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Abstract: During spinning, the chemical component content of natural fibers has a great influence
on the mechanical properties. How to rapidly and accurately measure these properties has become
the focus of the industry. In this work, a grey model (GM) for rapid and accurate prediction of
the mechanical properties of windmill palm fiber (WPF) was established to explore the effect of
chemical component content on the Young’s modulus. The chemical component content of cellulose,
hemicellulose, and lignin in WPF was studied using near-infrared (NIR) spectroscopy, and an NIR
prediction model was established, with the measured chemical values as the control. The value of RC

and RCV were more than 0.9, while the values of RMSEC and RMSEP were less than 1, which reflected
the excellent accuracy of the NIR model. External validation and a two-tailed t-test were used to
evaluate the accuracy of the NIR model prediction results. The GM(1,4) model of WPF chemical
components and the Young’s modulus was established. The model indicated that the increase in
cellulose and lignin content could promote the increase in the Young’s modulus, while the increase
in hemicellulose content inhibited it. The establishment of the two models provides a theoretical
basis for evaluating whether WPF can be used in spinning, which is convenient for the selection of
spinning fibers in practical application.

Keywords: windmill palm fiber; chemical component; near infrared spectroscopy; Young’s modulus;
grey model

1. Introduction

Windmill palm, found in tropical and subtropical regions, is a lignocellulosic tree
species that can provide renewable biomass; it also exhibits strong resistance and absorption
capacity to various harmful gases, such as smoke, sulfur dioxide, and hydrogen fluoride.
In recent years, China’s promotion of millions of acres of windmill palm tree planting
land has greatly increased the annual output of windmill palm fiber (WPF). Leaf sheaths,
fruit bunches, petioles, trunks, palm sheath meshes, and WPF peeled from these have
been widely used in the production of ropes, furniture, filter materials, and packaging
materials due to their excellent hardness, porosity, and natural degradability [1]. With
further studies on WPF, its application in the textile field has broad prospects, such as its
use in textiles as an elastic composite material [1,2]. The mechanical properties of WPF
have a great influence on the performance of textiles, which in turn is affected by the
content of chemical components [3,4]. According to previous studies, there are certain
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differences in the chemical component content of fibers extracted from various parts of
the WPF (Table 1) [5–7]. Therefore, in order to meet the need for the rapid selection of
spinning fibers in the industrial production process, the chemical component content of
WPF should be determined as soon as possible, and the relationship between the two
should be discussed.

Table 1. The chemical components of several common WPF.

Chemical
Component (%)

Component Content

Leaf Sheaths Trunks Fruit Bunch Mesocarp

cellulose 22.35 ± 0.31 44.25 ± 2.96 40.50 ± 0.37 32.00~60.00
hemicellulose 41.30 ± 2.80 33.94 ± 1.25 24.30 ± 0.14 9.80~31.00

lignin 36.35 ± 2.89 33.12 ± 2.16 35.20 ± 0.11 11.00~32.80

Traditional wet chemical analysis methods, such as the quantitative analysis of ramie
chemical components, the Van Soest method, and volumetric analysis have the characteris-
tics of being destructive, laborious, time-consuming, and environmentally unfriendly [8],
which can no longer meet the development trend of modern analytical chemistry towards
speed, convenience, and time-conservation. In this case, near-infrared (NIR) spectroscopy,
which has many advantages, such as non-destruction, fast analysis speed (about 3 min),
wide application range, and simple environmental protection [9], has been widely used in
food [10], agriculture [11,12], industry [13,14], medical [15], and other fields. This technol-
ogy is not only chemical reagents free, but can also quickly analyze multiple components at
the same time, which greatly improves test efficiency, reduces the cost of enterprises, and
reduces the pollution to the environment, which is in line with the trend of modernization
and green development of the industry. Therefore, NIR spectroscopy may be a better
choice for quantitative analysis of fiber chemical components [16,17]. Furthermore, the
grey model (GM), proposed by Deng Julong, can effectively deal with the uncertain data,
explore the potential laws between variables, and then conduct systematic analysis and
accurate prediction [18]. Compared with other prediction models, such as the artificial
neural network, GM does not exhibit problems such as over-fitting and local minima,
and is based on grey system theory [19,20]. Compared with the mechanical test method
mentioned in ASTM C1557, GM is comprised of a simple and fast test, without requiring a
lot of manpower, equipment, or other resources. Therefore, GM could be utilized to quickly
determine the mechanical properties of WPF, and the relationship between the component
content and mechanical properties could be explored by combining NIR with GM. GM has
also developed rapidly due to its high prediction accuracy, less lower data requirements for
modeling, and its ability to use disordered data; it has been widely used in the machinery,
transportation, environment, and materials industries. Tangkuman and Yang et. al. [21]
developed a grey model for predicting machine degradation; Xiao et al. [22] proposed a
grey model of traffic flow in a road section based on a traffic flow dynamics theory to solve
the problem of real-time dynamic traffic flow prediction. Ye et al. [23] proposed a grey
model to measure the accumulating CO2 emissions impact on China’s transportation sector,
and the predictive results were conducive to making recommendations for reducing future
CO2 emission. Wang et al. [24] proposed an improved multivariate grey model (IMGM)
for battery health prognostics, which could improve the reliability and efficiency of energy
storage technologies.

