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Definitions

 ► Osmolality: the concentration of a solution 
in terms of osmoles of solute per kilogram of 
solvent. Expressed as mOsm/kg.

 ► Osmolarity: the concentration of a solution in 
terms of osmoles of solute per litre of solution. 
Expressed as mOsm/L.

AbsTrACT
background High feed osmolality (or osmolarity) 
is often suggested to be linked with adverse 
gastrointestinal events in preterm infants.
Aim To systematically review the literature on milk 
feed osmolality and adverse gastrointestinal events in 
newborn and low birthweight infants and animals.
Methods MEDLINE, Embase, CAB Abstracts, Current 
Contents, BIOSIS Previews and SciSearch were searched 
from inception to May 2018 to identify potentially 
relevant studies. Inclusion criteria: randomised controlled 
or observational studies of newborn and low birthweight 
infants or animals investigating the effects of milk-based 
feeds with different osmolalities. Only full-text, English-
language papers were included.
results Ten human and six animal studies met the 
inclusion criteria. Of human studies, seven reported 
no differences in adverse events with varying feed 
osmolalities; one reported delayed gastric emptying with 
feed osmolarity of 539 mOsm/L compared with lower 
levels; one reported higher necrotising enterocolitis (NEC) 
incidence with feed osmolarity of 650 mOsm/L compared 
with 359 mOsm/L; one found higher NEC incidence with 
the lowest feed osmolality (326 mOsm/kg compared with 
385 mOsm/kg). Of animal studies, two reported delayed 
gastric emptying with feed osmolarity >624 mOsm/L, 
one reported decreased survival due to dehydration with 
dietary osmolarities ≥765 mOsmol/L and none reported 
increased NEC incidence with differing feed osmolalities. 
No clear mechanisms were found, and diet composition 
differences limited the interpretations regarding the 
independent impact of osmolality.
Conclusions There is no consistent evidence that 
differences in feed osmolality in the range 300–500 
mOsm/kg are associated with adverse gastrointestinal 
symptoms in neonates.

InTroDuCTIon
Better neonatal care has improved short-term clin-
ical outcomes, including overall survival. However, 
long-term outcomes, especially neurodevelopment, 
remain a big concern.1 Poor postnatal growth of 
preterm and low birthweight infants is associated 
with adverse short-term and long-term clinical 
outcomes.2 Enteral feeding is the cornerstone of 
nutritional management and growth, but feeding 
tolerance impacts on the rate of feed advance-
ment. Due to the high nutritional and caloric needs 
of preterm infants, enteral nutrition of preterm 
infants, either fortified human milk or preterm 
formula, has a higher osmolality (or osmolarity) 
than unfortified human milk. High feed osmolality 

is often suggested to be linked with adverse events, 
particularly gastrointestinal dysfunctions and necro-
tising enterocolitis (NEC) in preterm infants. The 
osmolality of mammalian/human milk is approx-
imately 300 mOsm/kg3 but is often increased to 
levels above 400 mOsm/kg by addition of human 
milk fortifiers (HMFs), nutritional supplements and 
medications.3–5 The nutrients that most affect feed 
osmolality include: monosaccharides and disaccha-
rides, minerals and electrolytes, amino acids, hydro-
lysed proteins and medium-chain triglycerides.6 
Recent feeding guidelines for preterm infants do 
not include an upper recommended level of feed 
osmolality/osmolarity.7–9 The only recommenda-
tion is from 1976 by the American Academy of 
Pediatrics,10 which advises that formulas for normal 
infants should have an osmolarity no greater than 
400 mOsm/L (approximately 450 mOsm/kg). As 
yet, this recommendation remains without clear 
substantiation based on relevant trials.

In 2013, Pearson et al11 reviewed the subject of 
feed osmolality and considered the plausibility of 
osmolality in the causation of NEC, but to date, 
there has been no systematic review of the litera-
ture to examine this area in detail. Therefore, we 
performed a systematic literature review on human 
and animal studies to investigate whether there 
is a link between high milk feed osmolality and 
adverse gastrointestinal events, including feeding 
intolerance and NEC. Due to the challenge in 
performing randomised well-controlled studies on 
different osmolality diets in humans and the diffi-
culties in assessing underlying mechanisms, we also 
included animal studies with relevant gastrointes-
tinal endpoints. We included all relevant studies on 
the topic that measured feed osmolality regardless 
of differences in formula composition.

