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1. Introduction

Fluctuations in the prevailing environmental conditions, including light availability
and intensity, CO2/O2 ratio, temperature, and nutrient or water supply, require rapid
metabolic switches to maintain proper metabolism. To achieve this, a multitude of regu-
latory mechanisms are needed to communicate between the various metabolic branches
to adjust fluxes through all routes related to central carbon and nitrogen metabolism. De-
spite considerable effort in understanding the genetics and biochemistry of plant primary
metabolism, insights into the underlying mechanisms governing such acclimations and
the involved regulatory circuits are still fragmentary. A better knowledge on those aspects
would certainly help to engineer crop plants to maintain high yields under fluctuating
environmental conditions.

Over the past decades, tremendous progress has been made to unravel the extraordi-
nary complexity of plant primary metabolism from a biochemical and genetic point of view.
Special attention has been paid to carbon and nitrogen assimilation and their subsequent
metabolism [1–3]. Biochemical reactions of canonical pathways, such as the Calvin–Benson
cycle, the oxidative pentose phosphate pathway, glycolysis, the tricarboxylic acid (TCA)
cycle, and photorespiration have been thoroughly investigated [4–8]. However, given that
many of those pathways run simultaneously, there are gaps regarding how these pathways
are coordinated with each other, intertwined, and regulated. In this special issue, we invited
authors to contribute to new studies encompassing the field of regulation of pathways
that drive plant primary metabolism in oxygenic phototrophs, particularly focusing on
photorespiration, photosynthesis, and glycolysis, as well as metabolite regulation, signaling
and transport. In addition, natural acclimation strategies to a changing environment are
included.

2. Photorespiration—A Key Driver for Adaptation to Molecular Oxygen and
Abiotic Stresses

Photorespiration has attracted major interest in plant research over the past decades
for different reasons. First, photorespiration is essential in all oxygenic phototrophs, as it
degrades and recycles 2-phosphoglycolate (2-PG), which is formed in high amounts in the
presence of oxygen during illumination through oxygenation of ribulose-1,5-bisphosphate
via Rubisco [9]. Second, photorespiration has been identified as a key target to increase crop
yield since the pathway itself releases CO2 during 2-PG recycling. Several strategies, such
as synthetic bypasses or upregulation of enzyme activities, were successfully developed
to manipulate photorespiratory flux, with promising outcomes in terms of stimulated
photosynthetic carbon fixation [10,11]. Third, photorespiration is orchestrated in four
subcellular compartments, including chloroplasts, peroxisomes, mitochondria, and the
cytoplasm. Therefore, this pathway is an interesting example to study metabolite transport
across membranes and interactions of the different subcellular compartments [12]. Fourth,
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the photorespiratory pathway also represents an example to study evolutionary aspects
of photosynthetic metabolism [13]. Fifth, several pathway intermediates were shown to
display a regulatory impact on the pathway itself or on other metabolic branches [11,14].
Hence, manipulation of the photorespiratory flux can be used for applied purposes and
for basic research to shed more light on the communication between different metabolic
branches under a changing environment [11].

In this issue, three studies tackle different aspects of research on photorespiration.
Given the strong similarities of the cyanobacterial and plant photorespiratory pathways, it
is assumed that photorespiration co-evolved with oxygenic photosynthesis in cyanobac-
teria and was endosymbiotically conveyed in eukaryotic algal lineages up to higher land
plants [13]. This hypothesis was further confirmed by in silico analysis, but these data
also revealed a dual origin of photorespiratory enzymes [15]. In particular, a strong con-
troversy exists regarding the evolutionary origin of glycolate oxidase (GOX), predicted
to originate from different sources [16]. However, in this issue, Kern and colleagues re-
analyzed GOX evolution via a combination of phylogenetic and biochemical analyses
using broad taxon sampling. These analyses strongly support the conclusion that GOX
in higher plants evolved from a cyanobacterial ancestor protein [17]. A second study
focused on the potential regulation of GOX activity though protein phosphorylation. Using
site-directed mutagenesis and enzymatic measurements, Jossier et al. provided evidence
that phosphorylation of GOX contributes to the regulation of enzymatic activities [18].
Finally, Timm et al. analyzed the potential for upregulation of photorespiratory enzymes
to contribute to abiotic stress tolerance. These authors showed that faster degradation of
2-PG via increased phosphoglycolate phosphatase (PGLP) alleviated negative feedback of
2-PG on carbon-metabolizing reactions. In turn, photosynthesis was shown to be less O2-
inhibited, indicating that it can operate more efficiently under unfavorable environmental
conditions [19].

