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Abstract: This paper considers the state estimation problem of intelligent connected vehicle systems
under the false data injection attack in wireless monitoring networks. We propose a new secure
state estimation method to reconstruct the motion states of the connected vehicles equipped with
cooperative adaptive cruise control (CACC) systems. First, the set of CACC models combined with
Proportion-Differentiation (PD) controllers are used to represent the longitudinal dynamics of the
intelligent connected vehicle systems. Then the notion of sparseness is employed to model the
false data injection attack of the wireless networks of the monitoring platform. According to the
corrupted data of the vehicles’ states, the compressed sensing principle is used to describe the secure
state estimation problem of the connected vehicles. Moreover, the L1 norm optimization problem is
solved to reconstruct the motion states of the vehicles based on the orthogonaldecomposition. Finally,
the simulation experiments verify that the proposed method can effectively reconstruct the motion
states of vehicles for remote monitoring of the intelligent connected vehicle system.

Keywords: connected vehicles; cooperative adaptive cruise control; state estimation; remote
monitoring; cyber-attack

1. Introduction

With the rapid increase in the number of road vehicles, the problems of traffic congestion,
exhaust emissions and safety are becoming more and more serious in big cities and/or urban
areas [1,2]. Intelligent transportation systems (ITS) technology is one of the potential solutions
to lessen these problems [3–6]. Benefiting from the development of the wireless communication
technology, the intelligent connected vehicle system is one of such ITS that can potentially reduce
the risk of accidents and increase traffic throughput by resorting the Internet of Vehicles (IoV), e.g.,
vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-road (V2R) communication, etc.
However, due to the open nature of wireless communication and the high-mobility of moving vehicles,
the IoV communication networks are vulnerable to packet dropping, communication time-delay and
malicious cyber-attack [7]. Especially, the malicious cyber-attack, e.g., false data injection attack, will
cause mistakes in the decision makers of ITS that may lead to serious traffic accidents [7]. Hence, it is
necessary to realize the secure estimation of vehicle motion states in the remote monitoring platform of
intelligent connected vehicle systems.

The intelligent connected vehicle system contains many on-board sensors, controllers, actuators
and other units, and integrates modern wireless communication and network technologies. It can
realize intelligent information exchange between moving vehicles and X (i.e., cars, roads, people,
clouds, etc.) and can real-time sense the complex surroundings. Based on IoV and intelligent sensing,
the intelligent connected vehicle system makes intelligent decisions in real time to help drivers to
achieve collaborative control of a group of connected vehicles, and ultimately achieve automated

Sensors 2020, 20, 1253; doi:10.3390/s20051253 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8802-7010
https://orcid.org/0000-0002-8183-2372
http://dx.doi.org/10.3390/s20051253
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/5/1253?type=check_update&version=2


Sensors 2020, 20, 1253 2 of 12

intelligent driving with safety, efficiency, ride comfort and energy-saving [5–8]. However, there
are some inherent weakness in wireless IoV, such as communication delays and packet dropping.
Moreover, because of the openness of wireless networks, there may be artificial attacks in intelligent
connected vehicle systems [9–13]. In the past decades, many efforts have been directed at the study of
the issues of wireless networked control of connected vehicle systems and rich control methods to
compensate network defects such as packet dropping and communication delay have been proposed.
For example, Ploeg et al. [14] and [15] proposed the Lp norm-based string stabilizing control method
and discussed the string stability of cooperative adaptive cruise control (CACC) systems in unreliable
communication networks. Ploeg et al. [16] considered the communication delay problem of IoV and
achieved the stability of the intelligent connected vehicle systems using CACC approaches [12,13].
Moreover, when communication delay and packet loss occur simultaneously, the CACC system of
connected vehicles will actively degrade to the traditional adaptive cruise control (ACC) system [5]
while ensuring string stability that is better than the one of the ACC system [17].