MATerIAls AnD MeThoDs
search strategy
Six databases (MEDLINE, Embase, CAB Abstracts, 
Current Contents, BIOSIS Previews and SciSearch) 
were searched from inception to 16 May 2018 

http://www.rcpch.ac.uk/
http://fn.bmj.com/
http://crossmark.crossref.org/dialog/?doi=10.1136/archdischild-2018-315946&domain=pdf&date_stamp=2019-04-13
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Figure 1 Flow diagram of the literature search process.

to identify potentially relevant studies (online supplementary 
appendix A). The search yielded a total of 2072 records. Inclu-
sion criteria were: (1) human and animal studies investigating 
the effects of milk-based and elemental feeds that differ in 
osmolality/osmolarity; (2) randomised controlled trials (RCT) 
and observational studies; (3) published full-text articles, (4) 
for human studies: infants up to 28 days old and (5) for animal 
studies: outcome measures related to gut function. Exclusion 
criteria were: (1) non-English records; (2) studies involving 
medications, vitamin supplements and mineral solutions; (3) 
studies involving postpyloric feeds; (4) studies not reporting on 
osmolality/osmolarity levels of feeds; and (5) studies involving 
infants with other morbidities (eg, hypernatraemia).

Data collection and analysis
HSGT screened titles and abstracts of the 2072 records and 
selected potentially relevant records. ZME and HSGT then 
assessed the abstracts of the selected records for eligibility 
based on the inclusion and exclusion criteria. Full-text articles 
of human studies were assessed by four authors (ZME, HSGT, 
NDE and RMvE) and animal studies by three authors (ZME, 
HSGT and PTS). Eligibility of each article was based on the 
prespecified inclusion and exclusion criteria.

Assessment of risk of bias
Two authors (ZME and HSGT) assessed risk of bias of included 
studies. Human RCTs were assessed using the criteria of the 
Cochrane Handbook for Systematic Reviews of Interventions, 
observational cohort studies were assessed using the Newcas-
tle-Ottawa Quality Assessment Scale for cohort studies and 
animal studies were assessed using SYRCLE’s risk of bias tool for 
animal intervention studies.12 Disagreements were solved after 
discussion with the other authors (RMvE and NDE for human 
studies; PTS for animal studies).

Data extraction, management and analysis
Data were extracted by two authors (ZME and HSGT) using a 
data collection form. Data extracted included study population 
characteristics, adverse outcomes, composition of feeds admin-
istered and osmolality/osmolarity. Disagreements were solved 
after discussion with a third author (RMvE). If reported data 
were insufficient, we contacted authors for further information. 
No attempt was made to synthesise the data numerically due to 
variability in osmolality and osmolarity. Findings of the studies 
were summarised narratively.

resulTs
study selection
Fifty-eight of the 2072 publications met our inclusion criteria. 
After reading the full texts, 42 were excluded. Figure 1 shows 
the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) flow diagram of the search strategy. Of 
the 10 included human studies,13–22 eight were RCTs of which 
three were cross-over design and two were observational studies 
(table 1). Table 2 presents details of the six included animal RCT 
studies.23–28 We received additional information from Ramirez et 
al14 on feed osmolality.

risk of bias
Risk of bias of human and animal studies varied and almost all 
studies had methodological limitations (figures 2 and 3). As 
reporting of experimental details in animal studies is not yet 
standard, evaluation of their methodological quality remains 

difficult. For human RCTs and animal studies, methods of 
blinding, randomisation and allocation concealment were 
frequently not clearly described. Incomplete outcome data was 
judged as having low risk of bias for all studies. For observational 
studies, high risk of bias was identified for Singh et al19 and low 
risk of bias for Thoene et al22 (online supplementary appendix 
B).

human studies
Gastric emptying
Five studies reported effects of feed osmolality/osmolarity on 
gastric emptying.13–17 In one study, a mean gastric residual of 
30% was found in infants 3 hours after feeding a casein hydro-
lysate formula (539 mOsm/L), whereas no gastric residual after 
feeding an 80% casein and 20% soy formula (204 mOsm/L) and 
3.7% gastric residual with a casein formula (211 mOsm/L) were 
found.13 Another study found no change in gastric emptying 
with a feed osmolality of 310 versus 155 mOsm/kg.14 However, 
gastric emptying was accelerated by decreasing osmolality from 
310 to 155 mOsm/kg while increasing feed volume from 10 mL/
kg to 20 mL/kg. Yigit et al16 found no significant difference in 
gastric residuals after feeding different feeds with an osmolarity 
ranging from 275 mOsm/L to 576 mOsm/L. Similarly, Siegel 
et al15 reported no significant difference in gastric emptying 
between feeding a soybean formula containing sucrose (279 
mOsm/kg) or containing glucose (448 mOsm/kg). Kanmaz et 
al17 also reported no significant difference in gastric residuals 
after feedings with osmolarities ranging from 340 mOsm/L to 
380 mOsm/L.

