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Abstract

Full thickness human skin models (FTMs) contain an epidermal and a dermal equivalent.

The latter is composed of a collagen dermal matrix which harbours fibroblasts. Current epi-

dermal barrier properties of FTMs do not fully resemble that of native human skin (NHS),

which makes these human skin models less suitable for barrier related studies. To further

enhance the resemblance of NHS for epidermal morphogenesis and barrier formation, we

modulated the collagen dermal matrix with the biocompatible polymer chitosan. Herein, we

report that these collagen-chitosan FTMs (CC-FTMs) possess a well-organized epidermis

and maintain both the early and late differentiation programs as in FTMs. Distinctively, the

epidermal cell activation is reduced in CC-FTMs to levels observed in NHS. Dermal-epider-

mal interactions are functional in both FTM types, based on the formation of the basement

membrane. Evaluation of the barrier structure by the organization of the extracellular lipid

matrix of the stratum corneum revealed an elongated repeat distance of the long periodicity

phase. The ceramide composition exhibited a higher resemblance of the NHS, based on the

carbon chain-length distribution and subclass profile. The inside-out barrier functionality

indicated by the transepidermal water loss is significantly improved in the CC-FTMs. The

expression of epidermal barrier lipid processing enzymes is marginally affected, although

more restricted to a single granular layer. The novel CC-FTM resembles the NHS more

closely, which makes them a promising tool for epidermal barrier related studies.

Introduction

Human skin equivalents (HSEs) are in vitro developed three dimensional models of the

human skin, resembling many characteristics of the native human skin (NHS). Applications of

HSEs include basic research about skin biology, skin diseases, determination of the toxicologi-

cal profile of novel molecular entities and HSEs are reliable alternatives for animal testing [1].

However, the barrier functionality of current HSEs deviates from NHS, which potentially
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causes ambiguity for the in vitro-in vivo correlation. To improve the applicability of HSEs,

these should mimic the barrier formation and organization of NHS more closely.

The permeability barrier function of the human skin relies mainly on the outermost layer

of the epidermis, in which the corneocytes are embedded in a lipid matrix, known as the stra-

tum corneum (SC). The lipid matrix in the SC is the only continuous pathway for compound

penetration and is therefore important in the functionality of the skin barrier. Major constitu-

ents of the lipid matrix are ceramides (CERs), free fatty acids (FFAs) and cholesterol. The

CERs consist of a large number of subclasses, based on the type of sphingoid base coupled to a

specific fatty acid chain [2]. Within the SC, the FFA and CER subclasses span a broad charac-

teristic range of entities, based on the carbon chain length and head group architecture [3, 4].

Together, the SC lipids are highly organized and form crystalline lamellar phases. Both a short

periodicity phase (SPP) with a repeat distance of around 6 nm and a long periodicity phase

(LPP) with a repeat distance of around 13 nm are present in the SC of NHS [5, 6].

When comparing the SC lipid matrix of HSEs to that of NHS, many similarities are

observed. Amongst others, the presence of the twelve well-known CER subclasses is highly

similar, which are detected in NHS as well as in the HSEs [7]. The differences include the

increased level of mono unsaturated FFAs, reduced carbon chain lengths of CERs and FFAs

and an altered CER subclass profile [7, 8]. Consequently, the SPP is not formed, the LPP repeat

distance is reduced and the lateral packing of the lipids is less dense (hexagonal) compared to

NHS (primarily orthorhombic) [8]. According to our hypothesis, these deviations in the lipid

matrix reduce the permeability barrier in HSEs, including increased transepidermal water loss

(TEWL) [8, 9]. Furthermore, in HSEs the epidermal homeostasis is altered, based on the

expression of the hyper-proliferative associated marker keratin 16 (K16), the altered localiza-

tion of terminal differentiation markers [8, 10, 11] and several lipid processing enzymes [7].

A widely used type of HSE is the full thickness human skin model (FTM), which consists of

primary fibroblasts in the dermal equivalent and primary keratinocytes in the epidermal

equivalent. Incorporation of both dermis and epidermis resembles the NHS tissue architecture

to a high extent. In FTMs, the fibroblast-keratinocyte cross talk is essential for epidermal mor-

phogenesis and formation of the basement membrane (BM) [12]. This BM directs the polarity,

proliferation, differentiation and migration of the keratinocytes.

Several types of dermal equivalents are described, where the dermal matrix ranges from

artificial scaffolds [13, 14], fibroblast-derived dermal matrix [15] to de-epidermised or de-cel-

lularised dermis [16, 17]. Each offers its advantages and disadvantages, as each dermal matrix

affects the attachment, morphology and activity of the incorporated fibroblasts. Due to the

dermal-epidermal cross talk, the dermal matrix could have a high impact on the epidermal

homeostasis and barrier formation [18, 19]. Therefore, modulation of the dermal matrix offers

an interesting method to enhance the barrier formation in HSEs.