In this case, the quick determination of the chemical components of the raw materials
such as cellulose, hemicellulose, and lignin, may be of key importance for the repeatability
of production. In addition, the chemical component content has a large impact on the
strength of the products made from plant materials. After all, lignocellulose is the main
component of many by-products of agri-food processing. Unfortunately, there are few
reports on the rapid determination of mechanical properties of WPF by using a grey model,
especially the precise determination based on the up to date chemical contents of fibers. At
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present, the grey model is simply used to predict the fineness of ramie fiber in the textile
field [25].

The main purpose of this work is to develop a grey model for the rapid determination
of mechanical properties based on the chemical components of WPF. Firstly, the NIR model
was established to predict the content of each component quickly, and then the GM(1,4)
model was established to realize the efficient prediction of the Young’s modulus of WPF.
The rapid selection of fibers for spinning has promoted the industrialized production
of WPF, which is conducive to the accelerated development of the transformation and
upgrading of these enterprises.

2. Materials and Methods
2.1. Materials

The windmill palm sheath meshes, petioles, leaf sheaths, and fruit bunches were
purchased from the Yuanmu Company, Wuhan, China. NaOH (CP) and H2O2 (30%,)
were purchased from Guoyao Company, Beijing, China. Sodium hypochlorite (CP), glacial
acetic acid (AR), and methanol (AR) were purchased from Jiangsu qiangsheng functional
chemistry Co., Ltd., Suzhou, China. Sulfuric acid (AR) was purchased from Soochow
University experimental material supply center.

2.2. Experimental Design

Different degrees of degumming were performed on WPF, with reference to previous
research results, and were numbered 1–20 [26]. To make the model more adaptable,
three parts of the petioles, leaf sheaths, and fruit bundles, with large differences in the
components of windmill palm trees, were also selected., and the above three samples
and the fibers extracted from them were numbered 21–26, respectively. The preparation
methods of petioles fiber, leaf sheaths fiber, and fruit bunch fiber can be found in a previous
paper [27].

2.3. Chemical Component Content Test

The contents of cellulose, hemicellulose, and lignin were determined by wet chem-
ical analysis, with reference to previous experiments [28]. Prior to the test of chemical
components, all windmill palm samples were dried for 24 h at 60 ◦C to eliminate moisture.

2.4. NIR Spectroscopy

The near-infrared spectrum of each sample was measured by a UV-Vis near-infrared
spectrophotometer (Carry 5000, Agilent Technologies, Santa Clara, CA, USA). Each sample
was sheared into powder and dried in an oven at 60 ◦C for 12 h for testing. Absorbance
values were collected over the wavelength range of 4000 cm−1–12,000 cm−1 at intervals
of 2 nm, with a scanning velocity of 3000 cm−1/min and an acquisition time of 0.1 s. The
spectrum of three replicate measurements for each sample were averaged using OPUS
infrared processing software (Bruker Corporation, Karlsruhe, Germany).

2.5. Young’s Modulus Measurement

According to ASTM C1557, the tensile property of the single fibers of samples No.
1–15 were measured by employing a universal material tester (Instron 5967, Instron, Boston,
MA, USA) using a 500 N load cell with a 0.05 mm/s cross-head speed. Each group of
samples was tested under three gauge lengths of 20 mm, 30 mm, and 40 mm, and each
length was tested 15 times; scilicet, each sample was tested 45 times. The samples were
dehumidified for 16 h under the desired conditions of temperature (20 ± 2) ◦C and relative
humidity (65 ± 5)% before the tensile test. Young’s modulus could be calculated according
to Equation (1) [26].