Feeding intolerance
Four studies assessed the influence of dietary osmolality/
osmolarity on feeding tolerance.17–20 The definition of feeding 

https://dx.doi.org/10.1136/archdischild-2018-315946
https://dx.doi.org/10.1136/archdischild-2018-315946
https://dx.doi.org/10.1136/archdischild-2018-315946
https://dx.doi.org/10.1136/archdischild-2018-315946
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intolerance varied among the studies but frequently included 
presence of abdominal distension, vomiting and delayed/with-
held feedings. None of these studies found significant differences 
in feeding tolerance with feed osmolalities up to 451 mOsm/
kg.17–20

NEC and overall morbidity
Five studies reported the effects of dietary osmolality/osmo-
larity on NEC and overall morbidity.18–22 One study reported a 
significantly higher NEC incidence in infants after receiving an 
elemental formula (650 mOsm/L) compared with a cow milk-
based formula (359 mOsm/L) (87.5% vs 25%, respectively; 
p<0.02).21 Thoene et al22 reported a significantly higher NEC 
incidence in infants receiving an acidified liquid HMF (326 
mOsm/kg) compared with those receiving a powdered HMF 
(385 mOsm/kg) and a non-acidified liquid HMF (385 mOsm/
kg) (13%, 0% and 0%, respectively; p=0.0056). Rigo et al20 
found no significant difference in NEC incidence comparing one 
HMF (441 mOsm/kg) with a new HMF with higher protein and 
micronutrient content (390 mOsm/kg). Similarly, Singh et al19 
found no significant difference in NEC incidence with different 
feed osmolalities (451 mOsm/kg, 420 mOsm/kg and 378 mOsm/
kg). Furthermore, Kim et al18 reported no significant difference 
in overall morbidity (NEC and sepsis) in infants fed either a 
liquid HMF (450 mOsm/kg) or a powder HMF (385 mOsm/kg).

Animal studies
Adverse events and paraclinical endpoints
Six studies evaluated the mechanistic effects of feeds with 
different osmolalities/osmolarities,23–28 although not neces-
sarily the main aim of these studies. Goldblum et al23 found 
no significant difference in intestinal luminal osmolality of the 
proximal and distal intestine after feeding neonatal dogs with a 
hyperosmolar feed (710 mOsm/kg) compared with iso-osmolar 
feeds. Gastric content could only be recovered in the group fed 
hyperosmolar feed, implying delayed gastric emptying. Simi-
larly, Miller et al24 found prolonged gastric emptying time and 
increased water in the intestine in neonatal rats with increased 
dietary osmolality.24 Miyake et al25 reported similar mucosal 
injury scores in neonatal mice in two NEC-induced groups fed 
hyperosmolar feeds and both had higher scores than a control 
human milk fed group. Szabo and Fewell27 and Szabo et al28 
concluded that a single hyperosmolar feed did not induce intes-
tinal motor dysfunction, differences in gastrointestinal hormone 
concentration, bacterial proliferation or intestinal mucosal 
damage in neonatal piglets. In preterm piglets, Sun et al26 found 
no differences in gut permeability after feeding human milk 
with different fortification, resulting in osmolalities from 289 
mOsm/kg to 460 mOsm/kg. However, differences were found 
in several structural, functional and immune parameters in the 
intestine and blood in the group receiving human milk with a 
formula-based fortifier (460 mOsm/kg) compared with those 
receiving human milk with bovine colostrum (408 mOsm/kg). 
Gastric residuals were also significantly higher in this group 
compared with groups fed donor human milk with or without 
fortifier (p<0.05).

Three studies evaluated the effects of a hyperosmolar feed on 
clinical outcomes.24–26 Miller and Czajka24 reported decreased 
survival in neonatal rats after feeds with a dietary osmo-
larity ≥765 mOsmol/L. In a mice study by Miyake et al,25 NEC 
was induced by giving hypoxia and gavage administration of 
lipopolysaccharide and formula feeding. NEC incidence was 
similar in groups that received a lower (325 mOsm/kg) versus 
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Figure 2 Assessment of the risk of bias in included human 
randomised controlled trials and the review authors’ judgements about 
each risk of bias item presented as percentages.