In recent years, the cyber-security issue has increasingly gained attention in the automotive
and academic communities due to widely used wireless communication networks of IoV and very
dangerous results caused by cyber-attacks. For example, in July 2015, the "white hat hackers" Miller
and Wallacek demonstrated how to "hijack" remote command methods by invading Chrysler Uconnect
vehicle systems when driving, and eventually caused a "roll over" [8]. This remote cyber-attack event
has made many scholars investigate the cyber-security problem in the field of intelligent connected
vehicle system with various embedded CACC systems. For instance, Biron et al. [18] proposed
a sliding mode observer algorithm for detecting the occurrence of denial of service (DOS) attacks in
the networks and estimating the magnitude of the delay. Amoonzadeh et al. [19] studied the effects
of the tampered sensors, which seriously affects the string stability of connected vehicle platooning
systems. Dadras et al. [20] studied the ability of an attacker to invade a networked vehicle by remote
attack and showed that attackers can remotely control the individual position and speed of networked
vehicles. Liu et al. [21] showed the serious impacts of the cyber-attack on automated platoon systems
and proposed a design approach for safe platooning controllers. Following the method in [21], the safe
inter-vehicle distance is greatly shortened. Alipour-Fanid et al. [22] conducted a comprehensive
analysis of stability and safety for vehicle strings over wireless Rician fading channels under jamming
attacks. They showed that fading channels degrade the performance of CACC systems through rich
simulation experiments under various attacked scenarios. In addition, Li et al. [23] summerized the
influences of cyber-attacks on longitudinal safety of connected and automated vehicles via extensive
simulations and sensitivity analysis.

Due to the significant threat of cyber-attacks to the safety of persons and property, in the automotive
and academic communities more and more scholars have studied the safety and security problems
of connected and networked vehicles under cyber-attack. For example, Massoumnia et al. [24]
and Blanke et al. [25] proposed the residual test method to detect the false data injection attack for
networked systems including connected and networked vehicles. Since each measured value has
a residual signal, the measured value is considered to be attacked if the residual value is greater than
a given threshold. However, if an attacker sets the special data so that the residual is still less than the
threshold, this method cannot be applied well. Another method to again cyber-attack is to use the
idea of robust control. It can achieve stability of uncertain systems when the system is destroyed by
some unknown disturbances. However, in this method perturbations are assumed to be bounded by
some ranges [26]. For instance, Schenato et al. [27] considered the disturbance as a certain random
process if the wireless channel is interfered and analyzed the control and estimation problems of
networked control systems. Lately, Lu and Yang [28] designed a Luenberger-like observer and used
a new projection operator method to reconstruct the states from a series of continuous measurements
of cyber-physical systems. Wu et al. [29] proposed a sliding mode observer for estimating the system
states from the measurement data of contaminated sensors. Fawzi et al. [30] and Hwan et al. [31]
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assumed that the attacked states satisfied sparseness and then proposed the use of L1 norm optimization
to reconstruct the states of cyber-physical systems including connected vehicle systems.

Aiming at the problem of secure state estimation of intelligent connected vehicle systems under
the attack of false data injection in the wireless monitoring networks, this paper proposes a secure
state estimation method to reconstruct the motion states of the connected and networked vehicles
equipped with CACC systems. The main idea of the method is to use the principle of compressed
sensing based on the notion of sparseness. By adopting Proportion-Differentiation (PD) controllers,
e.g., [12,13], the set of CACC models is used to represent the longitudinal dynamics of the intelligent
connected vehicle systems. Due to adversarial attack to the intelligent connected vehicle system,
the number of attacked sensors is assumed to be less than the half of the total sensors. Then the
attacked vector can be regarded as a sparse vector and transformed into an L1 norm optimization
problem for secure state reconstruction. Finally, the simulation experiments verify that the proposed
method can effectively reconstruct the motion states of vehicles for remote monitoring of the intelligent
connected vehicle system.

The remaining of this paper is organized as follows: In Section 2, the set of CACC models and
false data injection attack models are formulated. In Section 3, we present the secure state estimation
approach and verify the applicability of the approach. Then we demonstrate the proposed approach
through some classical simulations in Section 4. Finally, we conclude the paper in Section 5.

2. Problem Description

To increase the efficiency of ITS, road vehicles are generally arranged into a vehicle platoon to
reduce the risk of accidents and increase traffic throughput. Here a group of vehicles is assumed to be
controlled by some stabilizing CACC systems to form a vehicle platoon with guaranteed string stability.
From the department of transportation, it is necessary to remotely monitor the real motion states of
each vehicle in the connected platoon system by the monitoring platforms of ITS. The motion state
information of each vehicle includes the position, velocity, acceleration, etc. The monitoring platform
can also use the estimated states to do such tasks as trajectory planning of vehicles or adjusting traffic
scene and so on. However, the wireless communication of IoV is vulnerable to be attacked due to its
openness. Thus, the vehicle states that the monitoring platform received may be corrupted by special
cyber-attackers. Aiming at the problem, we now establish the CACC models of the connected vehicle
system and the false data injection attack models.