∆L
F

=
L0

AE
+ Cs (1)
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where ∆L refers to the total measured displacement; F represents the breaking strength;
CS represents the system compliance; L0 is the gauge length; A is the cross-sectional area
of the fiber, and E is Young’s modulus. The cross-sectional area of the tensile section
after the tensile property test was measured by a digital microscope (VHX-100, Keyence,
Osaka, Japan). Therefore, in a linear representation of ∆L/F as a function of L0/A, Young’s
modulus is the inverse of the slope, with system compliance as the intercept [29,30].

2.6. Parameter Definition of GM Establishment

The cellulose, hemicellulose, and lignin contents of samples No. 1–15, obtained
through chemical component content testing, were taken as comparative sequences 1, 2,
and 3, respectively, and Young’s modulus as reference sequence X0

(m)(k), and the grey
model of the chemical components and the mechanical properties of WPF was established.
The grey differential equation of GM (1,4) was shown in Equation (2) [31].

X(0)
0 (k) = b1X(1)

1 (k) + b2X(1)
2 (k) + b3X(1)

3 (k)− aZ1(k) (2)

where the parameter bi (i = 1, 2, 3) represents the grey action quantity, with a as the devel-
opment coefficient; X0

(0)(k) refers to the initialization processing data; Xi
(1)(k) (i = 1, 2, 3) is

the one-time accumulated generating date; and Z1(k) is the mean value generating date.
In order to reduce the discreteness of the data, the component contents and mechanical

properties of each sample were initialized according to Equation (3) [32].

X(0)
i (k) = Xi

(m)(k)/Xi
(m)(1) (3)

where k refers to the number of rows.
The initialization data was processed according to Equations (4) and (5) [31], and

the one-time accumulated generating operation sequence and the mean value generation
sequence were obtained, respectively.

X(1)
i (k) =

k

∑
i=1

X0
i (k) (4)

Z1(k) = 0.5X(1)
0 (k + 1) + 0.5X(1)

0 (k) · · · (k ≥ 2) (5)

The matrix B and the vector YN were obtained through the mean value generation
sequence and the one-time accumulated generating operation sequence, which could be
expressed as:

B =

∣∣∣∣∣∣∣∣
Z1(2) X1

1(2) X1
2(2) X1

3(2) X1
4(2)

Z1(3) X1
1(3) X1

2(3) X1
3(3) X1

4(3)
· · · · · · · · · · · · · · ·

Z1(k) X1
1(k) X1

2(k) X1
3(k) X1

4(k)

∣∣∣∣∣∣∣∣
YN =

∣∣∣X0
0(k)

∣∣∣T · · · (k ≥ 2)

The Matlab programming software (MathWorks. Inc., Natick, MA, USA) was utilized
to calculate the Equation (6) to obtain a and bi, and then the influence of the content of
each chemical component on the mechanical property could be judged through the grey
differential equation of GM(1,4).

ˆ
a =

[
a b1 b2 b3 b4

] T
=
[

BT B
] −1

BTYN (6)
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3. Results
3.1. Chemical Component Analysis

The contents of cellulose, hemicellulose, and lignin in 26 groups of samples were
obtained by wet chemical analysis, three samples (No. 8, No. 23 and No. 26) were selected
as an external validation set at random, and the remainder were used as a calibration set.
The chemical components of 26 samples are shown in Table 2.

Table 2. Chemical components of the windmill palm.