The aim of this study is to advance the resemblance of native skin architecture and barrier

properties in FTMs by modulating the dermal matrix with the biopolymer chitosan. For

this purpose, the dermal matrix of the FTM is modulated with the biopolymer chitosan to

enhance the functionality of the dermal matrix. This approach resulted in the development

of the collagen-chitosan full thickness human skin model (CC-FTM). Chitosan is biodegrad-

able, easily available and serves as an excellent substrate for cell adhesion [20]. Ionic interac-

tions between the amine groups of chitosan and the carboxyl groups of the collagen will

form a stabilized dermal matrix during preparation [21–23]. In addition, during CC-FTM

development, cationic sites on the chains of chitosan are still present and could benefit cellu-

lar adhesion [24]. The biocompatibility of chitosan in HSEs has been demonstrated by the

reported incorporation of chitosan in a sponge-like dermal matrix [25–27]. Incorporation

of chitosan in the dermal matrix potentially enhances the functionality of the dermal and
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epidermal equivalent and therefore could be advantageous for the overall homeostasis and

ultimately the barrier formation.

In this study, evaluations between the novel CC-FTM, the established FTM and NHS has

been performed regarding epidermal morphology, proliferation, differentiation programs, BM

formation and barrier lipid processing enzymes. Detailed analyses of the SC lipid characteris-

tics and barrier functionality revealed improved epidermal barrier formation in the novel

FTM type.

Materials and methods

Primary cell isolation and culture

Isolation of primary human fibroblasts and keratinocytes was performed from surplus human

breast skin [15]. Declaration of Helsinki principles are followed with obtainment of primary

human skin cells from healthy donors, exactly as stated and described before [28]. Once fat tis-

sue was removed, the dermis and epidermis were separated after overnight incubation of the

skin in 2.4 U/mL dispase II (Roche, Almere, The Netherlands). Primary keratinocytes were

isolated from the epidermis after treatment with 0.05% (w/v) trypsin (BD Falcon, Breda, The

Netherlands) and cultured as described before [15]. Primary fibroblasts were isolated after

incubation of the dermis in a 3:1 (w/w) mixture of collagenase (Gibco) and dispase II (Roche)

for two hours at 37˚C and cultured as described before [15, 29]. All isolated primary cells were

tested and found negative for mycoplasma contamination.

Dermal equivalent preparation

Fibroblast-populated collagen matrix. Development of dermal equivalents was per-

formed as described earlier [8]. The hydrated collagen (4 mg/mL) was isolated from rat-tail

tendons. Obtainment of rat-tail tendons occurred as described before, including the ethics

statement [28]. Below a 1 mL cell-free collagen mixture with on top a 3 mL fibroblasts contain-

ing mixture (1.2–1.5 x 105 fibroblasts in each dermal equivalent) were produced onto filter

inserts (Corning Transwell cell culture inserts, membrane diameter 24 mm, pore size 3 μm;

Corning Life Sciences, The Netherlands) and allowed to polymerize at 37˚C. After polymeriza-

tion, the dermal equivalents were cultured as described elsewhere [8, 29] with fresh supple-

mentation of 45 μM vitamin C (Sigma).

Fibroblast-populated collagen-chitosan matrix. Chitosan (cat. no. 448877, Sigma) was

dissolved in 0.1% acetic acid at 4˚C. Based on pilot studies, a final chitosan concentration of 5

mg/mL was used. The collagen-chitosan dermal equivalent was generated in a single step by

mixing the 4 mg/mL collagen solution with the 5 mg/mL chitosan solution in a 3:1 (v/v) ratio,

HBSS, 1M NaOH and a fibroblast containing FBS solution. Four mL of this mixture (equals

1.3–1.6 x 105 cells fibroblasts each dermal equivalent) was allowed to polymerize at 37˚C. Sub-

sequently, equal procedures were followed as the fibroblast-populated collagen matrix.

Generation of FTMs

Primary keratinocytes (2.5x105/model) in their first passage were seeded onto each dermal

equivalent as described before [8, 29]. The FTMs were kept submerged for total of four days.

Hereafter, the FTMs were lifted to the air-liquid interface and developed for 14–17 days [30].

Tissue imaging

Fixation of the tissue. Cross-sections of each FTM were either snap frozen for cryofixa-

tion or fixated with formaldehyde for paraffin embedding. For cryofixation, the tissue was
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placed in a gelatine capsule containing Tissue-Tek1 O.C.T.™ Compound (Sakura Finetek

Europe B.V., Alphen aan den Rijn, The Netherlands) and snap frozen in liquid nitrogen. For

paraffin embedding, the tissue was fixed in 4% (w/v) formaldehyde (Added Pharma, Oss, The

Netherlands), dehydrated and embedded in paraffin.

Immunohistochemical analyses. General morphological analysis was performed with

5 μm paraffin embedded tissue sections through staining with haematoxylin and eosin (HE;

Klinipath, Duiven, The Netherlands). Immunohistochemical analyses of Ki67, keratin 10 and

16 were performed on 5 μm paraffin embedded tissue sections. After deparaffinization and

rehydration, heat-mediated antigen retrieval in citrate buffer was performed, followed by

blocking with 2% normal human serum (Sanquin, Leiden, The Netherlands).