2.1. CACC Models for Connected Vehicles

Consider a CACC system of connected and networked vehicles, as shown in Figure 1.

Sensors 2020, 20, 1253  3  of  12 

 

Aiming at the problem of secure state estimation of intelligent connected vehicle systems under 

the attack of false data injection in the wireless monitoring networks, this paper proposes a secure 

state estimation method to reconstruct the motion states of the connected and networked vehicles 

equipped with CACC systems. The main idea of the method is to use the principle of compressed 

sensing based on the notion of sparseness. By adopting Proportion‐Differentiation( PD) controllers, 

e.g. [12,13], the set of CACC models is used to represent the longitudinal dynamics of the intelligent 

connected vehicle systems. Due to adversarial attack to the intelligent connected vehicle system, the 

number of attacked sensors is assumed to be less than the half of the total sensors. Then the attacked 

vector can be regarded as a sparse vector and transformed into an L1 norm optimization problem for 

secure state reconstruction. Finally, the simulation experiments verify that the proposed method can 

effectively reconstruct the motion states of vehicles for remote monitoring of the intelligent connected 

vehicle system. 

The remaining of this paper is organized as follows: In Section 2, the set of CACC models and 

false data injection attack models are formulated. In Section 3, we present the secure state estimation 

approach and verify the applicability of the approach. Then we demonstrate the proposed approach 

through some classical simulations in Section 4. Finally, we conclude the paper in Section 5. 

2. Problem Description 

To increase the efficiency of ITS, road vehicles are generally arranged into a vehicle platoon to 

reduce the risk of accidents and increase traffic throughput. Here a group of vehicles is assumed to 

be controlled by some stabilizing CACC systems to form a vehicle platoon with guaranteed string 

stability. From the department of transportation, it is necessary to remotely monitor the real motion 

states of each vehicle in the connected platoon system by the monitoring platforms of ITS. The motion 

state  information of each vehicle  includes  the position, velocity, acceleration, etc. The monitoring 

platform  can  also use  the  estimated  states  to do  such  tasks  as  trajectory planning of vehicles or 

adjusting traffic scene and so on. However, the wireless communication of IoV is vulnerable to be 

attacked due to its openness. Thus, the vehicle states that the monitoring platform received may be 

corrupted by special cyber‐attackers. Aiming at the problem, we now establish the CACC models of 

the connected vehicle system and the false data injection attack models. 

2.1. CACC Models for Connected Vehicles 

Consider a CACC system of connected and networked vehicles, as shown in Figure 1.   

...
a0

δ1 δi

a1 ai-2 ai-1

L0 L1 Li-1 Li

The monitoring 

platform

z0 z1 zi-1 zi  

Figure 1. A schematic of intelligent connected vehicle systems with cooperative adaptive cruise 

control (CACC )and cyber‐attack. 

There are n+1 vehicles running on a single lane being level with no effects of the wind speed. In 

this paper, we assume that the leading vehicle (i=0) is running at a constant speed. For each vehicle 

i=1,…,n, the desired spacing error is defined as: 

Figure 1. A schematic of intelligent connected vehicle systems with cooperative adaptive cruise control
(CACC) and cyber-attack.



Sensors 2020, 20, 1253 4 of 12

There are n + 1 vehicles running on a single lane being level with no effects of the wind speed. In
this paper, we assume that the leading vehicle (i = 0) is running at a constant speed. For each vehicle i
= 1, . . . , n, the desired spacing error is defined as:

δi = zi−1 − zi − δd − Li (1)

where δi is the desired spacing error, zi and Li separately represent the absolute position and length of
the ith vehicle and δd is the desired safe inter-vehicle distance (spacing).