Sample Cellulose (%) Hemicellulose (%) Lignin (%)

1 25.63 12.79 49.12
2 28.24 10.33 50.27
3 25.44 10.35 50.31
4 25.01 11.27 52.46
5 23.56 12.18 46.33
6 21.81 11.43 60.44
7 19.06 13.39 60.01
8 57.67 13.19 20.66
9 24.14 13.42 52.28
10 17.89 13.40 65.20
11 26.36 13.35 50.16
12 17.86 12.69 59.31
13 24.39 13.07 47.55
14 21.55 14.68 57.45
15 19.56 16.26 59.97
16 18.24 17.26 58.25
17 17.20 16.88 62.24
18 17.89 17.24 59.14
19 18.19 16.10 60.30
20 17.98 17.33 58.97
21 21.83 20.96 49.49
22 26.37 11.05 38.02
23 37.93 12.23 30.82
24 8.13 13.45 76.97
25 7.93 14.43 71.06
26 80.58 14.12 3.94

A larger coverage and dispersion of calibration set samples could make the model
more capable. In the calibration set, the content of cellulose was from 38.02% to 76.97%;
the hemicellulose was from 10.33% to 20.96%, while the lignin was from 7.93% to 28.24%,
indicating that the content range of three components was extremely wide, which was con-
ducive to the establishment of the GM. The standard deviations of cellulose, hemicellulose,
and lignin in the calibration set were 8.34%, 2.62%, and 5.12%, respectively, which revealed
that the component content of each sample was different. In other words, the samples
were more dispersed. In addition, hemicellulose and lignin were removed during the
degumming process, so the standard deviation was smaller than for cellulose. The cellulose
content after degumming increased, the content coverage became wider, and the dispersion
was larger. Therefore, the selected samples could be suitable for the establishment of the
NIR prediction model.

3.2. Establishment of NIR Model

Spectra data was preprocessed, selecting the normalization, first-order derivative, and
standard normal variate transformation (SNV). Therefore, the establishment of the NIR
models was based on preprocessed spectral data, and optimized later.

The optimized parameters are listed in Table 3. The PLS factors (PCs) of cellulose,
hemicellulose, and lignin prediction models were 5, 7, and 6, respectively, which indicated
that the model was stable. In general, for all models, the values of RMSEC and RMSEP
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were less than 1, while the levels of Rc2 and Rcv2 were above 0.9, and RESEC values
were less than those for RMSEP. All of them met the requirements of the modeling. The
chemical component content obtained by chemical treatment in Table 2 was taken as the
measured value of each sample, and the chemical component content predicted by the NIR
model was taken as the predicted value. As shown in Figure 1, the measured values of the
calibration set samples had a high correlation with the predicted values. Therefore, the
three established NIR models showed high accuracy.

Table 3. The correction model results.

Chemical
Component PCs RMSEC Rc2 RMSEP Rcv2

cellulose 5 0.25 0.99 0.9 0.98
hemicellulose 7 0.09 0.99 0.95 0.93

lignin 6 0.21 0.99 0.89 0.97
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(b) hemicellulose, (c) lignin.

To further verify the accuracy and reliability of each NIR model, the validation set was
applied for external validation, and SPSS software (IBM, New York, NY, USA) was used
to perform a two-tailed t-test on the measured and predicted values of each sample in the
validation set to evaluate the prediction results. As shown in Table 4, the absolute error of
cellulose content was between 0.83% and 2.10%, the absolute error of hemicellulose content
was between 0.34% and 0.4%, and the absolute error of lignin content was from 0.09% to
0.73%. Considering the wide content range and large dispersion of each component, these
errors were relatively small, so the prediction accuracy of the NIR model was extremely high.
When df = 2, α = 0.05, t0.05(2) = 4.303, the obtained results showed that three components
were less than 4.303 (Table 5). This also shows that there were no significant differences
between the measured values and the predicted values in the validation set. The results
verified the reliability and accuracy of the NIR model, which could be initially applied to
the determination of chemical components, laying a foundation for the rapid prediction of
mechanical properties.

Table 4. Comparison between measured values and predicted values of validation set samples.

Sample
Cellulose Hemicellulose Lignin

Measured
Values (%)

Predicted
Values (%)

Absolute
Error (%)

Measured
Values (%)

Predicted
Values (%)

Absolute
Error (%)

Measured
Values (%)

Predicted
Values (%)

Absolute
Error (%)

8 57.67 58.88 1.21 13.19 13.53 0.34 20.66 21.10 0.44
23 37.93 38.76 0.83 12.23 11.83 0.4 30.82 31.55 0.73
26 80.58 78.48 2.10 14.12 14.46 0.34 3.94 3.85 0.73
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Table 5. Results of two-tailed t-test.