Stainings were performed using the streptavidin-biotin-peroxidase system (GE Healthcare,

Buckinghamshire, United Kingdom), according to the manufacturer’s instructions. Stainings

were visualized with 3-amino-9-ethylcarbazole (AEC), counterstained with haematoxylin and

sealed with Kaiser’s glycerine. Specifications of the primary and secondary antibodies are pro-

vided in S1 Table. Visualization of the sections occurred using a light microscope (Zeiss Axio-

plan 2, Zeiss, The Netherlands).

Immunofluorescence analyses. Immunofluorescence staining of loricrin, collagen type

IV, β-glucocerebrosidase (GBA), acid sphingomyelinase (aSMase), ceramide synthase 3

(CER-S3) and elongation of very long chain fatty acids protein 1 (ELOVL1) was performed

with 5 μm formalin-fixed paraffin embedded sections. After deparaffinization and rehydration,

heat-mediated antigen retrieval in citrate buffer was performed and followed by blocking with

2% normal human serum (Sanquin). During the collagen type IV staining, a protease treat-

ment using a 0.025% protease solution (Sigma) was performed before incubation with the

primary antibody. The sections were incubated with the primary antibody overnight at 4˚C

directly after blocking. After phosphate-buffered saline (PBS) washout secondary antibody

was applied for 1 hr at RT and subsequently the sections were mounted with Vectashield con-

taining DAPI for visualization of the nuclei (Vector Laboratories, The Netherlands). Immuno-

fluorescence stainings of vimentin and laminin 332 were performed on 5 μm thick frozen

sections, which were dried overnight and fixed in acetone for ten minutes. Primary and sec-

ondary antibody application is equal as paraffin embedded sections as well as mounting. Visu-

alization of the sections occurred using a fluorescence microscope (Leica CTR5000, Leica, The

Netherlands).

Determination of the epidermal thickness and proliferation index

The epidermal thickness was determined through quantification of eight images of each FTM

type of various tissue regions after HE staining with 200x magnification. The outline of the

epidermal area was determined with Adobe Photoshop (CS6 version 13.0) and the number of

pixels in the epidermal area was measured. This was transformed to the area in squared micro-

metres. The proliferation index (PI) was determined by counting the number of Ki67 positive

nuclei among the total number of cells in the basal layer. A minimum of 100 basal cells were

counted at three different regions of each section. The resulting proliferation index is the per-

centage of positive stained nuclei. For both estimations, the data is presented as the mean of

four independent experiments ±SD.

Counting stratum corneum layers

Cryofixated sections were sliced 5 μm using a cryotome (Leica CM3050S), dried overnight

and fixed in acetone for ten minutes. Sections were stained for one minute with a 1% (w/v) saf-

ranin O (Sigma) solution dissolved in Millipore water. After water washout, a 2% (w/v) KOH
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solution was applied on the sections for 25 minutes to swell the corneocytes. After removal of

the KOH solution, the glass slides were washed with Millipore water and enclosed with Kai-

ser’s glycerine. Images were obtained with 400x magnification.

Stratum corneum isolation

The SC of FTMs was isolated through overnight incubation with a 0.1% (w/v) trypsin/PBS

solution at 4˚C followed by incubation at 37˚C for 1 hour. The SC was isolated and washed

with 0.1% trypsin inhibitor and Millipore water. The SC was air-dried and stored under Argon

gas over silica until further use.

Small angle X-ray diffraction analysis

Small-angle x-ray diffraction (SAXD) measurements were performed at the European Syn-

chrotron Radiation Facility (ESRF, Grenoble, France) at station BM26B as described in detail

elsewhere [31]. The SC was hydrated over a 27% (w/v) NaBr solution during 24h at room

temperature. SAXD patterns were detected with a Frelon 2000 charge-coupled device (CCD)

detector at room temperature for a period of 2 x 150 seconds. The scattering intensity (I) was

measured as a function of the scattering vector q (in reciprocal nm). The latter is defined as q

= (4πsinθ) /λ, in which θ is the scattering angle and λ is the wavelength. From the positions of

a series of equidistant peaks (located at qn), the periodicity, or d-spacing, of a lamellar phase

was calculated using the equation qn = 2nπ/d, n being the order number of the diffraction peak

[5]. The repeat distance of the lamellar phases was calculated based on the first, second and

third order diffraction peak of the lamellar phase.

Lipid extraction and LC-MS analysis

Extraction of total SC lipids was performed based on an adjusted Bligh and Dyer method as

described by Boiten et al. [32]. To determine the weight percentage of lipids in the SC, dry SC

weight was measured before and after extraction. Nomenclature of the CER subclasses is fol-

lowed according to Motta et al. [2] and listed (S1 Fig) [33, 34]. To analyse the CER subclasses

and chain length distribution in each of the subclasses, the organic phase was collected and

evaporated under a stream of nitrogen at 40˚C. The obtained lipids were dissolved in a suitable

volume of heptane:chloroform:methanol (95:2.5:2.5 v:v:v). The lipids were analysed by liquid

chromatography—mass spectrometry (LC-MS) according to the method described elsewhere

([35] modified by Boiten et al. [32]. Briefly, CERs were separated and detected with an Acquity

UPLC H-class (Waters, Milford, MA, USA) coupled to an XEVO TQ-S mass spectrometer

