entropy feature extraction based on the fusion

method of T-test and KPCA, and realized the identification of

drivers’ fatigue driving state. Zhao et al. (2020a) simplified the

feature matrix by combining PCA and ICA methods to achieve

effective feature extraction and classification tasks of ECG

signals. DRSN network adds a soft threshold function based

on the ResNet, which can effectively remove the influence of

noise-related features on the source signal. Jiang and Liu (2022)

proposed a deep learning network framework combining DRSN

network and generative adversarial network, which effectively

realized the task of deblurring moving images and solved the

problems of poor noise immunity and low generalization in the

network. Ma et al. (2022) proposed a human gesture recognition

method based on EMG signal and deep residual contraction

network. Experimental results show that the DRSN-based

method is superior to the traditional neural network in

recognition accuracy.

In this paper, a novel interaction force prediction method

based on the fusion of KPCA and DRSN deep learning

framework is proposed to map the relationship between

sEMG and interaction force prediction. By combining a deep

residual network, soft threshold function, and attention

mechanism, redundant information and noise in input signals

can be effectively eliminated. Finally, the MIV method was used

to evaluate the contribution of muscles corresponding to the

input sEMG signals of each channel to force prediction results,

and the results were used to explore whether a single muscle or a

combination of muscles is more suitable for force prediction

tasks. The main contributions of this paper are as follows: 1) The

mapping model of EMG signal and interaction force is

constructed. 2) The DRSN model is constructed to realize

adaptive denoising removal and feature extraction without

reference to the manual prior knowledge of the biomechanical

model. This method provides a new method for human-

computer interaction force prediction. 3) Based on The MIV

index, the contribution evaluation model of muscle mass was

proposed to explore the muscle distribution affecting the

interaction force under different contraction tasks.

2 Preliminary

2.1 ResNet

In 2016, He et al. proposed an improved feature extraction

network based on a convolution neural network, the Deep

Residual Network, to solve the problem that the gradient is

prone to disappear with the stacking of layers (He et al., 2016;

Wang et al., 2022). By introducing several residual structures

with direct connection characteristics, the original input

information is directly transmitted to the back layer, which

solves the problem of gradient disappearance during CNN

model training. The algorithm has been successfully applied to

image recognition tasks and achieves high accuracy of

classification effect. The principle of residual structure is

shown in Figure 1.

Suppose the desired optimal solution is H(X) � X, and the

residual mapping F(X) � H(X) − X is the residual of

H(X) andX. When F(X) is infinitely close to 0, the network is

in the optimal state, and the network will still keep in the optimal

state if the network depth continues to increase (Yones et al.,

FIGURE 1
Residual block structure diagram.
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2021). When the residual block is input, the calculated output

can be:

Xn+1 � f (Xn + F(Xn,Wn)) (1)

where, F(·) is residual mapping, Wn is weight parameter, and

f(·) is the activation function.

It can be seen that the residual structure has two advantages:

1) The features of the shallow layer can be reused in the deep

layer during network forward propagation. 2) In network back

propagation, the gradient in the deep layer can be directly

transmitted to the shallow layer. Therefore, when there is a

large reconstruction error between the input and output of

the network, the residual block with a shortcut can directly

feedback the error information to the front network layer

through the fast connection. This structural design not only

improves the model training speed but also effectively alleviates

the problem of network degradation.

3 Materials and methods

Figure 2 shows the overall research framework of the

algorithm proposed in this paper. The purpose of this scheme

is to illustrate the mapping between the four muscles of the upper

arm (biceps, triceps, brachialis, brachioradialis) and interaction

forces. The contribution of each muscle to the prediction of

interaction force was evaluated by the MIV index. First, the

KPCA algorithm was used to decouple the original signal, and

then put them into the DRSN network as tags to complete the

interaction force prediction. Based on the analysis of the

predicted results, the muscle quality evaluation model was

constructed by the MIV index.