Cellulose Hemicellulose Lignin

|t| 0.019 0.378 1.500

3.3. Young’s Modulus of WPF

WPF was tensile tested, as mentioned above. An analysis of the Young’s modulus of
WPF was carried out using the system compliance method. The graphic representation of
Equation (1) for sample No.1, tested at different gauge lengths, is shown in Figure 2. The
specific parameters for all samples are displayed in Table 6. The value of Cs was small, in
that the original data collected contains a higher linear region, which can reduce the error.
The Young’s modulus was from 877.19 MPa to 2579.67 MPa in 15 samples, which indicated
that it could be affected by the chemical degumming treatment. In general, the content
of each chemical component of WPF affected the mechanical properties. Hemicellulose
formed random, amorphous branched, or nonlinear structures, with little strength, and
the molecular chain was shorter than that for cellulose [33,34]. Therefore, the decrease in
hemicellulose was beneficial to the increase in the Young’s modulus. To further explore the
influence of chemical components on the Young’s modulus, a GM was utilized to clarify
the relationship between cellulose, hemicellulose, lignin, and the Young’s modulus.
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Table 6. Young’s Modulus of windmill palm fiber using the system compliance method.

Sample Line Equation Cs (mm/N) E (MPa) R2

1 ∆L/F = 0.00114 L0/A − 0.22149 −0.22149 877.19 0.81
2 ∆L/F = 7.2952 × 10−4 L0/A + 0.14939 0.14939 1370.75 0.77
3 ∆L/F = 8.29946 × 10−4 L0/A + 0.04912 0.04912 1204.90 0.90
4 ∆L/F = 3.44822 × 10−4 L0/A + 0.36164 0.36164 1900.05 0.72
5 ∆L/F = 5.32816 × 10−4 L0/A + 0.15288 0.15288 1876.82 0.95
6 ∆L/F = 6.7353 × 10−4 L0/A + 0.26701 0.26701 1484.71 0.76
7 ∆L/F = 3.00383 × 10−4 L0/A + 0.46724 0.46724 2529.08 0.92
8 ∆L/F = 7.32367 × 10−4 L0/A + 1.17335 1.17335 1365.44 0.74
9 ∆L/F = 4.30302 × 10−4 L0/A + 0.43854 0.43854 1323.95 0.78
10 ∆L/F = 3.87646 × 10−4 L0/A + 0.69731 0.69731 2579.67 0.74
11 ∆L/F = 8.69669 × 10−4 L0/A + 0.15684 0.15684 1149.86 0.74
12 ∆L/F = 7.73499 × 10−4 L0/A − 0.04913 −0.04913 1292.83 0.70
13 ∆L/F = 8.98708 × 10−4 L0/A − 0.07606 −0.07606 912.71 0.79
14 ∆L/F = 3.5204 × 10−4 L0/A + 0.13491 0.13491 1840.59 0.86
15 ∆L/F = 5.48148 × 10−4 L0/A + 0.21965 0.21965 1824.32 0.75
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3.4. Establishment of GM and Error Analysis

Using Equations (3)–(5), the one-time accumulated generating operation sequence and
mean value generation sequence were acquired (Table 7). In addition, a and bi of Equation
(7) were obtained according to Equation (6) and substituted into Equation (2). Then
the GM(1,4) model was established to explore the influence rule of chemical component
contents of WPF on the Young’s modulus.

ˆ
a =

∣∣∣∣∣∣∣∣
a
b1
b2
b3

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

0.3129
0.5292
−0.9558
1.1413

∣∣∣∣∣∣∣∣ (7)

X(0)
0 (k) = 0.5292X(1)

1 (k)− 0.9558X(1)
2 (k) + 1.1413X(1)

3 (k)− 0.3129Z1(k) (8)

Table 7. The values of cumulative and mean generating sequences of samples 1–15.