Figure 3 Assessment of the risk of bias in included animal studies and 
the review authors’ judgements about each risk of bias item presented 
as percentages.

higher (849 mOsm/kg) osmolality feed. There were no NEC 
cases in the control breastmilk fed group without lipopolysaccha-
ride or hypoxia. Sun et al26 found significantly more diarrhoea 
in preterm piglets fed donor human milk with a formula-based 
fortifier (460 mOsm/kg) compared with groups receiving unfor-
tified donor human, sow’s milk or donor human milk with 
bovine colostrum (312–408 mOsm/kg) (p<0.05). There was 
no significant difference in NEC incidence between the groups 
receiving different feed osmolalities (289–460 mOsm/kg).

DIsCussIon
Based on the 10 included human studies with 618 infants, 
we found no consistent evidence that feed osmolality/osmo-
larity is associated with any adverse gastrointestinal events 
especially feeding intolerance, except at very high levels 
(eg, >539 mOsm/L). Below this level, we found no difference 
in feeding intolerance when infants were fed differing feed 
osmolalities (up to 450 mOsm/kg). As delayed gastric emptying 
is often regarded a major determinant of feed intolerance, we 
expected similar results for this outcome, and indeed we found 
no changes in gastric emptying with differing feed osmolar-
ities (up to 440 mOsm/L). Only one human study13 found a 
greater delay in gastric emptying with a feed osmolarity of 539 
mOsm/L. However, significant differences in protein, fat and 
carbohydrate composition, besides differences in feed osmolari-
ties in the studied formula, limit the interpretation of this result. 
Siegel et al15 subsequently performed a study where similar feed 
compositions were used and found that feed osmolality did 

not significantly influence gastric emptying. However, the feed 
osmolalities tested in this study (up to 448 mOsm/kg) were much 
lower than in the study by Pascale et al.13

In comparison, some animal studies found that increasing 
feed osmolarities >624 mOsm/L, regardless of feed compo-
sition, delayed gastric emptying.23 24 The exact mechanisms 
for delayed gastric emptying are not clear from these studies. 
However, Goldblum et al23 reported a reduction in osmolarity 
in the contents of the proximal intestine in neonatal dogs after a 
hyperosmolar feed, indicating dilution occurring in the stomach. 
This dilution may have occurred through osmoreceptors in the 
duodenum initiating a delay in gastric emptying through direct 
interactions with the stomach.29 In preterm piglets,26 higher 
gastric residuals were found in piglets fed with an osmolality of 
408 mOsm/kg compared with an osmolality of 460 mOsm/kg; 
however, the feed compositions in this study differed markedly 
(different fortifiers to human donor milk).

In a study published after our literature search was completed,30 
three fortifiers with varying feed osmolalities (320 mOsm/kg, 
379 mOsm/kg and 498 mOsm/kg) added to human donor milk 
fed to preterm piglets were compared. Gastric residuals were 
similar among groups, but NEC incidence and gut inflamma-
tory reactions were highest in the group fed fortified human 
milk with the highest osmolality. Furthermore, in another 
recently published piglet study by one of the authors (PTS),31 
a free amino acid-based formula diet showed adverse effects on 
digestion and growth compared with three diets consisting of 
70% intact proteins and 30% essential amino acids. This effect 
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could have been due to the higher osmolality in the free amino 
acids groups compared with the other groups (580 mOsm/kg vs 
470–480 mOsm/kg, measured but not described in the paper). 
Together, the results of the animal and human studies raise the 
question whether there is a certain level of feed osmolality where 
diets start to delay gastric emptying and create adverse intes-
tinal reactions. However, it is important to acknowledge that 
most studies did not have osmolality/osmolarity as the principal 
dietary factor that varied and many other nutritional compo-
nents (eg, fat, protein, calcium, magnesium and phosphate) 
varied between the diet groups, which may influence outcomes.