3.1 KPCA for signal dimension reduction

Since the original surface EMG signals collected have high

dimensional characteristics, it is easy to fall into dimensional

disaster when extracting effective signal features. In addition,

the increasing dimension of data makes the sparsity of data

higher. Therefore, it is more difficult to extract effective

information from signals. Therefore, it is necessary to

combine the high-dimensional variables with correlation

into linearly independent low-dimensional variables.

Minimize the loss of useful information while compressing

information. Principal Component Analysis (PCA), is one of

the widest data dimension reduction algorithms. By retaining

some important features of high-dimension data and

removing noise and unimportant features to achieve the

purpose of improving the speed of data processing. The

core idea of PCA is to reduce a set of N-dimension vectors

to K-dimension, and the goal is to select K unit orthogonal

bases so that after the original data is transformed to this set of

bases, the covariance between pairs of variables is 0, and the

variance of variables is as large as possible. The main steps are

as follows:

(1) The original data is composed of matrixX with n rows andm

columns according to columns;

(2) Zero-mean processing is performed on each row of X;

(3) Calculate the covariance matrix of X: C � 1
mXXT;

(4) Calculate the eigenvalues and eigenvectors of the covariance

matrix;

(5) The eigenvectors are arranged into a matrix according to the

size of eigenvalues in rows from large to small, and the first k

rows are selected to form a matrix P.

(6) Y � PX is the data after dimensionality reduction.

FIGURE 2
The outline of our approach.
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Since the eigenvector corresponding to the minimum

eigenvalue is often related to noise, the rejection of this part

can achieve the effect of denoising. However, PCA has a good

effect on linear data processing, but it is hard to process nonlinear

data. Therefore, the algorithm has strong limitations. In the next

part of this paper, an improved dimension reduction method

based on the PCA algorithm is proposed.

The collected sEMG signals are from the sum of all active

motion units. As the interaction force increases, the number of

active motion units would also increase (Torresguzman et al.,

2021). Therefore, it is very difficult to understand and interpret

the collected EMG signal accurately because the signal is a

nonlinear sequence coupled with the deterministic part and

the stochastic part. Therefore, effective analysis of sEMG

signals can enable us to accurately understand the mechanism

of interaction forces.

Kernel Principal Component Analysis (KPCA) is the

nonlinear extension of PCA which is a kind of nonlinear

feature extraction method. It can fully mine the nonlinear

information contained in data sets. The basic principle is to

map the input signal to a high dimensional linear feature space F

through a pre-selected nonlinear mapping function ∅, and then

calculate the principal component in the space F using the PCA

method. The key point of the algorithm is the selection of the

nonlinear mapping function ∅. The Gaussian kernel is a typical

representative of radial basis function, is selected in this paper

which is superior to other kernel functions in terms of

classification effect (Zhang et al., 2020). The calculation

process of the KPCA algorithm can be summarized as follows:

Assuming that the high-dimensional (xi) input has been

averaged and normalized, the covariance matrix can be

expressed by:

CF � 1
m
∑m

i�1∅(xi)∅(xi)T (2)

Calculate the eigenvalues and eigenvectors of the matrix CF,

the eigenvectors are denoted as vi, and the eigenvalues are

denoted as λi:

λvi � CFvi; i � 1, 2, . . . , m (3)

Multiply the inner product (xi), i � 1, 2, . . . , n, on both ends

of formula (2), it can be obtained:

λi(∅(xi)U) � ∅(xi)CFU (4)
Where, U � ∑m

i�1αi∅(xk) plug into formula (2) and can be

obtained:

λ∑m

i�1αi[∅(xk)∅(xi)] � 1
m
∑m

i�1αi∑m

j�1[∅(xk)∅(xi)]
× [∅(xj)∅(xi)] (5)

Define the kernel matrix as Kij � [∅(xj)∅(xi)], and Eq. 3

can be simplified as:

nλα � Kα (6)

Where, α � (α1, α2, . . . αn)T
Let �λ � nλ, we can get:

�λα � Kα (7)

Let λ1 ≥ λ2 ≥ . . . λm be the non-zero eigenvalue of K , and
(α1, α2, . . . αn) be the eigenvector, then the projection of the

sample (xi) in the direction of uk in higher-dimensional space F

is the Kth nonlinear principal component of the sample:

hk � (Uk ·∅(x)) � ∑n

i�1α
k
i K(xi, x) (8)