For each vehicle i = 1, . . . , n, the longitudinal dynamics is described by [10,11]:

miai(t) = Fi(t) − σAicdiv2
i (t)/2− dmi (2)

where mi represents the mass of the vehicle, ai represents the acceleration, Fi is the driving force, σ is
the density of air quality, Ai is the windshield area, cdi is the resistance coefficient, vi is the velocity,
dmi is the mechanical resistance. Moreover, due to focusing on the CACC system, in this paper the
vehicular throttle and braking pedal units are assumed to have desired dynamics [11], which is:

.
Fi(t) = (−Fi(t) + ci(t))/τi (3)

where τi > 0 is the constant lag time of the internal actuator dynamics and ci is the input of the throttle
or pedal of the ith vehicle. Substituting (2) into (3), we have that:

.
Fi(t) = −

1
τi

(
miai(t) +

σAicdi
2

v2
i (t) + dmi

)
+

ci(t)
τi

(4)

Dividing mi on both sides of (4) and then substituting it into the derivative of Equation (2), it is
obtained the dynamics of the acceleration variable of the ith vehicle is:

.
ai(t) = −

1
τi

(
ai(t) +

σAicdi
2mi

v2
i (t) +

dmi
mi

)
−
σAicdivi(t)ai(t)

mi
+

ci(t)
τimi

(5)

For the nonlinear Equation (5), the feedback linearization controller is designed as:

ci(t) =
1

miτi
[ui(t) − q(vi(t), ai(t))] (6)

where ui is the CACC input to be calculated by using the desired spacing error, relative velocity and
acceleration between the host vehicle and the front one, and nonlinear term q(vi,ai) is:

q(vi, ai) = −
1
τi

(
ai +

σAicdi
2mi

v2
i +

dmi
mi

)
−
σAicdiviai

mi
(7)

Then the kinematics equation of the ith vehicle can be represented as:
.
zi(t)
.
vi(t)
.
ai(t)

 =


0 1 0
0 0 1
0 0 −1/τi




zi(t)
vi(t)
ai(t)

+


0
0

1/τi

ui(t). (8)

In this paper, the CACC controller of each vehicle i = 1, . . . ,n is designed as an output feedback
Proportion-Differentiation (PD) controller:

ui(t) = Kiyi(t), t ≥ 0 (9)

where the controller gain Ki = [kz,i, kv,i, ka,i] and the output vector yi = [zi−1−zi, vi−1−vi, ai−1−ai]T. In
CACC systems, PD controllers are the widely used due to simplicity and efficiencies [12–17]. Here
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the gain Ki is assumed to be calculated using the spired spacing error, relative velocity and relative
acceleration to ensure the string stability of the CACC system [13]. In CACC, the output yi can be
measured by the onboard sensors, e.g., radars, Lidar, etc., and the acceleration of the front vehicle is
transmitted by wireless IoV communication.

We stack the state vector of the connected vehicle platoon, i.e., x = [z1, v1, a1,···, zi, vi, ai,···, zn, vn,
an]T. Then the closed-loop CACC system of the connected vehicle platoon has the compact form of:

.
x(t) = Âx(t) + Ĝ, t ≥ 0 (10)

where the matrices are:

Â =



D 0 · · · 0 0
H1 0 · · · 0 0
0 D · · · 0 0

H′2 H2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 D
0 0 · · · H′n Hn


, Ĝ =



0

H′1
[

z0 v0 a0
]T

0
0
0
...
0


,

 Hi =
[
−kz,i/τi −kv,i/τi −(kz,i + 1)/τi

]
H′i =

[
kz,i/τi kv,i/τi ka,i/τi

] , D =

[
0 1 0
0 0 1

]
for i = 1, . . . , n. In order to securely estimate the motion states of the vehicle CACC system (10) by the
sampled output measurements, the CACC system is discretized with a sampling time T > 0. Namely,
the discrete-time state space model of the closed-loop CACC system of the connected vehicle platoon
is represented as:

x(k + 1) = Ax(k) + G(k), k = 0, 1, 2 · · · (11)

where matrices A = E + ĀT, G = ĜT, and E is an identity matrix with appropriate dimension.

2.2. False Data Injection Attack Models

In this paper, we consider the class of cyber-attack which is occurred in the communication layer
linking the vehicles with the monitoring platform. The wireless channels, which deliver the vehicle’s
state information from the CACC system to the monitoring platform, are attacked by cyber attackers
(see Figure 1). In this way, the attackers can cheat the monitoring platform by tampering the data of the
motion states of the vehicles in the intelligent connected vehicle system. Consequently, the monitors in
the remote monitoring platform may make wrong decisions.