The most severe clinical manifestation of feeding intolerance 
in neonates is NEC. We found no evidence in human studies that 
milk feed osmolalities (up to 450 mOsm/kg) increased the inci-
dence of NEC. Only one small human study found a significantly 
higher NEC incidence with a feed osmolarity of 650 mOsm/L.21 
However, significant differences in formulae compositions make 
it impossible to determine whether the higher NEC incidence 
was directly attributed to the high feed osmolarity or due to the 
specific formula composition (i.e. casein hydrolysate with high 
medium-chain triglycerides and glucose content) or a combina-
tion of both. The specific role of formula composition is illus-
trated by Thoene et al,22 reporting a higher NEC incidence in 
infants fed an acidified HMF with the lowest feed osmolality 
(326 mOsm/kg). In the animal studies, we found no significant 
difference in the incidence of NEC with differing feed osmolal-
ities (up to 849 mOsm/kg). NEC was induced in neonatal mice 
by Miyake et al25 through gavage formula feeding (regardless 
of osmolality) combined with lipopolysaccharides and hypoxia. 
This is a method frequently adopted by others in rodents,32 33 
suggesting that other factors than solely feed osmolality play a 
role in the development of NEC, at least in rodents. In piglets, 
however, infant formula feeding alone can induce spontaneous 
NEC-like symptoms without exposure to hypoxia, gavage and 
lipopolysaccharide.34 Lower osmolality diets, such as unfortified 
human, bovine or porcine milk or colostrum, clearly result in 
lower NEC sensitivity and less adverse intestinal reactions than 
formula in preterm piglets.26 35–38 However, it remains unclear if 
this is due to lower feed osmolality or to composition of nutri-
ents and protective bioactive factors in natural milk diets.

Besides adverse gastrointestinal events, neonatal rats fed a 
diet  ≥765 mOsmol/L  had  increased  mortality  due  to  dehydra-
tion.24 Compared with adult rats, newborn rats have reduced 
kidney function and difficulty conserving water in the body.24 39 
The impaired ability to maintain fluid homeostasis coupled with 
hyperosmolar feeds may lead to severe dehydration. Although it is 
inappropriate to directly extrapolate the results of this animal study 
to humans, neonatal infants also have reduced kidney function and 
difficulty regulating fluid balance increasing the risk of overhydra-
tion and dehydration,40 thus feeds with a very high osmolality may 
also have other adverse effects in preterm infants.

strengths and weaknesses of the review
To our knowledge, this is the first systematic review to investigate 
the link between feed osmolality and adverse gastrointestinal events. 
The strength of this review is the systematic approach of searching 
the literature with no restriction to year of publication and selection 
of studies based on prespecified inclusion and exclusion criteria. 
The PRISMA checklist was used to assist with the reporting of the 
review (online supplementary appendix C). Each full-text article 
was reviewed by three or more researchers independently. The 
limitations of this review include that only one reviewer screened 
the titles and abstracts of all search records and excluded obvious 

ineligible studies. The remainder were reviewed by at least two 
reviewers to select all eligible studies for inclusion. Furthermore, we 
restricted the review to only include studies published as full-text 
articles in English and that reported on osmolality/osmolarity. The 
included studies varied in methodological quality, mainly limited 
by unclear blinding, and no or unclear randomisation and alloca-
tion concealment. Feed osmolarity, when measured, was frequently 
highly variable and in some studies not measured but assumed, 
limiting the interpretation of any cut-off values that could influence 
outcomes. Although we acknowledge that it is necessary to alter 
at least one aspect of a feed to change the osmolality/osmolarity, 
significant differences in formula composition in the studies make it 
difficult to evaluate the independent effect of feed osmolality/osmo-
larity on specific adverse outcomes. An additional limitation was the 
relatively small number of neonates in each study included in this 
review, limiting the interpretation of the results. The interpretation 
of animal studies may be limited as the actual level by which osmo-
lality adversely affects the infant versus animal intestine could differ; 
however, findings from the animal studies support the findings in 
human studies. Future RCTs would need to enrol >1000 infants to 
be powered to determine effects on key morbidities such as NEC 
or sepsis. It will remain difficult to investigate the specific effect 
of feed osmolality, independently of associated changes in dietary 
ingredients. Well-designed animal studies, using serial dilutions 
of osmolality, may help to identify mechanisms related to adverse 
gastrointestinal and metabolic effects of hyperosmolar diets. Until 
further scientific evidence is available, an upper maximum for 
osmolality/osmolarity in milk diets, especially for vulnerable groups 
such as preterm infants, are based on the pragmatic conclusions 
from existing infant and animal studies.

ConClusIons
In conclusion, we found no consistent evidence that feed osmo-
lality of 300–500 mOsm/kg poses a safety risk to newborn 
infants. In the available studies, significant differences in feed 
composition among diets with different osmolality levels limit 
the interpretation of results regarding the independent impact 
of osmolality.
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