The contribution rate of nonlinear principal component hk
to the whole can be obtained by formula (8):

Cont � λi/∑N

i�1λi (9)

The larger the Cont value is, the larger the contribution rate

of this component is. Major P(P≤N) principal components are

FIGURE 3
Deep residual shrinkage network structure diagram.
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selected through the threshold to construct the feature vector

after dimension reduction:

ξ � ∑P

i�1λi/∑N

i�1λi (10)

3.2 The architecture of DRSN for feature
extraction and force prediction

Deep Residual Shrinkage Network (DRSN) was proposed

by Zhao et al. (2020b) in 2020 based on ResNet Network,

which is a learning method for strong noise or redundant data.

The establishment of DRSN is based on three parts: a deep

residual network, a soft threshold function, and an attention

mechanism. The flow chart of the algorithm is shown in

Figure 3.

According to the above analysis, sEMG signal still

contains noises of different frequencies and other

redundant information although the input signal has been

dimensionally reduced. This will still have a great impact on

the accuracy of interaction force prediction. In the study of

sEMG signal characteristics (Feng et al., 2011; Liu et al., 2013),

the feature extraction of sEMG signals is mainly based on

manual methods. In this paper, the dimensional-reduction

signals are directly fed into the DRSN network, and the

features irrelevant to the classification task are zeroed by

soft thresholding through the attention mechanism (Diao

et al., 2021). The detailed process of the DRSN algorithm is

as follows:

3.2.1 ResNet
The input signals are directly mapped to output features,

which can be expressed as:

H(x) � F(x) + x (11)

Where F(x) represents the residual if F(x) � 0, the output and

input are identical mappings.

The residual element is calculated by the following formula:

y � F(x, {Wi}) +Wsx (12)

where y represents the unit output characteristic; x represents the

unit input; Ws represents a parameter to convert the input shape;

{Wi} represents the network transfer weight matrix.

3.2.2 Soft thresholding
Soft thresholding is the core step of signal denoising.

Through this formula (13), the features whose absolute value

is less than a certain threshold can be deleted from the signal, and

the features whose absolute value is greater than the threshold

can be converged towards zero. The definition of threshold

function is as follows:

y �
⎧⎪⎨⎪⎩

x − τ x> τ
0 − τ ≤x≤ τ
x + τ x< − τ

(13)

The derivative of soft thresholding output concerning

input is:

zy

zx
�
⎧⎪⎨⎪⎩

1 x> τ
0 − τ ≤ x≤ τ
1 x< − τ

(14)

According to Eq. 14, the derivative of soft thresholding is 1 or

0. Therefore, the risk of gradient explosion of a network learning

algorithm can be reduced.

3.2.3 Attention mechanism
The attention mechanism can quickly scan global

information, focus on useful information, and suppress useless

information. In this paper, Squeeze and Congestion Network

(SENet) is a novel deep learning algorithm for attention. The

network is used to obtain the independent weight information of

each group of samples, and the weight of the group is multiplied

by the features of each channel, to adjust the feature size of each

channel. In the SENet network, the process of obtaining weight

includes global pooling, full connection layer, ReLU function, full

connection layer, and Sigmoid function. The SENet network

adopted in this paper scans global information and focuses on

local key information. Its structure is shown in Figure 4. It is

described by formula (15):

zc � Fsq(uc) � 1
W × H

∑W

i�1∑H

j�1uc(i, j) (15)

3.2.4 Soft thresholding based on SENet network
The selection of feature threshold must meet three

limitations: 1) The threshold is positive; 2) The threshold

cannot be too large; 3) Set different thresholds for different

samples. Considering the difference in irrelevant information

contained in each group of input signals, the fixed threshold

value cannot be selected, and the threshold value should be

adaptively selected according to the noise situation. In this

paper, the RSBU-CS unit is designed in DRSN to realize the

learning of different channel thresholds by referring to the

idea of the sub-network learning weight of SENet, as shown in

Figure 5.