There are many kinds of cyber-attack such as denial of service (DoS), interference attack, false
data injection attack and so on [21–23]. In this section we consider the false data injection attack.
The attacker firstly attacks the wireless networks through truncating the package of the cruise states
and modifying the payload, and then delivers the corrupted package to the monitoring platform. This
may cause the monitoring platform to make incorrect judgments about the real operation of the CACC
system and ultimately interfere with the normal operation of the monitoring platform.

In this scenario, every vehicle of the vehicle CACC system delivers the information such as
absolute position, velocity and acceleration to the remote monitoring platform. Once the data package
is in the communication layer linking the vehicles with the monitoring platform, the related data are
modified by cyber attackers. It has been shown that the real cruise states cannot be reconstructed if
the attacked node (state) is more than the half of the total quantity [30,31]. Hence, here we assume
that the attacked date is no more than half of the total quantity of the state of the connected vehicle
platoon at each time instant. The assumption is reasonable because the malicious attackers always
want to be hidden and their abilities are limited by the economic capability. In other words, there is no
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way to reconstruct the motion states of vehicles if an attacker has an ability to truncate all packages
transmitted to the monitoring networks, and even the attacker can simulate any vehicles running
scenarios but cannot be detected.

Now we establish the false data injection attack model of the vehicle CACC system (11). From the
viewpoint of the monitoring platform, the vehicle’s state space model is selected as (11). If the wireless
channels linking the vehicles with the monitoring platform are not attacked and the data is received
correctly by the monitoring platform, then the data is obtained by:

y(k) = Cx(k) (12)

where y(k) is the received data on the monitoring platform, and C is the observation matrix being
identity matrix with appropriate dimension.

However, if the false data injection attack is occurred, the received data y(k) will be introduced
an unknown value compared to the actual states. For the monitoring platform, the attacked values are
added to the state which are then delivered through the wireless channels. Hence, we present the false
data injection attack model as:

y(k) = Cx(k) + Γe(k) (13)

where Γ = diag(λ1,···, λt) represents the attack selection matrix, the ith data is attacked ifλi = 1; otherwise,
λi = 0, and the signal e(k) represents the attack values injected to the vehicle’s state information which
is delivered through the wireless channels to the monitoring platform.

3. Secure State Estimation

In order to reconstruct the initial states of the vehicle CACC system (11), let we first consider the
principle of compressive sensing [32]:

min
x
‖x‖0 s.t. b = Px (14)

where b ∈ Rm is the measurements, P ∈ Rm×n is a sensing matrix and ‖x‖0 denotes the number of
nonzero elements for the vector x. If the sparse vector x meets ‖x‖0 = q ≤ m/2 and all subsets of 2q
columns of P are full rank, then the solution to (14) is unique [32].

To reconstruct the states attacked through the above compression sensing method, we integrates
the attacked CACC system of the connected vehicles described by (11)–(13) as:{

x(k + 1) = Ax(k) + G(k)
y(k) = Cx(k) + Γe(k)

(15)

where the diagonal matrix Γ corresponds with the data package which is under attacking.
To solve the problem of reconstructing the state at the initial time using the compressive sensing

method, now we consider the set of output measured values y(k), k = 0, · · · , M − 1, which are destroyed
at successive M times. From the model (15), we stacked the M output measurements as:

Y =
[

y(0) y(1) · · · y(M− 1)
]T

= Φx(0) + E + Ŷ (16)

where the coefficient matrices are:

Φ =


C

CA
...

CAM−1

, E =


Γe(0)
Γe(1)

...
Γe(M− 1)

, Ŷ =


0 0 · · · 0
C 0 · · · 0
...

...
. . .

...
CAM−2 CAM−3

· · · 0




G(0)
G(1)

...
G(M− 1)

.
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Moving the term Ŷ to the left of equation (16), we have:

Y = Φx(0) + E (17)

where Y = Y − Ŷ.
In order to resolve the problem of the state estimation, we should determine the value of M. From

the results in [30,31], the value of M is equal to the number of states if the attacked states are fixed; but
if the attacked states are varying, M may be greater than the number of states in some cases. Through
the simulation experiments (see later), under the condition of varying attacked states, the states also
can be reconstructed successfully if M is equal to the number of the states. As a result, we can estimate
the error vector E firstly and next we reconstruct the initial state x(0) through the estimated value of E.