Sample X1
(1)(k) X2

(1)(k) X3
(1)(k) X0

(1)(k) Z1(k)

1 1.00 1.00 1.00 1.00 ——
2 2.02 1.81 2.10 2.56 1.78
3 3.05 2.62 3.09 3.94 3.25
4 4.12 3.50 4.07 6.10 5.02
5 5.24 4.45 4.99 8.24 7.17
6 6.47 5.34 5.84 9.93 9.09
7 7.69 6.39 6.58 12.82 11.38
8 8.90 7.50 7.39 14.37 13.60
9 9.96 8.55 8.33 15.88 15.13
10 11.29 9.60 9.03 18.82 17.35
11 12.31 10.64 10.05 20.14 19.48
12 13.52 11.63 10.75 20.61 20.37
13 14.49 12.65 11.70 22.65 21.63
14 15.66 13.80 12.54 24.75 23.70
15 16.82 15.15 13.25 26.83 25.79

The GM(1,4) model of cellulose, hemicellulose, lignin content, and the Young’s modu-
lus of WPF is shown in Equation (8). The positive values of grey action quantity b1 and b3
indicated that they had a positive effect on the increase in X0

(0)(k); that is, the increase in
cellulose and lignin content was beneficial to the increase in the Young’s modulus of WPF.
On the contrary, the grey action quantity b2 was negative, which suggested that hemicellu-
lose had an inhibitory effect on the Young’s modulus, and they were inversely proportional
to each other in a certain range. The above analytical results were consistent with the
theoretical study of each component. Cellulose is a strong, linear (crystalline) molecule,
with no branching, and the interaction between molecular chains is very strong [35], which
can form intermolecular hydrogen bonds, leading to the non-rotation of glycoside bonds,
increasing their rigidity. Lignin is a complex and non-crystalline three-dimensional network
of phenolic polymers that widely exists in higher plant cells, acting as a junction between
cellulose and hemicellulose [36]. Therefore, lignin is able to bear external mechanical forces
in its fiber. Consequently, the increase in cellulose and lignin content could improve the
Young’s modulus of WPF, to a certain extent.

Error analysis was performed to verify the accuracy of the GM(1,4) model. Table 8
showed the error analysis between the original initialization processing data and initializa-
tion data, which was calculated by Equation (8).
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Table 8. Error analysis of GM(1,4) model.

Sample X0
0(k)′ X0

0(k) Relative Error

1 1.18 1.56 0.24
2 1.63 1.37 0.18
3 1.91 2.17 0.12
4 1.97 2.14 0.08
5 2.14 1.69 0.26
6 1.92 2.88 0.33
7 1.72 1.56 0.10
8 1.87 1.51 0.24
9 1.67 2.94 0.43
10 1.73 1.31 0.32
11 1.93 1.47 0.31
12 2.16 1.04 1.08
13 1.99 2.10 0.05
14 1.48 2.08 0.29
15 1.18 1.56 0.24

average relative error: 0.29

The relative error of sample No.12 was 1.08, larger than for the other samples in Table 8.
The reason was that the R2 of No.12 was 0.70 (Table 6), the correlation was less than for the
other samples, which led to the larger error in the Young’s modulus. However, the average
relative error was only 0.29, which indicated that GM(1,4) could be used to rapidly predict
the WPF Young’s modulus through the chemical components. Therefore, in order to select
suitable fibers for spinning, the NIR model could be used to quickly predict the content of
each chemical component of WPF, and then the Young’s modulus could be predicted by
the GM(1,4) model, which was beneficial to quickly and accurately select the fibers that
met the spinning requirements.

4. Conclusions

In this work, the NIR model and the GM model were successfully established to
achieve the rapid prediction of the mechanical properties of WPF. The acquired results
show that, based on the quantitative analysis of cellulose, hemicellulose, and lignin of each
sample using the wet chemical analysis method, the established NIR prediction model has
high coefficients of determination (RC and RCV) and low errors (RESEC < RMSEP). External
validation exhibited excellent prediction accuracy, which indicated that the quantitative
prediction of the model was possible. The effect of chemical component content on me-
chanical properties was investigated by using the grey system analysis theory, and then the
GM(1,4) model for cellulose, hemicellulose, lignin, and the Young’s modulus was estab-
lished. The obtained results showed that the content of cellulose and lignin could promote
the increase in the Young’s modulus, while the increase in hemicellulose content inhibited
it. This work provides a fast, accurate, and effective means for quantitative analysis of
chemical components and the determination of physical properties, avoiding expensive,
laborious, and time-consuming chemical analysis and physical testing. In addition, the two
technologies of the NIR and GM models are in line with the trend of modernization and
green development in the industry, which is conducive to the transformation, upgrading,
and accelerated development of these enterprises. Therefore, this method also has great
potential for the rapid and accurate testing of various other fibers.
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