3.3 Muscle quality assessment

To date, there has been no clear evidence that the optimal

number of neural network inputs. Selecting multiple input

variables not only increases the training cost of the neural

network but also has the risk of over-fitting. However,

selecting too few input variables makes it difficult to build
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an accurate model and affects the prediction accuracy of

modeling. Dombi et al. (1995) proposed the MIV index in

1995 to evaluate the impact degree of input neurons on output

neurons in the neural network, and its absolute value

represents the relative importance of influence. Therefore,

we consider applying the MIV method to the DRSN regression

model to improve the accuracy of interaction force prediction

results. The calculation process is as follows:

(1) After the network training, add or subtract 10% of each

independent variable characteristic Pj in the training

sample P based on its original value to form two new

training samples P1 and P2.

(2) Taking P1 and P2 as simulation samples and using the

established network for simulation, two simulation results

A1 and A2 were obtained.

(3) Calculate the difference between A1 and A2, which is the

Impact Value (IV) generated by changing the independent

variable on the output.

(4) The independent variable can be obtained by averaging the

IV value. For the MIV output by the dependent variable

network, the independent variable whose cumulative value

exceeds 90% can be found, that is, the selection of the input

variable can be completed.

3.4 Model performance index

To verify the performance of our model compared with

others, the MSE indicator is adopted to evaluate the

performance of our model. MSE can be used to assess the

degree of variation in the data and can demonstrate better

accuracy of the prediction model. It can be described by

formula (16):

MSE � 1
N

∑N

i�1(x1,i − x2,i)2 (16)

where, x1, i, x2, i andN represents measure force, predicted force,

and the total data.

FIGURE 4
SENet network structure.

FIGURE 5
Detail of RSBU-CS unit structure.

TABLE 1 The physical parameters of each subject.

Subject Gender Age Mass (kg) Height (cm)

A1 Male 23 75 178

A2 Male 24 80 182

A3 Male 22 82 175

A4 Female 27 55 163

A5 Female 23 50 160
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4 Experimental results and analysis

In the experimental part of this study, nine healthy adults were

selected as subjects. All of them without mental or physical diseases.

The detailed physical parameters are shown in Table 1. This

experimental scheme was approved by the Institutional Review

Committee of Hefei Institute of Physical Science, Chinese

Academy of Sciences. All subjects knew the experiment

procedure and signed informed consent before the experiment.

12 h before the experiment, there was no high-intensity exercise

and the mood remained relaxed. They were asked to sit upright in a

chair using Sichiray’s dual-lead electrical muscle sensor (Model:

EDK0056, Sampling Frequency: 1,000 Hz, Voltage: 9V, Baud Rate:

115200bps). The experimental platform is shown in Figure 6.

4.1 Dimension reduction results

In this experiment, we collected sEMG signals of muscles

under elbow extension, elbow flexion, pronation, and pronation,

and took biceps brachii as an example to reduce dimension

through the KPCA algorithm. The cumulative contribution rate

of the component is shown in Figure 7.

It can be seen that the cumulative contribution rate of the

first three main components is more than 85%. The first principal

component processed by KPCA can quickly reflect the changing

trend of the sEMG signal. Therefore, compared with the original

data, the dimension of the signal reconstructed by the first three

principal components is significantly reduced.

4.2 Interaction force prediction
comparison

In the force prediction experiment, the interaction force of

the upper arm can be measured by the force sensor as the actual

value. Each subject was required to perform the wrist force on the

sensor at different angles for 2 s. The interaction force was

determined by the feedback value of the sensor. The raw

sEMG signal and force sensor feedback value of each channel

are shown in Figure 8.

To verify the ability of the DRSN network to automatically

extract signal features, three major time-domain features (MAV,

FIGURE 6
The experimental platform.

FIGURE 7
Cumulative contribution rate of the component.
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ZC, and VAR) of EMG signals were extracted and fed into the

network for prediction. The force prediction comparison results

are shown in Figure 9.

As can be seen from Figure 9, the force prediction results

based on MAV and VAR features are better than WA. The

feature extracted from our method gets the best prediction result.