(Waters, Milford, MA, USA). Separation of CERs occurred in normal phase on a PVA-Sil col-

umn (5μM particles, 100x2.1mm i.d.)(YMC, Kyoto, Japan) using a gradient starting with 98%

heptane towards 50% (Hep:IPA:EtOH, 50:25:25, v:v:v) [35]. A flow rate of 0.8 mL/min was

used. Detection was performed using APCI in positive ion mode, measuring in full scan from

mass 350–1200 between 1.25–12.5 min. The total lipid concentration of all samples was around

0.3 mg/mL and the injection volume was set to 5 μL. Relative abundance of the FTMs and

CC-FTMs was determined through quantification of the AUCs followed by a correction using

a single internal standard as in Boiten et al. [32]. Relative abundance of benchmark values for

NHS was determined based on quantification of the AUCs of a mixture of lipid extracts from

eight different donors.
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Transepidermal water loss measurements

Isolated SC was placed in a flow-through diffusion cells (PermeGear, Inc, Bethlehem, USA)

filled with Millipore water with tubes connected to prevent the diffusion cell to leak or dry out.

After a 30 minute incubation period, the closed chamber evaporimeter (Aqua Flux AF200:

Biox Systems Ltd, London, UK) [36] was placed on top of the SC for 15 minutes. Next, transe-

pidermal water loss (TEWL) measurements were performed after every 20 seconds during a

time period of 900 seconds.

Ethics statement

This ethics statement is identical to that of Haisma et al. [28]. All primary human skin cells

from healthy donors used by the Department of Dermatology are isolated from surplus tissue

collected according to article 467 of the Dutch Law on Medical Treatment Agreement and the

Code for proper Use of Human Tissue of the Dutch Federation of Biomedical Scientific Socie-

ties. According to article 467 surplus tissue can be used if no objection is made by the patient.

This means that the patient who will undergo plastic surgery is well informed on the research.

In case he/she refuses the patient has to sign the inform consent form, if they agree they do not

sign. This approach differs from other countries. None of the authors were involved in the tis-

sue sampling and only birth date, gender and skin type of the subjects was known. The Decla-

ration of Helsinki principles were followed when working with human tissue.

The rat-tails were obtained from rats of the Animal Facility (Proef Dier Centrum) of the

Leiden University Medical Center, The Netherlands. Rats came from the breeding facility, or

were control animals of other studies and died by CO2 asphyxiation. Because no living animals

were used for the purpose of this study, no approval was needed from the Institutional Animal

Care and Use Committee. This is in agreement with the European directive for the protection

of animals used for scientific purposes (2010/63/EU).

Statistics

Statistical analyses are conducted using GraphPad Prism version 6.00 for Windows (GraphPad

Software, La Jolla California USA). In general, statistical significance was determined using a

paired Student’s t-tests or one-way ANOVA. The CER carbon chain length distribution, CER

subclass profile and TEWL were statistically tested using two-way ANOVA with multiple com-

parison Holm-Šı́dák post-test. Statistical differences are noted as �, �� or ���, corresponding to

P<0.05,<0.01, <0.001.

Results

Characterization of the epidermal homeostasis

To evaluate the effect of the modulated dermal matrix on epidermal organization and morpho-

genesis, full thickness human skin models with solely collagen as a dermal matrix (FTMs) and

FTMs with the collagen-chitosan dermal matrix (CC-FTMs) are generated. After keratinocyte

seeding onto the dermal matrices, fully developed into a stratified epidermis, the epidermal

morphology is evaluated and compared to NHS. Both dermal matrices enabled the formation

of a well-organized epidermis, since the presence of all four epidermal strata (including stra-

tum basale, stratum spinosum, stratum granulosum and stratum corneum (SC)) is observed

(Fig 1A). However, the addition of chitosan resulted in a decreased epidermal thickness (Fig

1B), independent of the different fibroblast and keratinocyte donors used.

Next, basal cell proliferation (Ki67), early (keratin 10; K10) and late (loricrin; LOR) dif-

ferentiation and the activation of the epidermis (K16) were examined, together providing
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information on epidermal homeostasis. Compared to FTM the basal cell proliferation is

reduced in CC-FTMs, based on the Ki67-proliferation index (PI) (Fig 1C), with a PI of

22.00 ±5.14 versus a PI of 12.33 ±1.67, respectively. The proliferation index of the CC-

FTM became equal to that of NHS. The equal suprabasal expression of K10 in FTMs and

CC-FTMs indicates an unaltered execution of the early differentiation program. The expres-

sion of the late differentiation marker LOR is more restricted to a single granular layer in

CC-FTMs (Fig 1A), more similar to NHS. A clear difference is observed when focusing on

the epidermal cell activation. The expression of K16 in CC-FTMs is strongly reduced com-

pared to FTMs and matches expression levels as in NHS. Finally, the number of corneocyte

layers in the SC was determined based on the safranin staining. In both FTM types, an equal

Fig 1. Epidermal morphogenesis in NHS, FTMs and CC-FTMS. (a) Cross-sections are examined for general morphology (HE), proliferation (Ki67), early

(K10) and late (LOR) differentiation and epidermal cell activation (K16) using immunohistochemistry or immunofluorescence. The expression of loricrin (LOR)

is depicted in red and the nuclei in blue, whereas the yellow dotted line indicates the dermal-epidermal junction. (b) Quantification of the epidermal thickness

based on the HE staining. (c) Basal cell proliferation quantified based on the Ki67 positive cells in multiple regions of the epidermis. (d) Safranin red staining

was quantified by counting the amount of corneocyte layers in the SC. Scale bar represents 100μm. *indicates p<0.05. Data represents mean ±SD of four

independent experiments or skin donors.

https://doi.org/10.1371/journal.pone.0174478.g001
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number of corneocyte layers in the SC is observed (Fig 1D), which is increased as compared

to NHS.