In order to achieve the purpose of estimating E, we use the orthogonal decomposition to the
matrixΦ ∈ RpM×3n, where p, M and n represents the number of the sensors, measurements and vehicles
of the CACC system, respectively. Consider the orthogonal decomposition of Φ as:

Φ =
[

Q1 Q2
][ R1

0

]
(18)

where [Q1 Q2] is an orthogonal matrix with Q1 ∈ RpM×3n and Q2 ∈ R pM×(pM−3n) and R1 ∈ R3n×3n is
an upper triangular matrix with full rank.

Substituting Equation (18) into Equation (17), we can obtain that:

Y =
[

Q1 Q2
][ R1

0

]
x(0) + E. (19)

Because the matrix [Q1 Q2] is the orthogonal matrix. Multiplying the matrix [Q1 Q2]T on both
sides of (19), it is obtained that: [

QT
1

QT
2

]
Y =

[
R1

0

]
x(0) +

[
QT

1
QT

2

]
E. (20)

Simplifying (20), it is derived that:

QT
1 Y = R1x(0) + QT

1 E (21)

QT
2 Y = QT

2 E (22)

Since the number of attacked states is less than p/2, where p represents the number of the delivered
states at each moment, the solution to Equation (22) is unique from the principle of compressive sensing
in Equation (14). Because the intelligent connected vehicle system consists of n vehicles with together
the leader vehicle and every vehicle has three state variables, then the number of the attacked states
are up to b3n/2c at each time instant.

Now we use the compressive sensing method to estimate the attack vector E by solving the
following optimization problem:

Ê = min
E
‖E‖L0 s.t. QT

2 Y = QT
2 E. (23)

Note that the solution of Equation (23) involves the L0 norm but the L0 norm optimization is
an NP hard problem. As a result, the computational burden of solving Equation (23) is too heavy
to efficiently solve the problem. To this end, we can transform the L0 norm optimization to L1 norm
optimization as the L1 norm is the optimal convex approximation of the L0 norm:

Ê = min
E
‖E‖L1 s.t. QT

2 Y = QT
2 E. (24)
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We can obtain the estimation Ê by computing Equation (24). Clearly, this approximation greatly
reduces the computing burden of solving the estimation of the attack vector E. Moreover, substituting
Ê into (21) and simplifying the equation, we derive the initial state x(0) by:

x(0) = R−1
1 QT

1 (Y − Ê). (25)

Then the actual motion states of each vehicle in the intelligent connected vehicle system can be
evaluated real-time by iterative computing Equation (11).

It is noted that from the compressive sensing method [30,31], it is ensured that the solution of Ê is
unique. Because the matrix R1 is an upper triangular matrix with full rank, the initial state x(0) is also
unique. Therefore, in the remote monitoring platform the presented secure state estimate method is
used to real-time obtain the actual motion states of each vehicle in the intelligent connected vehicle
system even under cyber-attack of false data injection.

4. Simulation Results

In this section, we show the validity of the presented secure state estimate method of the intelligent
connected vehicle system. The simulation scene here considers a group of four heterogeneous vehicles
running in a single lane, where all vehicles are equipped with the PD-type CACC controllers. Moreover,
the vehicle CACC system is stable and string stable. There is the remote monitoring layer which
monitors the vehicular motion states through wireless IoV communication (see Figure 1). The wireless
channels may be maliciously attacked by the false data injection from cyber attackers. Using the
presented secure state estimate method to recover the corrupted received data, the remote monitoring
platform can achieve normal operation.

In this simulation study, the vehicles’ parameters are selected as Li = 4 m for i = 0, 1, 2, 3, τ0 =

0.20 s, τ1 = 0.25 s, τ2 = 0.20 s, τ3 = 0.25 s and δd = 2 m. Note that the subscript “0” represents the
leading vehicle and the others represent the following vehicles. For the wireless channels which link
the vehicles to the remote monitoring layer, the observation matrix C is chosen as a nine-order identity.
Moreover, the PD-type CACC controllers are calculated by the method in [12] and the controllers’
gains are selected as K1 = [0.2284, 0.7740, 0.1961], K2 = [0.2181, 0.7456, 0.1466] and K3 = [0.2360, 0.8084,
0.2280]. In addition, the simulation scenario is initialized such the case that the leading vehicle is
running at the position of 40 m with the velocity of 20 m/s. Because the leading vehicle is running with
the constant velocity, the motion state-space model of the leading vehicle is given as:

.
z0(t)
.
v0(t)
.
a0(t)

 =


0 1 0
0 0 1
0 0 0




z0(t)
v0(t)
a0(t)

 (26)

where z0, v0 and a0 represents the absolute position, velocity and acceleration of the leading vehicle.
The matrix G in (11) is calculated through the leading vehicle’s states. At the initial time instant,
the three following vehicles stop at the position of 25 m, 10 m and 0 m, and the velocity and acceleration
are zero, that is, x(0) = [25, 0, 0, 10, 0, 0, 0, 0, 0]T. Because the number of the states of the vehicle CACC
system is 9, then the number of measurements of the system is selected at least as M = 9.

In the simulation experiment, it is assumed that attackers want to maliciously interfere with the
normal operation of the remote monitoring platform of the intelligent connected vehicle system. Hence,
they randomly attack the data packets in the remote monitoring networks. In this scene, it is assumed
that the second following-vehicle is under attacking. The data delivered to the monitoring platform is
injected by the false data from malicious attackers, which is shown in Figure 2. Note that this attack is
launched randomly to the three states of this vehicle in this study. It is observed from Figure 2 that
the three states of this vehicle are attacked and the other vehicles’ states are not attacked. In Figure 2,
the red dashed and dot-dashed lines represent the real and the attacked states of the following vehicles,
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respectively. Then we use the presented secure state estimate method to estimate the real states of the
vehicle platoon. The secure state estimate results are shown in Figures 3–5.Sensors 2020, 20, 1253  9  of  12 
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In order to clearly analyze the results on secure state estimation of the vehicle CACC system, we
use the spacing, relative velocity and acceleration profiles of the adjacent two vehicles to replace the
absolute position, velocity and acceleration profiles. Hence, the subplots (a) of Figures 3–5 represent
the 1st two-car’s inter-vehicle distance, relative velocity and relative acceleration profiles, respectively,
and subplots (b) and (c) represent the 2nd two-cars’ and the 3rd two-cars’, respectively. Note that
the second following-vehicle is under attacking and the ranges of attack are as shown in Figure 2.
As the CACC system (11) used in the remote monitoring platform is dependent on the inter-vehicle
distance, relative velocity and acceleration between adjacent vehicles, the monitoring motion states of
the third following-vehicle are also negatively, indirectly affected by the attack launched to the second
following-vehicle. Hence, in Figures 3–5, the 2nd and 3rd two-cars’ green dot-dashed lines are different
from the 1st two-cars’, which represent the values after attacking.

It is observed from Figures 3–5 that the red dashed lines and the blue dotted lines almost coincide,
where the two sets of lines represent the real states and the estimated motion states of the vehicle CACC
system, respectively. The estimated motion states of the vehicle CACC system are calculated from the
attacked states by applying the proposed secure state estimation method. In other words, the motion
states of the vehicle CACC system are estimated successfully in the context that the states of the second
following-vehicle are under attacking randomly. Note that the attack launched here is hidden in the
sense that it is intermittent to inject false data to the states of the second following-vehicle and the
number of the attacked states is limited and may change over the time. Hence, the simulation results
illustrate the effectiveness of the proposed secure state estimation method for remote monitoring of
intelligent connected vehicle systems under the false data injection attack. The proposed estimation
method increases the resilient ability of the remote monitoring platform of connected vehicles against
to cyber-attack.

5. Conclusions

In this paper, we considered the false data injection attack on the wireless networks of intelligent
connected vehicle systems and presented the secure state estimation method to reconstruct the motion
states of the connected and networked vehicles equipped with the CACC systems. Applying the
principle of compressed sensing, the optimization-based state estimation method was proposed to
reconstruct the initial state of the vehicle. The simulation results demonstrated the effectiveness of
the secure state estimation approach for remote monitoring motion of connected vehicles against to
the false data injection attack. In the future, distributed secure state estimation with consideration
of process and measurement noises is the pursuing work in order to more effectively reconstruct the
motion states of connected vehicles against to cyber-attacks.
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