In general, the forces estimated using these four features tend to

be similar to the actual forces. However, the feature extracted

from the DRSN model can achieve high prediction accuracy in

the whole region.

FIGURE 8
The raw EMG signal of the four channels and measured force.

FIGURE 9
Comparison of interaction force prediction results under different features.
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In the meantime, we summarized the results of the other four

subjects, as shown in Table 2. The results show that our method

achieved the best performance in RMS,MAVE, and ρ indicators.
Furthermore, to verify the advantages of our method in

accuracy and real-time performance, the MSE and prediction

time index of the algorithm are compared, and the results are

shown in Tables 3, 4.

We added different levels of noise to the signals respectively,

and compared the MSE of the predicted results, as shown in

Table 5. The results showed that the DRSN-based method had

the best effect in suppressing noise redundancy. Compared with

Table 3, the accuracy of prediction results after adding noise will

decrease significantly, which further verifies the necessity of de-

dimensionality reduction of data before prediction.

TABLE 2 Prediction results of different features for each subject.

Number Interaction force

RMS(N) MAVE(N) ρ (%)

Subjects 1 MAV 0.87 0.57 99.32

VAR 1.26 1.23 98.55

ZC 2.69 1.64 96.23

WA 1.30 1.03 98.35

Ours 0.82 0.56 99.29

Subjects 2 MAV 0.76 0.59 99.67

VAR 1.37 1.12 98.82

ZC 2.81 1.39 96.90

WA 1.38 1.01 98.03

Ours 0.71 0.55 99.58

Subjects 3 MAV 0.70 0.65 99.53

VAR 1.44 1.08 98.21

ZC 2.76 1.54 97.12

WA 1.41 0.98 98.65

Ours 0.68 0.67 99.51

Subjects 4 MAV 0.74 0.62 99.34

VAR 1.38 0.95 98.78

ZC 2.72 1.59 96.12

WA 1.47 0.94 98.76

Ours 0.70 0.61 99.29

Subjects 5 MAV 0.70 0.57 99.45

VAR 1.41 1.05 98.70

ZC 2.68 1.55 96.51

WA 1.31 0.90 98.68

Ours 0.66 0.54 99.41

TABLE 3 MSE comparison of different algorithms.

Movement State-of-the-art algorithms

CNN Informer LSTM Ours

Flexion 0.135 0.094 0.052 0.042

Extension 0.214 0.102 0.083 0.071

Pronation 0.199 0.195 0.054 0.069

Rotation 0.254 0.124 0.089 0.077

TABLE 4 Prediction time comparison of different algorithms.

Movement State-of-the-art algorithms

CNN Informer LSTM Ours

Flexion 0.0356 0.0145 0.0098 0.0058

Extension 0.0391 0.0215 0.0082 0.0049

Pronation 0.0489 0.0345 0.0096 0.0051

Rotation 0.0432 0.0298 0.0082 0.0055

TABLE 5MSE comparison with 5 db noise among different algorithms.

Movement SNR (db) State-of-the-art algorithms

CNN Informer LSTM Ours

Flexion 5 0.598 0.359 0.248 0.095

Extension 5 0.631 0.487 0.378 0.121

Pronation 5 0.689 0.496 0.548 0.215

Rotation 5 0.732 0.498 0.568 0.326

FIGURE 10
The comparison of interaction force prediction results of
different algorithms.
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To compare the effectiveness of the proposed method in

force prediction, we compare the current most advanced

prediction algorithm, and the results are shown in

Figure 10. Local zoom details are shown in the box in the

Figure 10. The overall Mean Square Error (MSE) index

comparison results as shown in Figure 11. Therefore, we

can draw the following conclusions: 1.The accuracy of our

method is superior to other state-of-the-art prediction

algorithms during most time intervals. However, we find

that the prediction performance of our model decreases in

the time interval of [20 22] and [40 42]. The reason is that the

motion state changes (from static to dynamic) in the interval.

During this period, the collected EMG signal has redundant

information due to the interference of motion artifacts, which

would lead to the degradation of the tracking performance of

the algorithm. How to eliminate the influence of motion

artifacts on the prediction performance, which is the focus

of our attention and the main task of our future work. 2. The

proposed method in this paper got the best performance in

terms of instantaneity compared with other models.