Basement membrane formation and fibroblast distribution

Next, we examined whether the modulated dermal matrix affects the basement membrane

(BM) formation. For this purpose the deposition of two BM proteins with distinct functions is

examined by immunohistochemistry (Fig 2). Collagen type IV, a major lamina densa struc-

tural protein, is continuously expressed at the dermal-epidermal junction in NHS and both

FTM types. In contrast, the deposition of a key component of the lamina lucida/lamina densa

interface, laminin 332 (L332) is reduced in CC-FTMs. To evaluate if this was a result of an

altered fibroblast distribution in the chitosan-supplemented dermal matrix or a characteristic

of the CC-FTMs, we examined the fibroblasts distribution using the fibroblast cytoskeleton

protein vimentin (VIM). As shown in Fig 2, VIM, is detected throughout the dermal matrices

in NHS and both models, indicating a heterogeneous distribution of fibroblasts (Fig 2).

Fig 2. The dermal-epidermal linkage and fibroblast distribution. Cross-sections of NHS, FTMs and CC-FTMs

are analysed by immunofluorescence. Collagen type IV (COL IV) is similarly expressed at the BM in both FTMs and

CC-FTMs, while laminin 332 shows a delayed expression in CC-FTMs. Similar fibroblast distribution throughout the

dermis is shown by vimentin (VIM). Proteins are visualized in red, nuclei are stained blue using DAPI and the yellow

dotted line indicates the dermal-epidermal junction. Scale bar: 100 μm. Representative pictures are shown of four

independent experiments.

https://doi.org/10.1371/journal.pone.0174478.g002
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Lamellar organization in the extracellular matrix of the stratum corneum

To evaluate the formation and organization of the lipid matrix in the epidermal barrier, we

first studied the lamellar organization of the lipids in the stratum corneum (SC). Based on the

unique X-ray diffraction pattern of the lipid lamellae, the identification and characterization of

the lamellar phases was performed. In the obtained peak profile, the first, second and third

orders of diffraction of the LPP are identified (Fig 3A). The repeat distance of the LPP is deter-

mined by the peak position of the first, second and third order of diffraction, which revealed

elongation in CC-FTMs (Fig 3B). In addition to the LPP, the presence of crystalline cholesterol

is also detected. Furthermore, an additional peak with unidentified origin is detected in the dif-

fraction profile of the FTM, which is absent in CC-FTMs.

Lipid content and ceramide chain length distribution in CC-FTMs

After the observation that modulation of the dermal matrix positively influenced the SC lamel-

lar organization, the total lipid content of the SC and the ceramide (CER) composition were

determined. The level of total lipids in the SC of both models remained equal (Fig 4A), which

Fig 3. Lamellar organization of the extracellular lipid matrix in the Stratum Corneum (SC). (a)

Representative diffraction pattern of the lipids in the SC of FTMs and CC-FTMs. The first, second and third

order of diffraction are detected, as well as diffraction peaks attributed to separate crystalline cholesterol,

indicated by the asterisk (*). In FTMs, an extra peak is observed, indicated by the pound sign (#). (b) Barplot

of the original repeat distance of the LPP, which is elongated in the CC-FTM. Data represents mean ±SD of

four independent experiments. (c) Drawing of lamellar organization in the intercorneocyte space, where d

indicates the length of the periodicity phase, adapted from van Smeden et al. [34].

https://doi.org/10.1371/journal.pone.0174478.g003
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Fig 4. Lipid content and relative abundance of ceramides with specific carbon chain length. (a) The level of lipids in the SC of the FTM and

CC-FTM is equal. (b) Box and whisker plot of CERs as function of increasing number of C-atoms in the total hydrocarbon chain, with indicated

benchmark values of NHS. In CC-FTMs, a decreased abundance of C34 CERs is indicated, whereas there is an increase in C44, C46 and C48 CERs.

Whiskers indicate the 95% confidence interval. Data is obtained from four independent experiments.

https://doi.org/10.1371/journal.pone.0174478.g004
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suggests that the addition of chitosan to the dermal matrix does not affect the quantity of total

lipids in the SC.