3. Maintenance of Growth and Photosynthesis under Fluctuating Conditions

In addition to evolutionary adaptations, the photosynthetic process also needs to react
rapidly to various changes in the prevailing environmental conditions. In this issue, two
research papers and one perspective paper dealing with these topics are presented. A key
adaptation to declining CO2 concentrations during evolution was the establishment of in-
organic carbon-concentrating mechanisms, including crassulacean acid metabolism (CAM)
and C4 photosynthesis [20]. Since both CAM and C4 photosynthesis are present in Portulaca
grandiflora leaves, and are simultaneously active, Guralnick et al. tested the hypothesis that
both photosynthetic types are already developed and active in cotyledons [21]. Indeed,
the authors provided evidence that both pathways are present and possibly run already
at the early stages of leaf development. However, they also hypothesized that the CAM
pathway is considerably slower compared to the C4 cycle [21]. The effects of short-term
acclimation to changes in environmental conditions were analyzed using a collection of
36 randomly chosen Arabidopsis accessions. The study of Kaiser et al. demonstrated a
large trait variation in growth and photosynthesis within this collection, especially under
fluctuating conditions [22]. It seems likely to conclude that using such natural variation
represents a valuable starting point to breed crop plants that are more robust under harsh
environmental fluctuations. Finally, Walker et al. provided an interesting perspective on
the flexibility of photosynthesis, in particular how the process can adapt and maintain high
efficiency in a fluctuating environment [23].

4. Metabolite Regulation, Signaling, and Transport

One research paper and two review papers discuss different regulatory aspects in
central carbon metabolism. Glycolysis is one of the major catabolic pathways for the
breakdown of carbohydrates down to the TCA cycle to supply energy for different processes
within the cell. A key enzyme of this pathway is pyruvate kinase, which transfers phosphate
from phosphoenolpyruvate to ADP for ATP synthesis. In the study of Wulfert et al., five
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cytosolic pyruvate kinase isoforms were thoroughly studied. The authors provided strong
evidence that these enzymes undergo several levels of regulation in order to adjust carbon
flux through the glycolytic pathway. This includes differential transcription, allosteric
metabolic regulation, and formation of subcomplexes among several isoforms [24]. With
regard to metabolite regulation, Rosado-Souza et al. provided a comprehensive overview
on the potential of ascorbate (vitamin C) and thiamine (vitamin B1) as metabolite signals.
The authors summarized recent knowledge in the field and discussed that both molecules
are of major importance for the communication between different metabolic branches in
cellular organelles during acclimation processes [25]. Similarly, Toleco and colleagues
focused on metabolite transport though membranes in cells of higher plants. In more detail,
mitochondrial carriers were highlighted as gatekeepers, controlling carbon influx and efflux
to regulate central carbon metabolism. A particular focus was on the interconnection of the
cytoplasm with mitochondria. These compartments need to communicate and exchange
metabolites to support the different flux modes of the TCA cycle, in particular through
exchange of organic acids, or drive oxidative phosphorylation [26].

5. Conclusions and Outlook

The simultaneous operation and regulation of the different pathways involved in
central carbon and nitrogen metabolism are highly complex. This special issue aims to
provide a useful extension of the existing knowledge in the field and, hopefully, inspire
new research to further develop this field including new strategies and projects. Such
work would not only ultimately help to further increase our current understanding on
how metabolism works and is regulated in different subcellular organelles, but will also
contribute to the overall aim to breed better crops, showing high productivity in a changing
environment.
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