Therefore, based on the above reasons, the proposed

method still has greater advantages compared with other

methods.

To obtain the important information about the source signal in

the frequency domain, including the frequency distribution,

amplitude, and other information of the signal. Therefore, we

conducted a spectral analysis of sEMG signals of biceps brachii

muscle under static state and contraction states, as shown in Figures

12, 13. By comparing the two figures, we can draw the following

conclusions: 1) The frequency distribution of EMG signal is

0–500 Hz, and its main frequency range is 0–150 Hz; 2) No

matter in the relaxed state or in the contracted state, EMG

signal will be obviously interfered by 50 Hz power frequency. 3)

It can be seen that in the two states, it is obviously disturbed by

signals with a frequency of about 110 Hz. We infer that the

biceps brachii muscle is close to the cardiac, and this artifact is

caused by ECG signal. This questions deserves further study in

the future.

FIGURE 11
MSE index comparison results of different algorithms.

FIGURE 12
Frequency domain analysis in the relaxed state.
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4.3 Analysis of muscles’ contribution to
interaction force

To compare whether individual muscle or combined muscles

is more suitable for interaction force prediction, we compared the

interaction force prediction results of four individual muscles

and combined muscles under four tasks. The MSE result was

given in Figure 14. As can be seen from the figure, there are

differences in the accuracy of the interaction force prediction

results of EMG signals based on different muscles under different

contraction modes. For example, in the situation of contraction,

the prediction result based on BB muscle has the highest

accuracy. Therefore, this muscle can be used as the main

research object of force prediction under flexion contraction.

The results provide meaningful guidance for the study of the

contribution of other joint muscles.

FIGURE 13
Frequency domain analysis in the static state.

FIGURE 14
Prediction Results of Individual Muscle and Combined muscle Under Different Tasks.
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As can be seen from the figure, the accuracy of prediction

results based on each muscle, and combined muscles vary

under different tasks. For example, in the flexion task, the

MSE of prediction based on biceps muscle get the lowest. In

the extension task, the MSE of the triceps muscle gets the

lowest. In the pronation task, the MSE of the brachioradialis

muscle gets the lowest. In the supination task, The MSE of

brachialis gets the lowest. This finding revealed that it is not

reliable to select only a certain muscle as a research object to

predict the interaction force when performing different

tasks. The muscle which contributes most to the

interaction force should be chosen according to the task.

Furthermore, we made a detailed analysis of the muscles of

the upper limbs and summarized the contribution of each

muscle based on the MIV index. The results are shown in

Figure 15.

5 Conclusion and future works

In conclusion, this paper proposed an interaction force

prediction framework and muscle collaborative quality

assessment model based on the KPCA-DRSN model and

MIV index. Firstly, by collecting the raw sEMG signals

from multi-channel muscles of upper limbs, KPCA is

adopted to achieve signal dimension reduction in

consideration of its advantages in processing nonlinear

signals. Effectively removing extraneous components from

the signal. Then, the processed signals are directly input to

the DRSN network for force prediction, which can effectively

remove the redundant information irrelevant to tags and can

automatically extract the effective features of the signal. Five

healthy subjects were selected for several experiments, and the

results show that compared with the state-of-the-art

prediction algorithm, our method achieves the best

performance in real-time and effectiveness. In addition,

based on the MIV evaluation index, the muscle

collaborative quality assessment model was constructed to

explore the contribution of different muscles to the

interaction force, which can provide effective guidance for

muscle force prediction and intention recognition in the

multi-muscle contraction task.

In the future, we will focus on the study of a compliant

control scheme based on force prediction results, and

finally, achieve the goal of human-machine integration.

Future work of our study may include the following

aspects:

• The upper limb motion intention recognition was realized

based on the change of interaction force prediction results.

• Explore force prediction based on the fusion of biological

signals (e.g., MMG signals, ECG signals, and EEG signals).

• The influence of ECG artifact on sEMG signals should be

considered.
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