Subsequently, the composition of the ceramides (CERs) of both FTM types was investi-

gated, to provide more insight in the barrier formation. To this end, the lipids were extracted

from the isolated SC, separated by mass and polarity using a detailed LC-MS approach to

determine the CER profiles. First, the twelve well known ceramide subclasses were detected in

both FTM types and in a mixture of lipid extracts from NHS. Furthermore, several unidentifi-

able species were detected (S2 Fig), although due to their unknown nature these are not ana-

lysed in detail. The overall CER chain length distribution is compared for both FTM types and

plotted separately for ceramides (Fig 4B) and ω-esterified ceramides (EO-CERs) (S3 Fig)

together with the benchmark values of NHS. When focusing on the differences between the

FTM types, a reduction in CERs with a total of 34 carbon atoms in the two chains (C34 CERs)

is detected in the CC-FTM. Furthermore, an increase in the level of C44, C46 and C48 CERs is

observed. These alterations improve the resemblance of the CER chain length distribution in

CC-FTMs to NHS. To obtain more detailed knowledge about which CER subclasses mainly

contribute to these differences, the CER subclass profiles of these specific CERs were deter-

mined (S4 Fig). This reveals that the decreased relative abundance of C34 CERs is attributed to

the subclasses NS and AS. The increased relative abundance of C44, C46 and C48 CERs is

mainly attributed to the CER subclasses NdS, NP and NH. When focusing on the EO-CERs

chain length distribution, a reduction in the level of C66, C68 and C70 EO-CERs, is observed

in CC-FTMs. These observations indicate that modulation of the dermal matrix affects the

CER chain length distribution.

Profile of the ceramide subclasses in CC-FTMs

Besides the importance to mimic the CER chain length distribution, the overall CER subclass

profile should also resemble that of NHS. Based on the separation and detection of the CERs

with the LC-MS analysis, the relative abundance of each CER subclass in the SC was deter-

mined. The relative abundance of each CER subclass is plotted for both FTM types (Fig 5).

Several differences in the relative abundance of the CER subclasses are observed. The most sig-

nificant changes are the reduction in the level of the NS and AS subclasses in the CC-FTM.

Compensatory, an increased level of NdS, NH and notably NP in the CC-FTM is observed.

The relative abundance of AdS, AP, AH and EO-CERs remained equal in both FTM types.

The significant alterations in the CER subclass profile induces that the profile of NHS is more

mimicked by the CC-FTM than the FTM.

Inside-out barrier functionality of the CC-FTMs

Followed by the detailed examination of the SC lipid barrier organization and CER composi-

tion, the barrier functionality of the NHS, FTMs and CC-FTMs is determined. Stable measure-

ments of the transepidermal water loss (TEWL) over time revealed a significant reduction of

the TEWL in the CC-FTMs compared to the FTMs (Fig 6). The adjustment of the dermal

matrix induced an improved inside-out barrier functionality based on compared TEWL values

of NHS and both FTM types.

Expression of major lipid processing enzymes

The observed alterations in both CER chain length distribution and CER subclass profile could

be a result of an altered expression of the major lipid processing enzymes. We therefore exam-

ined the expression GBA, aSMase, CER-S3 and ELOVL1 in NHS and both FTM types (Fig 7).

The expression of GBA and aSMase, both critical in the final step of ceramide synthesis, is
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localized in the granular layer of the epidermis in both FTM types, similar to NHS. The restric-

tion to a single granular layer of GBA in CC-FTMs mimics more closely the expression of

GBA in NHS. In addition, the expression of aSMase in the CC-FTM is more localized towards

the granular layer. The expression of CER-S3, important in the formation of ceramides

through linkage of the sphingoid backbone to very long chain fatty acids, is restricted to the

granular layer in both models and in NHS. Finally, the expression of ELOVL1, which plays a

role in the elongation of FFA chains, is localized in all epidermal layers equally for NHS, FTM

and CC-FTM.

Fig 5. Ceramide subclass profile in FTMs and CC-FTMs. Box and whisker plot of CER subclasses with indicated benchmark values of NHS.

Significant differences in relative abundance are indicated, which are the reduction in NS and AS and an increase of NdS, NP and NH in SC of

CC-FTMs compared to FTMs. Whiskers indicate the 95% confidence interval. Data is obtained from four independent experiments.

https://doi.org/10.1371/journal.pone.0174478.g005

Fig 6. Transepidermal water loss of NHS, FTMs and CC-FTMs. TEWL was measured over 900 second

time period and plotted as mean values +SEM. Data is obtained from three independent experiments and

three NHS samples.

https://doi.org/10.1371/journal.pone.0174478.g006
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Discussion

Many properties of the native human skin (NHS) are mimicked in vitro in the range of existing

HSEs. However, there is still an urgent need for HSEs that resemble the epidermal barrier

properties very closely. In this work, CC-FTMs were developed through modulation of the

dermal matrix by incorporation of the biopolymer chitosan. A major practical advantage of

the collagen-chitosan dermal equivalent is the generation of it in a single fully hydrated prepa-

ration step, instead of a double preparation step for the FTMs. This novel FTM type is thor-

oughly analysed for epidermal morphogenesis and barrier formation and compared to the

established FTM.

The epidermis of both FTM types is well-organized, based on the distinguishable presence

of all four epidermal layers. In the CC-FTM, the epidermal thickness is reduced as well as the

proliferation in the basal layer. However, the proliferation index (PI) of both FTM types is

within the reported range of PIs for NHS [37], which is further confirmed by our findings. The

epidermal differentiation program maintained regulated in both FTM types, although the

granular layer in CC-FTM is reduced to approximately a single layer in CC-FTMs. The epider-

mal hyper-proliferation associated K16 is detected in FTMs and in several commercially

available models [38], but is absent in NHS [39] and CC-FTMs, indicative for an improved

Fig 7. Expression of lipid processing enzymes in NHS, FTM and CC-FTM. Tissue sections of NHS, FTMs and

CC-FTMs are analysed by immunofluorescence for the expression of lipid processing enzymes GBA, aSMase,

CER-S3 and ELOVL1. Representative images show the localization (red) of GBA, aSMase and CER-S3 in the

stratum granulosum, while the expression of ELOVL1 is more diffuse throughout the epidermis. Nuclei are stained

blue using DAPI, the yellow dotted line indicates the dermal-epidermal junction. Scale bar represents 100μm.

https://doi.org/10.1371/journal.pone.0174478.g007
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epidermal homeostasis. Previously, it has been shown that the expression of K16 depends on

the number of fibroblasts present in the dermal matrix [39], demonstrating a highly significant

role for the fibroblasts and their microenvironment in the regulation of epidermal homeostasis

and subsequent epidermal functionality.

The crucial role of the epidermal-dermal communication in both FTM types was analysed

through expression of major BM proteins. The presence of the BM was detected in both FTM

types, although the modulation of the dermal matrix attenuates the deposition of laminin 332

(L332). The major biological function of L332 is to facilitate epidermal attachment [40–42].

The reduced deposition of L332 in the CC-FTMs cannot be induced by an altered fibroblast

distribution, based on the detection of the mesenchymal marker vimentin throughout the der-

mis of both FTM types. The reduced deposition of L332 could be explained by a functional

overlap of L332 and chitosan, where both could act as substrate for keratinocyte adhesion mol-

ecules. This could reduce the necessity for the deposition of L332. This altered adhesion in

turn could affect basal cell proliferation. Direct interaction of keratinocytes with a chitosan

film has been observed before [24]. However, the direct attachment of keratinocytes to chito-

san in the collagen-chitosan matrix should be investigated in detail in future studies.

The functionality of the epidermal barrier in the SC highly depends on terminally differen-

tiated keratinocytes in concert with the SC extracellular lipid matrix. Expression of loricrin as

major cornified envelope protein is similar in both FTM types, as well as the level of total lipids

in the SC. The number of corneocyte layers in the SC of both FTM types is equal and compara-

ble but not equal as in NHS [43].

Next, the lamellar organization of the SC lipids was determined revealing an increased

repeat distance of the LPP in CC-FTMs. Since the repeat distance of the LPP in NHS is approx-

imately 13 nm [44], this indicates that the lamellar organization of CC-FTMs resembles that of

NHS to a higher extent but still not completely. Moreover, the additional unknown lamellar

phase in FTMs, possibly explained by phase separated CERs, is not present in CC-FTMs and

NHS [8]. The SPP of approximately 6 nm has been identified in NHS, but has not yet been

detected in any human skin model [5, 44].

To possibly explain the altered lipid organization and to gain more insight in the lipid bar-

rier formation, the CER composition was analysed. First, the CER chain length distribution

was assessed, revealing a wide range in CER carbon chain lengths in both FTM types. This

demonstrates once more that the synthesis of the high variable CERs entities in FTMs is func-

tional, which is a major characteristic of NHS. When comparing both FTM types, there is a

decreased relative abundance of C34 CERs in CC-FTMs detected. Compensatory, an incre-

ment in the relative abundance of C44, C46 and C48 CERs in CC-FTM was observed. Next, a

comparison is made with the CER chain length distribution of NHS, based on the benchmark

values reported here and values described in literature [3, 35]. The reduced relative abundance

of C34 CERs and the increased relative abundance of C44, C46 and C48 CERs in the CC-FTM

compared to FTM resemble the chain length distribution of NHS more closely. An increase

in the chain length of CERs has been correlated with a decrease in transepidermal water loss

(TEWL) and thus an increased skin barrier [45]. This indicates that the CER composition

influences the functionality of the epidermal barrier and that the barrier in CC-FTMs is supe-

rior to FTMs.

Second, the CER subclass profiles of both FTM types are compared to each other. In the

CC-FTM, the CER subclass NP is increased to a level where this subclass is relatively the most

abundant. Also CER NdS and NH are relatively more abundant. In contrast, the relative abun-

dance of both AS and NS are reduced in the SC of CC-FTMs. The presence of EO-CERs is

lower than reported before in HSEs [7], which is ascribed to the utilized corrections. In this

study the level of EO-CERs are underestimated, since no chain length corrections have been
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performed. However, this does not affect the conclusions of our present study. To evaluate to

which order the CER subclass profiles resembles that of NHS, we compared the FTM and

CC-FTM CER subclass profiles to the CER subclass profile of NHS [45]. The CER subclass

profile in NHS has been studied extensively before with increased precision based on technical

progress [3, 35, 46–49]. In NHS, the CER subclass NP is most abundant, which is most similar

to the CC-FTM. In addition, the decreased relative abundance of CER subclasses AS and NS,

as in the CC-FTMs, is more close to the CER subclass profile of NHS [3, 35, 46–49]. Alto-

gether, the CER composition in the SC of CC-FTMs resembles more that of NHS, based on

the CER chain length distribution and CER subclass profile.

Several interesting observations are made when comparing the obtained results from both

FTM types to the epidermal barrier formation of skin in an unbalanced or diseased state. This

is performed through comparing with atopic dermatitis (AD), a skin condition which is stud-

ied extensively regarding epidermal barrier formation [45, 50]. Although the aetiology is dif-

ferent, several similarities are observed. The epidermis of AD, most profound in lesional AD,

as well as the FTMs, shows an elevated expression of K16 and increased proliferation [51],

both indicative for an epidermis which is not in homeostasis. Furthermore, the increased rela-

tive abundance of CER subclasses AS, NS and the C34 CERs are observed in AD and FTMs,

but are more normalized in the CC-FTMs. Therefore the chitosan modulated dermal matrix

seems to be highly beneficial for the epidermal homeostasis, including the epidermal barrier

formation.

This is further emphasized by the barrier functionality assay. TEWL measurements are

widely applied and regarded indicative for the skin barrier integrity [34, 36, 52]. In the

CC-FTMs the TEWL is significantly reduced, which may be a result of the altered SC lipid

composition. This underlines the importance of the SC lipid composition in the formation of a

competent barrier.

Finally, the expression of CER processing enzymes is studied, to evaluate if the altered

CER composition is a direct effect of differently expressed enzymes. This is determined

through analysis of the expression of GBA and aSMase. The localization of GBA at the inter-

face of the stratum granulosum and stratum corneum is in agreement with the site where the

conversion of CER precursors occurs. The intensity and restriction to a single granular layer

of GBA in CC-FTMs mimics more the NHS. The localization of aSMase is not affected by

the modulated dermal matrix. Although the level of AS and NS is reduced in CC-FTMs, this

cannot be linked to an altered expression by aSMase, which processes the sphingomyelin

into the CER subclasses AS and NS [53, 54]. However, the functionality of both enzymes can

still be affected. The expression and localization of CER-S3 and ELOVL1 is highly similar in

both FTM types and NHS [55], indicating that the major lipid metabolism pathways are

unaffected in vitro. The expression of major lipid processing enzymes in the CC-FTM is

highly comparable to the FTMs, although the expression in the granular layer is more

restricted to a single layer in CC-FTMs and NHS, which could be beneficial for the function-

ality of these enzymes.

Conclusion

The epidermal barrier properties of human skin models needs to resemble the NHS barrier

properties to a higher extent, in order to fully mimic the NHS in vitro. In this work, the

development of CC-FTMs is described, through modulation of the dermal matrix by the

biopolymer chitosan. The CC-FTM resembles NHS to a higher extent regarding epidermal

morphogenesis. The formation of the epidermal barrier, based on the organization and com-

position of the SC lipids and the inside-out barrier functionality, mimics the NHS more
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closely, although not entirely. The novel CC-FTMs are a promising tool to be used in epider-

mal barrier related studies.

Supporting information

S1 Table. Specification of antibodies used for immunohistochemical and immunofluores-

cence staining.

(DOCX)

S1 Fig. Overview of molecular structure of general ceramides and twelve ceramide sub-

classes. Ceramides contain a fatty acid chain (grey) amide linked to a sphingosine chain

(blue). Red parts indicate positions with variable architectures. Red arrows indicate chain

length variability. Nomenclature and structure of the twelve well-known ceramide subclasses

is provided in the table. Reprinted from Janssens and Smeden et al. [45] under a CC BY

license, with permission from JLR/ASBMB, original copyright 2012.

(TIF)

S2 Fig. Two dimensional LC-MS plot of the ceramides isolated from the stratum corneum.

The location and nomenclature of the twelve well-known ceramide subclasses are provided in

two representative plots. Dashed lines indicate unknown lipid entities. Data is obtained from

four independent experiments.

(TIF)

S3 Fig. Relative abundance of EO-CERs with specific carbon chain length in FTMs and

CC-FTMs. Box and whisker plot of EO-CERs with different number of C-atoms and indi-

cated benchmark values of NHS. In CC-FTMs, a decrease of C66, C68 and C70 EO-CERs is

detected. Whiskers indicate the 95% confidence interval. Data is obtained from four inde-

pendent experiments.

(TIF)

S4 Fig. Relative abundance of C34 and C44-48 CERs per subclass. Box and whisker plots of

CER subclasses from only the (a) C34 CERs, (b) C44 CERs, (c) C46 CERs and (d) C48 CERs.

Benchmark values of NHS are indicated for each subclass. The alteration in relative abundance

of these groups is described to only some CER subclasses. These are NS and AS in C34 CERs,

NdS, NS, NP, NH and AS in C44 CERs, NdS, NP and NH in C46 CERs and NdS, NP and

NH in C48 CERs. Whiskers indicate the 95% confidence interval, �indicates p<0.05. Data is

obtained from four independent experiments.

(TIF)
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